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Abstract. Calibration deals with finding of unknown
parameter values. In this paper a possible calibration
approach for agent-based models is defined. After a
general explanation the approach is used to calibrate an
agent-based model that was developed for the Influenza
Season 2006/07 in Austria. This can not only help to fit
the simulation to given data, but also to increase model
credibility.

Introduction

A crucial task in the process of modelling and simula-
tion is called parametrization[1]. This is the finding of
parameter values to feed the model. Usually parametri-
zation goes along with the development of the mod-
el/simulation. First of all the system is analysed, usually
this results in a huge collection of every data set that is
known about the system under study, including publica-
tions, studies, other models, surveys, and others. Gener-
ally data can be split into two different groups: (1) Input
Data: Everything that the model needs to be executed
and (2) Output Data: Representation of the real world
system after simulation runtime.

The further the modelling process (see Balci [2] or
[3]) progresses the more precise the parameters have to
be defined. This task fails if there is a lack of data or if
values can not be measured in realtity. Calibration helps
to fill this gap. What happens is that the model output is
fit to real world data.

So basically data processing has to be done in two
ways (1) the parametrization: Which deals with the
finding and formatting of data to use it in a simulation —
the data is directly transformed into parameter values -
and (2) the calibration: which tries to find parameter
values for the model assisted by known input and output
data.

This paper focuses on the 2" part where parameter
values are not known. Basically calibration means that
the value is changed repeatatly. Often the output is then
compared to the real world output subjectively by an
expert. In this paper the authors try to describe how a
evaluation of a simulation run can be done in a more
efficient way by a function that evaluates how well a
simulation fits to the real world data compared to a
predefined ‘comparison function’. This makes things
easier for the subject matter expert.

The following procedure was initially designed for
epidemic models but can be adapted to fit to any model
that has special conditions.

1 Theory

The data and the simulation output have to be represent-
ed in a way to be compareable to each other.

In this section, the key facts that the simulation un-
der study should fulfil are presented. Generally there
has to be a defined start and end point of the system
under study. Basically the output deals with the number
of entities in the system with certain attributes. An ag-
gregated group of entities with this attribute is observed.
Beyond that this section describes a function that can
support the decision whether two curves coincide satis-
fyingly well.
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1.1 Which entities are observed?

This is the aggregated group of entities that get a certain
attribute A per time step. It should be defined exactly
and clearly which people are represented in the given
data and simulation output. If the identification between
data and simulation output is not performed correctly,
calibration cannot be done successfully. The entries of
the vector V may represent the number of entities that
have (or gain) the attribute A at time step t. The ap-
proach in this paper is defined for one attribute, but
could also be extended for several attributes 44, .. 4,,.

1.2 Characterization of the system under
study

It is not possible to give one definition that fits for all
types of simulations, because there are too many factors
that have to be taken into account. So basically this task
has to be done dependent on every simulation. The aim
of this section is to give a procedure for formulation of
these characteristics.

First of all a vector ¥ is given. This vector has en-
tries v;, t = 1..N that represent for each time step the
number of entities that have (or get) the attribute A.

N is the total number of time steps. (1) The start
point tyq.+ that has to be determined. (2) Then, a time
period of the length 1 is defined. This is the time period
that will be analyzed. (3) In this time period there can be
different characteristics given as the properties P,. These
properties could be the minimum, maximum, or other
functions. (4) The end of the analyzed time period is
defined as topg = tspare + |-

1.3 Extraction of the data/simulation vector

The time steps from tg g, t0 tengq are extracted into a
new vector with length [.

U= (vfstart’vtstart+1’ = Vtong—1r vtend)' (1)

The actual performance of the extraction must be de-
fined individually and in respect to the properties that
are obtained in 1.2 and the given vector .

1.4 Distance Function

A distance function compares two vectors v; and v, to
each other and gives a value how good they coincide.

The time steps of these two vectors need to be given
in the same step size (hours, days, weeks, ...). If they
have different step size, they have to be converted to the
same step size. It is also very important, that these two
vectors are of the same length [ (in respect to the same
step size). A simple approach is for example the use of a
weighted square distance function between v; and v, .

d(vy,v;) = w; * (Vg — Vzi)z- )

l
i=

0

The weights are very helpful, if some time steps seem
more ‘important’ than others. The weights w; represent
the weights for time step i and have to be set manually.
Generally it is advised that time steps with lower confi-
dence get lower weights and higher confidence means
higher weight.

The distance function can be chosen individually
and must be adapted to the given data points. Other
significant data values could also be taken into account
when given.

2 The Approach

The aim of the simulation is to reproduce given data.
The simulation is fed with input parameter values and
the simulation produces an output. Some of the input
parameters can be found others have to be calibrated.
Hence, the first task is to determine the parameters
which have to be calibrated. This could be either one or
more parameters. Only unknown or unreliable parame-
ters have to be calibrated. Before calibration it is very
useful to do sensitivity analysis to get to know how the
produced output depends on given input variables.

Upon the theory presented in 1.1 and 1.2 the output
vector is extracted from the data (1.3) and stored in the

vector d. Then, K simulation runs are executed. K is not
specified and can be chosen as required. These simula-
tion runs are started with different values for the param-
eters that have to be calibrated and give several output
vectors. These output vectors may be identified by
s,i=1..K. In every simulation run the simulation
vector is extracted as described in section 1.3. The out-

put of this process is stored in §—f, i=1.K.
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Each extracted simulation vector §; is then compared

to the data vector d using the distance function d(?f, d’)
that was presented in 1.4. Then, the simulation vector
Spese With the minimal distance function is chosen:

Soestr With d(Spesr, d) = mind(5,d)  (3)

Calibration is an iterative task. If the simulation run
Spest Tits to the data good enough according to the dis-
tance function, calibration stops. If the distance is still
too high, new simulation runs have to be started and the
whole process starts all over again.

Finally, the parameter value of the simulation run
Spest is used and calibration is finished.

Here is a short overview of this procedure.

1. Definition of the system under study.

2. Extract data vector from data upon definition
3. Calibration

e Locate the parameters for calibration

¢ Run simulations with a small amount of start infec-
tions with different parameter values.

o Extract the simulation vector from the simulations
upon definition.

¢ Use the distance function to compare the extracted
simulation vector to the extracted data vector. Take
the parameter value of the simulation run with min-
imal distance function.

After calibration, a plausibility check - also called face
validation - should be performed to test whether the
calibrated parameter values are reasonable. This is not
part of this paper and should be evaluated by a subject
matter expert. For detailed information see [4], [5].

3 Calibration of the Agent-
based INFLUENZA Model

Each model and each epidemic has its own characteris-
tics. Here the calibration approach is given for an agent-
based model for epidemic spreading of the influenza
virus. The main characteristic of agent-based models is
that complex behavior in the system arises from easy
rules for each individual.

The model is built on discrete time steps. Each time
step represents one day. People are represented individ-
ually as so called agents. These agents have several
attributes like gender, age, infection attributes (infected,
vaccinated, mild symptoms, severe symptoms...), etc.
At simulation start, each agent gets initialized being
either infected with or without symptoms, susceptible,
or vaccinated. In each time step agents have contact
with other agents. If an agent has contact with an infect-
ed person, an infection happens with a certain infection
probability. After some time steps people recover. Peo-
ple that are recovered, vaccinated or already infectious
cannot be infected again.

There is also another attribute called naturally im-
mune that controls whether an agent can get infected.
This attribute is set for persons, which cannot get infect-
ed due to an infection in a past season or due to a good
immune system. The number of people that get this
attribute is defined via a parameter and can be set only
at simulation start.

High model credibility is very important to perform
a successful calibration. That is why supportive tasks
called validation and verification [3], [5] have to be
carried out. A special validation strategy that is used for
agent based models can be found in [4].

Since the model is built upon an object oriented ap-
proach with different modules, both tasks are quite time
consuming. Definition of the influenza epidemic
If vector V contains the number of people that evolve
(severe) symptoms due to an infection with the influen-
za virus, then each entry v, represents the number of
persons that evolve symptoms at time step t. The most
important facts are that a constant ¢ defines the official
start and end of an epidemic season. The start point
tstare 18 the first time step where v, > c. The last time
step where v, > ¢ is called the end of the epidemic
(tenq).- We assume that v, > cforallt € [tgrare, tenal-
The constant ¢ is important to define when an epidemic
starts and ends according to the data.

The length of the epidemic is identified as [ =
tend — tstare- One of the properties that can be found in
the influenza season is that the epidemic peak is some-
where in the interval [ts;qr¢, teng]. This is the maximum
number of people that develop symptoms. The maxi-
mum and the length of the epidemic are important for
the extraction of the epidemic in a simulation run.
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Figure 1 shows the weekly number of people that
consulted a physician due to influenza. Under an addi-
tional assumption we assume that this is the number of
infected people that evolve severe symptoms per week.
The data for the 8" week is doubted, because no expla-
nation could be found for the decreased number of cas-
es. It is assumed, that this is an error in the data. In this
example the task to find the start and the end of the
influenza season does not have to be done, because the
definition was made upon the given data and data was
preprocessed in a way that start and end is already given.

The main information that this figure gives, are: the
influenza starts in the 3rd week of the year (ts;qrt = 3)
and reaches its maximum between the 7th and 9th week.
The actual assumption is, that the maximum is exactly
in week 8. The end is in the 13th week (t.,q = 13).
That’s a duration of [ = 11 weeks (77 days).

25000
20000 A~
15000 AN\
10000 / AN
5000 ,/ N~
0 ~N

Week 3
Week 4 -
Week 5 1
Week 6
Week 7
Week 8 1
Week 9 1
Week 10 A
Week 11 1
Week 12 A
Week 13 -

Figure 1: Number of people that evolve severe symp-
toms per calendar week in influenza season
2006/07 in Austria.

3.1 Extraction from the data

The time steps from tgpq.: t0 tong are extracted into a
new vector with the length 1.

1= 4
d: (vtstart’vtstart"'l’ e vtend_l’ Utend)' ( )
Here, no extraction is necessary because the data is

already given in the correct format hence, d = 7.

3.2 Calibration procedure

The aim of this section is to show how the calibration
task can be done in an efficient way, but not to deliver
the perfect calibration utility for this model.

In literature many strategies for model calibration
can be found that may be applied [6-8]. Calibration
always depends on how much information is available.

Locate the calibration parameter

Several epidemiological studies allow parameterization
of the model except for the infection probability, which
cannot be measured, hence it needs to be calibrated. The
calibration results are shown in section 3.3.

Some parameters like population data or disease
progression are highly reliable while others like the
percentage of naturally immune people might be scruti-
nized. The calibration of the parameters infection prob-
ability and naturally immune is shown in 3.4.

Run simulations

In reality, spreading of the influenza virus starts with a
small amount of infected people until the epidemic
officially begins. This is why the simulation runs are
initialized with a small number of infectious people.

To make it more reliable, the simulation time should
be longer than the actual epidemic. It should cover at
least as many time steps so an extraction of the epidem-
ics upon the definition in 0 is possible.

The vector § represents the simulation output. Each
entry s, represents the number of people that get severe
symptoms at time step t according to simulation.

Extraction

For the use of the distance function, which is applied in
the next section, it is important that the finally extracted
epidemics in the data and simulation output

1.are of the same length and
2.the time steps represent the same interval (daily,
weekly, monthly).

The extraction procedure presented here takes care of
these two points. The extraction of the simulation runs
and the extraction of the data are two separate proce-
dures. In this section the length of the epidemic and the
entry of the simulation run with the highest number of
people that newly develop severe symptoms is used for
detection.

The duration of the epidemic is important for the de-
tection of the epidemic in the simulation. The simula-
tion has daily-sized time steps. This is why the detection
of the epidemic is performed on days. According to the
definition of the epidemic the duration of the influenza
season as given in the data (Figure 1) is about 77 days
(11 weeks), that is why 77 time steps are picked in the
simulation run.
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Then, the sum of 7 time steps represents a week to
be comparable to the original data.

That and the fact, that the simulation is started with a
lower number of infected people inquires to take a long-
er simulation period for the detection of an epidemic.
The detection of the epidemic has to be done for each
simulation run that was started in 0.

Example for the extraction

To show how the extraction is performed a simulation
run is executed, where § represents the simulation out-
put and N = 170 is the simulation runtime (daily step
size). The result of this run is shown in Figure 2.

, if t=0
3
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Figure 2: Simulation run with 150 time steps (daily).
Occurrence of severe symptoms per day.

First of all, the maximum amount of severe symptoms
per time step has to be detected. It is possible to use
the maximum function for this detection. If we zoom
in (Figure 3) it is obvious, that the maximum time step
is at 92.
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Figure 3: Zoomed in simulation run (daily).

Agent based models underlic some variations, hence it
makes sense to smoothen the results. Here, the smooth

vector § calculates by the mean value of three time steps
(Figure 4).

Figure 4: Smoothed simulation run (zoomed in).

Then the maximum of the vector § is detected. In the
example this is marked with the red line and is at time
step timax = 93. It could be possible, that the maximum
is very close to the beginning or the end of the simula-
tion time. This could happen in three cases:

1. There is no significant uprising of the number of
people that evolves severe symptoms time step. No
maximum can be found.

2. The simulation run time is too short. Then the max-
imum is at the end. Simulation has to be restarted
with a bigger N and re extracted.

3. The percentage of start infections too high. Simula-
tion has to be restarted with a lower percentage of
start infections and re extracted.
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Figure 5: Detected epidemics (daily).

After the time step of tpmay = t; is detected, all s;
. 1 .
with te [tmax —% s tmax T E] are extracted into a new

vector.
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This vector is represented as

§:= ,S 1,8 1 6
tmax+;-1’ tmax"‘z) ( )

S S
( tmax—3 tmax__"'l

All s; with te [92 - 72—7, 92 + 72—7] are stored in the vector

3. These are the red marked time steps shown in
Figure 5.

The extracted epidemic is shown in Figure 6. This is
a vector of the length 1.
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Figure 6: Extracted epidemics (daily).
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Figure 7: Extracted epidemics per week.

Now each 7 time steps are summed up to get an output
in the same step size as given in the data (Figure 7).

Applying the distance function

Use the distance function to compare the extracted epi-
demic simulation results to the extracted data. Take the
parameter value of the simulation run with minimal
distance function.

3.3 Results of the calibration of one
parameter

For a correct calibration a wealth of simulation runs has
to be executed. The data that is shown in Figure 1 refers
to the population of 2007, these were about 8.300.000
people. To run an agent-based model with this number
of agents takes quite long, that is why for calibration the
number of agents is reduced to 830.000 and the data is
scaled to this amount of people. This has no impact on
the calibration process, because the number of agents is
still high enough to produce reliable results to work
with.

As already mentioned the infection probability can
not be measured so this is the parameter that is varied in
the calibration process.

A series of simulation runs s;,i = 1...K is started.
All simulations are executed with a low amount of ini-
tial infections and different values for the infection
probability. In each run the epidemic is detected and

stored in sjl,i = 1..K. The simulation runs are then
compared to the original data and the distance function
is evaluated.

Some expressive simulation runs are shown in Fig-
ure 8. The given data is the red line. The other simula-
tion runs are the detected epidemics for each parameter
value. Of course not all simulation runs can be shown
here, so this is only a sample set of all runs.
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Figure 8: Calibration of infection probability.

The weighted distance function as given in section 40 is
used. It is supposed, that the data point of the 6™ week is
wrong or insufficient. That is why these weeks get a
lower weight.
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week 1] 2| 3| 4| 5| 6| 7] 8] 9]10|11
weight 1] 4| 8|16| 42| 4|142|16] 8] 4] 1

Table 1: Weights per time step.

Then the distance function is applied. Each simulation
run is executed and the distance to the data is given in
the following table.

infection distance
probability
1.3% 3905.98
1.4% 3813.02
1.5% 2333.31
1.6 % 6 273.50
1.7% 11248.15

Table 2: Distance to given data.

Now the simulation run with the minimal distance is
chosen. This is the one with an infection probability of
1.5 % and is stored in Spgq;.

Still, the calibration results are not satisfying. The
main problem is that far too many people evolve severe
symptoms at the beginning and at the end in every simu-
lation. Another point of view is that the model produces
too long epidemics using the fixed parameters. Varia-
tion of the infection probability does not help to over-
come this issue.

3.4 Calibration of two parameters

Now, the same procedure is performed by varying two
parameters, the infection probability and the number of
naturally immune people.

The simulation runs in Figure 8 show that a higher
value for the infection probability leads into an increase
of people with severe symptoms at all and a higher
value of the maximum of people that evolve severe
symptoms.

The number of naturally immune people controls
what percentage of the population gets the attribute to
be naturally immune at initialization. These people
cannot get infected at all.

Sensitivity analysis of this parameter shows that a
higher amount of naturally immune people in the begin-
ning leads to less infections, less people that evolve
severe symptoms and a shorter duration of the epidemic
in the simulation. The results of the sensitivity analysis
are not presented here.

Another series of totally 10 000 simulation runs
5, i =1...K is executed, and the epidemics are detected

and stored in §_‘;

The infection probability is varied between 0.6 %
and 8.80 % and the percentage of people that are natu-
rally immune is varied between 50% and 90%. Due to
lack of space not all results can be shown here. In Fig-
ure 9 an extract of simulation runs is shown to provide a
little insight how close the results of simulation runs
with different parameter values are.

3500
3000 e Data
2500 - s | 8.6%, NATI 78%
2000 - | 8.6%, NATI 79%
1500 A m— | 8.6%, NATI 80%
1000 s | 8.7%, NATI 78%
s | 8.7%, NATI 79%

500 7 )

0 \ s | 8.7%, NATI 80%

T T T T T T T T T 1
— N N T \nn O >~ X N~
—_

Figure 9: Variation of infection probability (I) and
percentage of people with natural
immunity (NATI).

In the Table 3 the distance of the extracted simulation
runs to the data is shown. The distance function (section
40) uses the same weights as given in Table 1.

infection percentage of distance
probability natural
immune people
8.6 % 78 % 9.800.55
8.6 % 79 % 4 659.97
8.6 % 80 % 7661.01
8.7% 78%|  11658.65
8.7% 79 % 5022.45
8.7 % 80 % 6877.16

Table 3: Distance to given data.
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The best simulation S, has an infection probabil-
ity of 8.6 % and a percentage of start infections of 79 %.

It would be very difficult to choose one of these runs
manually because of the large number of runs and a
small variation of parameter values results in very simi-
lar output as shown in Figure 9. Of course it is not pos-
sible to say objectively, that this simulation is really the
best representation of the real data, but it helps to decide
whether parameter values can be found, that represent
the data in a good way or not.

Based on the results, experts have to assess the
found parameter values for a final decision of a reliable
simulation which represents the data satisfyingly well.

4 Conclusion

Calibration is a crucial task when building a model. It
helps to determine whether a model is able to represent
the original in a reliable way. The calibration method
and especially the examples of the calibration process
that are presented here can help to reconsider assump-
tions that were made in the model, or to start investiga-
tions concerning the correctness of the data. If calibra-
tion of a parameter can be done with a subjectively good
result it will result in even more confidence for the
model. It is important to mention, that calibration can
not be finished without a plausibility check from a sub-
ject matter expert, that gives input, if the found parame-
ters are feasible.
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