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Abstract. Despite an urgent need and desire in academ-
ia as well as in industry for modeling Partial Differential 
Equations (PDEs) using the increasingly popular Modelica 
modeling and simulation language, there is limited sup-
port for this available at the moment. In this work, we 
propose a solution based on importing PDE models with 
PDE solvers implemented using the general-purpose 
parallel finite element library HiFlow3 as models into the 
Modelica environment using the standard Functional 
Mock-up Interface. In contrast to methods based on 
language extensions or automatic semidiscretizations in 
space, this approach requires no change to the language, 
and enables the use of specialized PDE solvers. Further-
more, it allows for full flexibility in the choice of geome-
try, model parameters, and space discretization between 
simulation runs without recompilation needed. This 
makes it possible to exploit advanced features of the 
PDE solver, such as adaptive mesh refinement, and to 
build complex multi-physics simulations by coupling 
different models, of both PDE and DAE type, in a straight-
forward manner using Modelica. We illustrate our meth-
od with an example that couples a Modelica Proportion-
al-Integral-Derivative controller to a PDE solver for the 
unsteady heat equation in a 3D domain. 

Introduction
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1. HiFlow3 is well maintained and has strong support 
and capabilities for PDE modeling and solving;  

2. HiFlow3 and OpenModelica are free to download 
and use;  

3. The PDE structure is not lost but is maintained 
throughout the actual run-time simulation process. 
This allows for mesh refinement, solver run-time ad-
justments, etc.;  

4. It is possible to mix PDE and DAE systems in the 
same system setting. This is also possible in [19].  

1 Simulation Scenario 

Figure 1: System consisting of a copper bar connected to 
a temperature regulator based on a PID  
controller. 
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1.1 Computing the temperature distribution 

Heat Equation  
Variational Formulation  
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Finite element discretization in space 

Implicit Euler discretization in time  

1.2 PID controller 
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2 Coupled Implementation  

2.1 The Modelica language 

2.2 The OpenModelica environment  

2.3 The HiFlow3 Finite Element Library  

2.4 The Functional Mock-Up Interface (FMI) 

2.5 Simulation overview  
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Figure 2: Overview of the creation and coupling of the 
simulation components. 
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Figure 3: Interaction between the OpenModelica run-
time system and the coupled model with the 
implicit Euler solver.  

HeatSolver_run() {  
// if this is the first call  
if (first_call) {  
// read mesh file and eventually refine it 
 build_initial_mesh();  
//initialize the finite element space and 
//the linear algebra 
//data structures 
 prepare_system(); 
 first_call = false; 
}  
//compute the system matrix and  
//the right-hand-side vector  
assemble_system();  
// solve the linear system  
solve_system();  
// visualize the solution  
visualize();  
//keep solution and time in memory  
CopyFrom(prev_solution,old_solution);  

}  

Listing 1: Run function of the HeatSolver class. 

run()
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PDE_component()

HeatSolver

run() HeatSolver

2.7 Modelica model  

PDE_component(  
double in_Controlled_Temp,  
double in_Top_Bdy_Temp,  
double in_Bottom_Bdy_Temp,  
double in_Time)  
{  

// create HeatSolver object if this is the 
//first call  
if (run_counter == 0) 
 heat_solver = new HeatSolver();  
// set input values  
heat_solver->set_time(in_Time);  
heat_solver->set_g(in_Controlled_Temp);  
heat_solver->set_top_temp(in_Top_Bdy_Temp); 
heat_solver-

>set_bottom_temp(in_Bottom_Bdy_Temp); 
// run the HeatSolver  
heat_solver->run();  
// increment the run counter 
 run_counter++;  
// return the measurement value  

return heat_solver->get_u(); }

Listing 2: Main simulation routine of the PDE component.  

 

Figure 4: Schematic view of the coupled Modelica model 
used in the simulation. 

Component Parameter VValue 

LimPID  

proportional gain  0.05 

integral gain   0.2 

derivative gain  0.0 

HeatEquationFMU  

thermal diffusivity   

SineA  

amplitude 0.5°C 

vertical offset 3.5°C 

start time  

frequency   

SineB  

amplitude 6.0°C 

vertical offset 3.0°C 

start time  

frequency   

Table 1: Internal parameters of the components in the 
simulation model.  
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3 Results 

Figure 5: Environmental temperature prescribed on the 
boundary parts left and . Dashed , 
solid: .  

 

Figure 6: Simulation run with constant heat source  
. The temperature  at the point of 

measurement deviates from the desired value. 
Dashed: , solid: .  

 

 

Figure 7: Simulation run with controlled heat source 
 The temperature  at the point of 

measurement accurately follows the desired value 
. Dashed:  solid: . 
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4 Discussion 

Figure 8: Computational domain of the copper bar with 
triangulation. The colors indicate the temperature 
distribution on the surface at time . 

Figure 9: Sectional view with isothermal lines at time  
.  

 
Figure 10: Sectional view with isothermal lines at time  

.  
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5 Conclusion  
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