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Abstract. Statistic states that 285 million people are
estimated to be visually impaired worldwide: 39 million
are blind and 246 have low vision. About 90% of the
world's visually impaired people live in developing coun-
tries.

Taking in consideration that Mechatronics is a method-
ology used for the optimal design of electromechanical
products, and by combining technologies that are availa-
ble to us we can develop a very useful tool that blind
people and people with sight problems can change their
lives.

Combining smart phones and digital camera there are
possibilities to build smart glasses which will give infor-
mation to blind people.

In this paper definitely a new ap-proach for making peo-
ples life easy is proposed. Initially the re-sults are
reached from simulation using Matlab/SIMULINK pack-
age which will lead this research to real time experi-
mental results.

Introduction

By taking into consideration that Mechatronics is a
branch of engineering that combines different disci-
plines of engineering from Computer Science, Mechan-
ical engineering, Electrical engineering, Electronics, to
natural sciences such as Physics and Applied Mathemat-
ics, in order to solve a particular problem at hand. This
proposed product is no exception for we took pre exist-
ing technologies and modified it to our benefit. World-
wide statistic states that 285 million people are estimat-
ed to be visually impaired worldwide: 39 million are

blind and 246 have low vision. About 90% of the
worlds visually impaired live in developing countries.

We saw a problem and searched for possible solu-
tions and we came up that by combining smart phones,
digital cameras, GPS, 3G or 4G telephone network (that
supports internet) and of course some cutting edge pro-
gramming the goal of developing a tool that is able to
make life’s of millions a little bit better is very much
achievable.

1 Reserch with Autonomus
Robots (Robo Earth)

If we take in consideration that The majority of the
world’s 8 million service robots are toys or drive in
preprogrammed patterns to clean floors or mow lawns,
while most of the 1 million industrial robots repetitively
perform preprogrammed behaviors to weld cars, spray
paint parts, and pack cartons [2]. To date, the vast ma-
jority of academic and industrial efforts have tackled
these challenges by focusing on increasing the perfor-
mance and functionality of isolated robot systems.
However, in a trend mirroring the developments of the
personal computing (PC) industry [3], recent years have
seen first successful examples of augmenting the com-
putational power of individual robot systems with the
shared memory of multiple robots. In an industrial con-
text, Kiva Systems successfully uses systematic
knowledge sharing among 1,000 individual robots to
create a shared world model that allows autonomous
navigation and rapid deployment in semi structured
environments with high reliability despite economic
constraints [4], [5]. Other examples for shared world
models include research on multi agent systems, such as
RoboCup [6], where sharing sensor information has
been shown to increase the success rate of tracking
dynamic objects [7], collective mapping of autonomous



| Bula et al.

The Impact of Technology on Orientation Aid for the Visually Impaired

vehicles [8], [9], or distributed sensing using heteroge-
neous robots [10].

However, in most cases, robots rely on data collect-
ed once in a first, separate step. Such pooled data have
allowed the development of efficient algorithms for
robots, which can then be used offline without access to
the original data. Today’s most advanced personal assis-
tant robots rely on such algorithms for object recogni-
tion and pose estimation [11], [12]. Similarly, large
training data sets for images and object models have
been crucial for algorithmic advances in object recogni-
tion [13]-[14].

The architecture and implementation of RoboEarth
is guided by a number of design principles, centered on
the idea of allowing robots to reuse and expand each
other’s knowledge. To facilitate reuse of data, Ro-
boEarth supports and leverages existing standards. The
database is made available via standard Internet proto-
cols and is based on open source cloud architecture to
allow others to set up their own instance of RoboEarth,
resulting in a truly distributed network. The code gener-
ated by the RoboEarth Consortium will be released
under an open-source license, and will provide well
documented, standardized interfaces. Finally, Ro-
boEarth stores semantic information encoded in the
World Wide Web Consortium (W3C) - standardized
Web Ontology Language (OWL [17]) using typed links
and uniform resource identifiers (URIs) based on the
principles of linked data [15].

2 Architecture of Robo Earth

RoboEarth is implemented based on a three-layered
architecture (Figure 1). The core of this architecture is a
server layer that holds the RoboEarth database [Fig-
ure 1(a), the “Architecture: Database” section]. It stores
a global world model, including reusable information on
objects (e.g., images, point clouds, and models), envi-
ronments (e.g., maps and object locations), and actions
(e.g., action recipes and skills) linked to semantic in-
formation (e.g., properties and classes), and provides
basic reasoning Web services. The database and data-
base services are accessible via common Web interfaces.
As part of its proof of concept, the RoboEarth Con-
sortium [16] is also implementing a generic, hardware-
independent middle layer [Figure 1(b)] that provides
various functionalities and communicates with robot-
specific skills [Figure 1(c)]. The second layer imple-

ments generic components. These components are part
of a robot’s local control software. Their main purpose
is to allow a robot to interpret RoboEarth’s action reci-
pes. Additional components enhance and extend the
robot’s sensing, reasoning, modeling and learning capa-
bilities and contribute to a full proof of concept that
closes the loop from robot to the World Wide Web
database to robot.

The third layer implements skills and provides a ge-
neric Interface to a robot’s specific, hardware-dependent
functionalities via a skill abstraction layer.
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Figurel: Robo Earth's three layered architecture. [1]

3 Data Base of Robo Earth

RoboEarth stores CAD models, point clouds, and image
data for objects. Maps are saved as compressed ar-
chives, containing map images and additional context
information such as coordinate systems. Robot task
descriptions are stored as human readable action recipes
using a high level language to allow sharing and reuse
across different hardware platforms. Such action recipes
are composed of semantic representations of skills that
describe the specific functionalities needed to execute
them. For a particular robot to be able to use an action
recipe, the contained skills need to have a hardware-
specific implementation on the robot. To reduce redun-
dancy, action recipes are arranged in a hierarchy, so that
a task described by one recipe can be part of another
more complex recipe. In addition, database services
provide basic learning and reasoning capabilities, such
as helping robots to map the high-level descriptions of
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action recipes to their skills or determine what data can
be safely reused on what type of robot.

The RoboEarth database has three main components
(Figure 2).

First, a distributed database contains all data orga-
nized in hierarchical tables [Figure 2(a)]. Complex
semantic relations between data are stored in a separate
graph database [Figure 2(b)]. Incoming syntactic que-
ries are directly passed to the distributed database for
processing. Semantic queries are first processed by a
reasoning server. Data are stored in a distributed data-
base based on Apache Hadoop [20], which organizes
data in hierarchical tables and allows efficient, scalable,
and reliable handling of large amounts of data.
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Figure2: The three main components of the RoboEarth
database. [1]

Second, a centralized graph database holds semantic
information encoded in the W3C-standardized OWL
[17]. It stores the following data and their relations.

3.1 Obijects

The database stores information on object types, dimen-
sions, states, and other properties as well as locations of
specific objects a robot has detected and object models
that can be used for recognition (Figure 3). Figure 3(a)
describes a recognition model for a certain kind of ob-
ject (defined by the property providesModelFor), giving
additional information about the kind of model and the
algorithm used. The actual model is linked as a binary
file in the format preferred by the respective algorithm
(defined by the property linkToRecognitionModel).
Figure 3(b) describes the recognition of a specific ob-
ject. An instance of a RoboEarthObjRec- Perception is
created, which describes that the object Bottle2342

(linked through the property objectActedOn) was
detected at a certain position (linked through the proper-
ty eventOccursAt) at a given point in time using that
(defined by the property

recognizedUsingModel).
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Figure3: The object description, recognition model. [1]

3.2 Environments

The database stores maps for self-localization as well as
poses of objects such as pieces of furniture (Figure 4).

The semantic map combines a binary map that is
linked using the linkToMapFile property with an object
that was recognized in the respective environment. The
representation of the object is identical to the one in
Figure 3. This example shows that both binary (e.g.,
occupancy grids) and semantic maps consisting of a set
of objects can be exchanged and even combined. The
given perception instance not only defines the pose of
the object but also gives a time stamp when the object
was seen last. This can serve as a base for calculating
the position uncertainty, which increases over time.

Figure 4: The environment map used in the second
demonstrator. [1]

3.3 Action recipes

The stored information includes the list of subaction
recipes, skills, and their ordering constraints required
for executing an action recipe as well as action parame-
ters, such as objects, locations, and grasp types (Fig-
ure 5). Action classes are visualized as blocks, proper
ties of these classes are listed inside of the block, and
ordering constraints are depicted by arrows between the
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blocks. The recipe is modeled as a sequence of actions,
which can be action recipes by themselves, e.g., the
GraspBottle recipe. Each recipe is a parameterized type
specific subclass of an action such as Translation.
Atomic actions, i.e., actions that are not composed from
sub actions, represent skills that translate these com-
mands into motions.

A first type of service is illustrated by RoboEarth’s
reasoning server. It is based on KnowRob [18] and uses
semantic information stored in the database to perform
logical inference. Services may also solely operate on
the database.

RoboEarth’s learning and reasoning service uses
reasoning techniques [19], [18] to analyze the
knowledge saved in the RoboEarth database and auto-
matically generates new action recipes and updates prior
information. For example, given multiple task execu-
tions, the database can compute probabilities for finding
a bottle on top of the cupboard or on the patient’s
nightstand. Using the additional information that cups
are likely to be found next to bottles, the service can
automatically create a hypothesis for the probability of
finding cups on top of the cupboard.
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Figure 5: The action recipe used for the second
demonstrator. [1]

Such cross correlations between objects can provide
powerful priors for object recognition and help to guide
a robot’s actions. Additionally, if there are two action
recipes that reach the same goal in different ways, the
learning and reasoning service can detect this, fuse the
recipes, and explicitly represent both alternatives.

For example, if robot A was equipped with a dex-
terous manipulator but robot B only with a tray, the
component could create a single action recipe ‘serve
drink to patient’ with two branches depending on the
robot’s abilities, which would have different require-
ments: the first branch would require a graspable bottle,
whereas the second branch would require the availabil-
ity of human or robotic help to place the bottle on the
tray.

4 Proposal and Conclusion

By utilizing the avaible technologies and modifying
them to our needs is mechtronics in action. It may inter-
es you why we focust so much on robo earth.

The answer is that this kind of technology is at the
very core of our product for it is easy to connect a digi-
tal camera to a smart phone and to use GPS and the
internet. But it is al in vain if you don’t have an image
processor to analyse it and a data base to store and
catologe it. All of that robo earth offers us.

The ability of the smart robots to recognize opsticles
an independently avoid them in adition to their ability to
move without outside aid is something we need for the
realization of this project.

From the three layers only two may be needed be-
cause hardwere control layer may not be nessesary.

So if we take a smart phone that in it self has a GPS
tracking system, significant processing power, storage
and internet support. So if we connect a miniature
digital camera with the smart phone. And that camera
sends us life video from the environment to the phone.
Because smart phones are like a small scale PC pre
processing and cataloging can be done and then send
via internet to the created cloud where the data is ana-
lysed, categorized and made available to all the users
in this cloud.
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So for example a visually impared person walks
down the streat and and an unknown object is detected.

By means of a digital camera which records objects
that are before us at a certain distance. The picture is
then send sent to an application installed on the smart
phone, this new application which is connected to a
central data- base which one containing the list of pos-
sible objects that could be faced along the way, but with
enlargement opportunities, that means if the user saw an
unknown object that is not registered in the database,
the object will be recorded saved, analyzed and regis-
tered in the database, and when we encounter it on the
road again, it will be registered in the database and it
will be available to users.

All objects that are registered in the database must
be encoded in advance and each of them is given a code
to identify them, therefore all new objects which we
encounter and are not encoded, are recorded by the
digital camera which then sends the picture to the appli-
cation which then notifies the database for an object
unknown, the user of the tool is then automatically
notified even though we don’t know what kind of object
are we talking about of an potential risk in certain dis-
tance and size of that object.

At first only object of a certain size, velocity and
distance will be reported to the user in order to not con-
fuse the user. But possible extentions of servise like face
regognition, regognition of everyday items, reading text
and so on.

This idea of combining technologies is perfect ex-
ample of mechatronics in use. Even though the idea is
very ambitious for a university level it is very much
feasible but huge components especially the software
and database is in copyright of few companies and the
only alternative is a from the scratch approach who is
quite difficult if we take into consideration the resources
needed to build it. But of coarse if we use different
simulation software’s a simulation of the product is very
much possible. Initially the results are reached from
simulation using Matlab/SIMULINK package which
will lead this research to real time experimental results.

Next steps might be the development of similar la-
boratory equipments and development of software and
database some of which may be accessible via an open
source which can be modified to our needs and the rest
of the software will be necessary to be programmed by
ourselves.
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