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Abstract. Despite an urgent need and desire in academ-
ia as well as in industry for modeling Partial Differential
Equations (PDEs) using the increasingly popular Modelica
modeling and simulation language, there is limited sup-
port for this available at the moment. In this work, we
propose a solution based on importing PDE models with
PDE solvers implemented using the general-purpose
parallel finite element library HiFlow3 as models into the
Modelica environment using the standard Functional
Mock-up Interface. In contrast to methods based on
language extensions or automatic semidiscretizations in
space, this approach requires no change to the language,
and enables the use of specialized PDE solvers. Further-
more, it allows for full flexibility in the choice of geome-
try, model parameters, and space discretization between
simulation runs without recompilation needed. This
makes it possible to exploit advanced features of the
PDE solver, such as adaptive mesh refinement, and to
build complex multi-physics simulations by coupling
different models, of both PDE and DAE type, in a straight-
forward manner using Modelica. We illustrate our meth-
od with an example that couples a Modelica Proportion-
al-Integral-Derivative controller to a PDE solver for the
unsteady heat equation in a 3D domain.

Introduction

We discuss numerical simulation of models that couple
Partial Differential Equations (PDEs) and Differential-
Algebraic Equations (DAESs) in the context of the Mod-
elica modeling and simulation language [15, 7]. Model-
ica originated around the idea of solving complex,

coupled dynamical systems, which can be described by
systems of Ordinary Differential Equations (ODE) or
DAE. Up to now, there is only limited support for work-
ing with PDEs, despite the fact that the number of Mod-
elica users in academia and in industry has grown sig-
nificantly lately. One of the first attempts to incorporate
PDE support into Modelica is described in [19], [20],
and in Chapter 8 of [7], which investigates two different
approaches: (1) expressing the PDEs using a combina-
tion of new language constructs and a supporting Mod-
elica PDE library using the methodof-lines; (2) export-
ing the PDE part to an external PDE FEM C++ tool
which solves the PDE part of the total problem. Based
on this work, an experimental implementation of PDE
support was added to the OpenModelica [4] compiler.
However, this implementation has not been maintained,
even though there have recently been discussions in the
OpenModelica community about re-activating these
features. Only one simple PDE operator is currently in
the Modelica language specification: spatial distribution
for 1D PDEs.

In [3] a Modelica library with basic building blocks
for solving onedimensional PDE with spatial discretiza-
tions based on the method of lines or finite volumes is
described. Although this approach is attractive due to its
simplicity, it is not clear how it could be extended to
higher dimensions, without increasing the complexity
significantly. Another approach is described in [11],
which extends the modeling language with primitives for
geometry description and boundary/initial conditions,
and uses an external pre-processing tool to convert the
PDE model to a DAE based on the method of lines. In
both of these two works, the PDE system is expanded
early on in the compilation process. In this way im-
portant information of the PDE structure is lost, infor-
mation that could have been used for mesh refinement
and adjustment of the run-time solver.
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Another similar option is to use the commercial
MapleSim environment [14]: It means to write the PDEs
in a Maple component, to export this component to DAE
form using a discretization scheme 1 and to use the re-
sulting component in MapleSim, which supports the
Modelica language. An overview of how to use Maple
and MapleSim together for PDE modeling can be found
in [10]. Apart from the cost for licenses, this method
again has the same drawback, arising from the loss of
information regarding the original model.

In this work, we propose a way to allow for PDE
modeling with Modelica by importing C++ components,
written with the HiFlow3 multi-purpose finite element
software [22], into Modelica using the Functional Mock-
Up Interface (FMI) [6] import. FMI is a standard for
model exchange and co-simulation between different
tools. FMI supports only C but with correct linking it is
possible to execute with C++ code. We use the Open-
Modelica [4] development environment but the same
approach can be adapted to other Modelica environ-
ments. A similar approach was used in [13, 12], which
describes a simulation of the energy supply system of a
house using Dymola, ANSYS CFD and the TISC co-
simulation environment. Some of the products used in
that work are proprietary, however, whereas our envi-
ronment is based on open standards and open source
software. Furthermore, we use the ‘model import’ ap-
proach for the coupling between components, instead of
the ‘cosimulation’ approach applied in those works.

The method described in this paper has several ad-
vantages:

1. HiFlow3 is well maintained and has strong support
and capabilities for PDE modeling and solving;

2. HiFlow3 and OpenModelica are free to download
and use;

3. The PDE structure is not lost but is maintained
throughout the actual run-time simulation process.
This allows for mesh refinement, solver run-time ad-
justments, etc.;

4.1t is possible to mix PDE and DAE systems in the
same system setting. This is also possible in [19].

As a proof-of-concept to demonstrate the Modelica-
HiFlow3 integration, we have implemented and tested a
coupled model which consists of solving the heat equa-
tion in a 3D domain and controlling its temperature via
an external heat source. This source consists of a Model-
ica Proportional-Integral Derivative controller (PID
controller), which is taken directly from the Modelica
standard library.

The outline of the paper is as follows. In Section 1,
we introduce the physical scenario we wish to simulate,
and provide a mathematical overview of the two main
components in the model. Section 2 describes in detail
the realization of the simulation based on coupling of
existing software components. In Section 3, we provide
numerical simulation results for the example model,
followed by a discussion in Section 4, and conclusions in
Section 5.

1 Simulation Scenario

We consider the evolution of the temperature distribu-
tion in a rectangular piece of copper. Figure 1 shows the
setup of the system. A heat sensor is attached on the
right side of the copper bar, and on the bottom side there
is an adjustable heat source. The system is exposed to
environmental influences through time-varying boundary
conditions at the top and left sides. The goal is to control
the temperature in the material by adjusting the heat
source, so that a desired temperature is reached at the
point of measurement. The regulation of the heat source
is done by a PID controller. It uses the sensor value and
a reference temperature to compute the heat source
strength. In our simulation, the two entities in this system
PID controller copper bar measuring point heat source
are realized by reusing existing software components.

measuring point

u(xg, t)

heat source g{t)

PID controller

Uypel

Figure 1: System consisting of a copper bar connected to
a temperature regulator based on a PID
controller.

The temperature of the copper bar is computed using a
HiFlow3 solver, and the ‘LimPID’ controller using a
model from the Modelica standard library. The compo-
nents are coupled by importing the HiFlow3 solver as a
Modelica model using FMI, and then creating a third
Modelica model, which connects these two components
as well as some additional components.
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1.1 Computing the temperature distribution

The evolution of the temperature distribution is modeled
by the unsteady heat equation. In this subsection, we
give the mathematical problem formulation, discuss the
numerical treatment of the heat equation, and describe
the discretization we used in the computations.

Heat Equation

We consider the copper to occupy a domain

Q :=(0,0.045) x (0,0.03) x (0,0.03) c R3,
where the boundary of ) is denoted by 0. The heat
problem formulation for our simulation scenario is the
following:
Find a functionu : Q X (0,T) — R as the solution of

diu— alu=0inQ x (0,7T), (1a)
u(0) = uyin Q (1b)
u=gonls.%x(0,7T), (1¢)
U = Uppp ON [, X (0,T), (1d)
U= Upepe 0N Tepe X (0,T), (le)
2 ~0on Ty, x (0,7) (19)

The unsteady heat equation (la) is a parabolic PDE.
Its solution, the unknown function u, describes the evo-
lution of the temperature in the copper bar  during the

time interval (0,T). Here, « = 1.11 x 10™* [mTZ] de-
notes the thermal diffusivity of the copper. u, in equa-
tion (1b) is the initial state at time t = 0. The sensor is
placed at the point x, := (0.045,0.015,0.015), where
the temperature u(x,, t) is taken as measurement value
for time t € (0,T). The heat source is modeled by the
Dirichlet boundary condition (1c). The controlled tem-
perature g(t) is prescribed on the source part of the
boundary
[grc := [0,0.045] % [0,0.03] x {0} € 9Q
The environmental influence is modeled by the Dirichlet
boundary conditions (1d) and (le). At the top boundary
part
Itop := [0,0.045] x [0,0.03] x {0.03} c 90
and the left boundary part
Tere := {0} % [0.01,0.02] x [0.01,0.02] < 9Q

the temperature is given by the functions u.,,(t) and

Upere(t) for t € (0,T), respectively. The rest of the
boundary

[is = 00\ (Ftop U Dere U 1—‘src)
is isolated through the homogeneous Neumann boundary
condition (1f).

Variational Formulation
A well-established method for numerically solving PDEs
like the heat equation is the finite element method. Here
we briefly describe the numerical treatment of problem
(1). The methods of this section are taken from [2] and [5].

The finite element discretization is based on a varia-
tional formulation, which can be derived as follows. We
denote by C¥(X;Y) the set of all k times continuously
differentiable functions from X to Y, and by C;°(X;Y)
the set of all smooth functions with compact support. In
the common case X = Q,Y = R, we just write C¥(().
Assuming that there is a classical solution

u € CY(0,T;C*(Q) N C(Q))

of problem (1), equation (1a) is multiplied by a test func-
tion v € Cy°(Q) and integrated over (0

f (@ wvdx — af (AM)vdx =0 (2)
Q Q

Green’s first identity [9] is applied to the second term of
(2), giving

d
f(Au)vdxzf —uvds—f Vu - Vvdx
Q P Q
= —f Vu - Vvdx,
Q

where n is the outer unit normal on dQ. The boundary
integral vanishes since v is zero on 9. This leads to

f Qv dx + af Vu-Vvdx =0 3)
Q Q

For equation (3) to be well-defined, weaker regularity
properties of u and v than in the classical context are
sufficient. The problem can be formulated in terms of the
Lebesgue space L?()) of square-integrable functions
and the Sobolev space H*(Q) of functions in L?(£)) with
square-integrable weak derivatives. We define the solu-
tion space

Vi={v € H'(Q):v = 0 on Ty U Lpp U Ty }
and the bilinear form
a:H'(Q) x H1(Q) - R,

a(u,v) := af Vu- Vv
Q
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Note that a is symmetric, continuous and V-elliptic.

We denote by (u,v),> = fﬂ uv dx the standard inner

product in L?(€2). Now we can state a variational formu-
lation of problem (1):
Findu € @ + C*(0,T; V) as the solution of

O, v)z+alw,v) =0 Vv eV (4a)

u(0) = ug (4b)
where @ € C*(0,T; H*(2)) is a given function fulfilling
the Dirichlet boundary conditions

u=g on [ere X (0,T),
= Usop on [, X (0,T),
U= Ugpc on Iy X (0,7),

S|

This variational formulation admits a unique solution u,
which is called a weak solution of the heat equation.

Finite element discretization in space

Let T), :={Kj, ..., Ky} be a triangulation of Q with N
tetrahedral cells K;(i = 1,...,N). We define the finite
element space of piecewise linear functions

Vi :={v €V : v|gis linear (K € T},)}. %)

V,, has the finite dimension n := dim(V},). We give the
problem formulation for a conforming finite element
approximation of (4):

Find uy, € @, + C*(0,T;V},) as the solution of

(Ocup, vp) 2 + alup,vy) = 0

(up(0),vp)2 —

Vvh € Vh' (63)

(uo, vh)LZ = 0 Vvh € Vh' (6b)

Let {1, ..., ¢,,} be a basis of V},. We define the ansatz

(6 6) 1= ) wi()i(x)
i=1

and insert it into (6a), yielding

n n
Zv’v((pi,(pj)LZ +Zwia(<pi, (pj) =0 (=1,..,n).
i=1 i=1

This can be written as

Mw + Aw = 0,
where
M= ((050),), ., ER™
is the mass matrix and
A:= (a(goi, (pj)) _ € R™"

i,j=1,..n

is the stiffness matrix of the problem, and

w:(0,T) - R"
is the vector of the time-dependent coefficients. From
(6b), an initial condition for w is derived as

Mwo); = (uo, @)z (i=1,..,n)

o wy = M1h,
where b; = (ug, ¢;);2 (i1, ...,n). Thus, the finite ele-
ment discretization in space leads to the initial value
problem

Mw + Aw =0, (7a)
w(0) = wy (7b)

for the coefficient vector w.

Implicit Euler discretization in time

As will be discussed in Section 2.6, limitations in the
used technology restrict us to use a relatively simple
ODE solver for the time discretization. For the heat
equation the implicit Euler scheme is suitable, due to its
good stability properties [8]. Let {0 =t¢, < t; <...<
tm = T} be a partition of the time interval with step sizes
Oty = tgyq (k =0,...,m—1). The implicit Euler time
stepping method for problem (7) is defined as

[M + 0t Alw(ty+1) = Mw(ty) (®)

for k = 0,...,m — 1. This method is convergent and
has first-order accuracy in terms of the step size 0ty,.

1.2 PID controller

A Proportional-Integral-Derivative controller (PID con-
troller) is a form of loop feedback controller, which is
widely used to control industrial processes. The control-
ler takes as input a reference value u,.r, which repre-
sents the desired temperature, and the measured value
u(xo, t). It uses the error e(t) := Uper — u(xy,t) to
compute the output signal g(t). As the name PID sug-
gests, there is a proportional part that accounts for pre-
sent errors, an integral part that accounts for the accumu-
lation of past errors, and a derivative part that predicts
future errors:

9() = wpe(®) + w, j
0

Here, wp, w; and wp are weight parameters. By tuning
these parameters the performance of the controller can
be adapted to a specific process. A PID controller is
widely regarded as the best controller when information
of the underlying process is lacking, but the use of a PID
controller does not guarantee optimal control.

t

d
e(t)dt + wp Ee(t)

7,
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The tuning of the parameters can be done manually
or by using a formal method such as Ziegler-Nichols or
Cohen-Coon. There are also software tools available.
Sometimes one or several of the parameters might have
to be set to zero. For instance, derivative action is sensi-
tive to measurement noise thus this part of the controller
might have to be omitted in some situations, resulting in
a PI controller. PID controllers are linear and can there-
fore have problems controlling non-linear systems, such
as Heating, Ventilation and Air Conditioning (HVAC)
systems. [1]

2 Coupled Implementation

In this section, we first briefly introduce the technologies
used in the present work. We then describe the coupled
simulation setup, as well as its two main constituent
components in more detail.

2.1 The Modelica language

Modelica is a language for equation-based object-
oriented mathematical modeling which is being devel-
oped and standardized through an international effort in
the Modelica Association [15]. The equation parts of
Modelica requires a lot of the compiler developer:
knowledge in compiler construction, symbolic manipula-
tion of equations and associated mathematics, as well as
knowledge of numerical mathematics. The simulation
run-time system is also an important part and can be
complex; various solver techniques for solving the dif-
ferential equations can be applied. Modelica allows high-
level concepts such as object-oriented modeling and
component composition. Multi-domain modeling is also
possible in Modelica with the possibility of combining
model components from a variety of domains within the
same application. There exist several mature and well-
maintained Modelica development environments, such
as Dymola, OpenModelica, MapleSim,Wolfram System-
Modeler, Simulation X, and JModelica.org.

2.2 The OpenModelica environment

OpenModelica is a modeling and simulation environ-
ment, which is developed and supported by an interna-
tional consortium, the Open Source Modelica Consorti-
um (OSMC) [4]. This effort includes an open-source
implementation of a Modelica compiler, a simulator and
a development environment for research, education and
industrial purposes.

2.3 The HiFlow3 Finite Element Library

HiFlow3 [22] is a multi-purpose finite element software
providing powerful tools for efficient and accurate solu-
tion of a wide range of problems modeled by partial
differential equations (PDEs). Based on object-oriented
concepts and the full capabilities of C++ the Hi- Flow3
project follows a modular and generic approach for
building efficient parallel numerical solvers. It provides
highly capable modules dealing with mesh setup, finite
element spaces, degrees of freedom, linear algebra rou-
tines, numerical solvers, and output data for visualiza-
tion. Parallelism - as the basis for high performance
simulations on modern computing systems - is intro-
duced at two levels: coarse-grained parallelism by means
of distributed grids and distributed data structures, and
fine-grained parallelism by means of platform-optimized
linear algebra back-ends.

2.4 The Functional Mock-Up Interface (FMI)

The Functional Mock-Up Interface (FMI) [6, 16] is a
tool-independent standard to support both model ex-
change and co-simulation of dynamic models which can
be developed with any language or tool. Models that
implement the FMI can be exported as a Functional
Mock-Up Unit (FMU). Such a FMU consists mainly of
two parts: (1) XML file(s) describing the interface and
(2) the model functionality in compiled binary or C code
form. Other tools or models, which also implement the
FMI, can import Functional Mock- Up Units. The initial
FMI development was done in the European ITEA2
MODELISAR project [17].

2.5 Simulation overview

Figure 2 gives an overview of the simulation setup. To
create the PDE component, we reused an existing
HiFlow3 application, which solves the boundary value
problem for the heat equation (1). In order to import this
code into Modelica, we converted it into a Dynamic
Shared Object (DSO), which implements the FMI func-
tions and interface descriptions necessary to build a
Functional Mock-Up Unit. We then loaded this FMU via
FMI into our Modelica model. The details of the PDE
component are described in Section 2.6.

For the PID controller, we used the LimPID compo-
nent from the Modelica standard library. This was con-
nected to the PDE component in a new Modelica model,
which is described in Section 2.7.
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Madelica Model OpenModelica
Motlel-c_a Standard Runtime System
Library PID Controller
FMI PDE Component
Import
. HiFlow3 =
HIFloW3L ) ppEsover [— & .
Libyrary C+ = Compiled Model
2E OpenModelica Code
T8 Compiler
C interface functions W
XML interface 1 B
Description far FMI a PDE Component

Figure 2: Overview of the creation and coupling of the
simulation components.

This model was then compiled with the OpenModelica
compiler and executed using the OpenModelica run-time
system. By choosing the Euler solver, the runtime sys-
tem provides the time-stepping algorithm according to
the implicit Euler scheme, and additionally solves the
equations for the PID controller component in each time
step. Figure 3 illustrates on a time axis the calls made to
the compiled model code, which in turn makes calls to
the PDE component.

2.6 HiFlow3-based PDE component

The main sub-part of the PDE component is the
HeatSolver class, which is a slightly modified version
of an existing HiFlow3 application. This class uses data
structures and routines from the HiFlow3 library to solve
the heat problem (1) numerically. It uses a finite element
discretization in space and an implicit Euler scheme in
time as described before.

Furthermore, this class provides functions for speci-
fying the current time, the controlled temperature of the
heat source, the top and bottom temperatures, and for
retrieving the temperature at the measuring point. The
top level routine of the HeatSolver class is its run()
function, see Listing 1. This function computes the solu-
tion of the heat equation.

We prepared the triangulation Th in a preprocessing
step and stored it in a mesh file. When the run () func-
tion is called for the first time, it reads the mesh file and
possibly refines the mesh. It also creates the data struc-
tures representing the finite element space V;, from (5),
the linear algebra objects representing the system matrix,
the right-hand-side vector and the solution vector. Then,
the run() function assembles the system matrix
M + 6t A and the right-hand-side vector Mw(t;) ac-
cording to (8). It computes the solution vector w(ty41)
for the new time step t = t;,; using the conjugate gra-
dient method [18]. The solution is stored in VTK format
[21] for visualization.

OpenModelica Runtime System

ot i Time Steps
L 1 1 o
Compiled Model Compiled Maodel St
Code Code
4 [
[POE Companent]  [PDE Component|

Figure 3: Interaction between the OpenModelica run-
time system and the coupled model with the
implicit Euler solver.

HeatSolver run() {

// if this is the first call
if (first call) {
// read mesh file and eventually refine it
build initial mesh();

//initialize the finite element space and
//the linear algebra

//data structures

prepare system() ;

first call = false;

}

//compute the system matrix and
//the right-hand-side vector
assemble system() ;

// solve the linear system

solve system();

// visualize the solution
visualize () ;

//keep solution and time in memory
CopyFrom(prev_solution,old solution);

Listing 1: Run function of the HeatSolver class.

It is important to note that the solution vector and the
current time are kept in memory inside the PDE compo-
nent, since this data is required for computing the solu-
tion at the next time step. Although it has been planned
for a future version, at present the FMI standard does not
directly support arrays, which prevents passing the solu-
tion vector back and forth between the PDE component
and the Modelica environment as a parameter [16]. Alt-
hough this use of mutable internal state in the PDE com-
ponent might be preferable from a performance point of
view, it has the drawback of making the function calls
referentially opaque: two calls with the same parameters
can yield different results, depending on the current
internal state. This imposes a strong restriction on the
solver used, which must assure that the sequence of time
values for which the function run() is called is non-
decreasing.
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For this reason, we only tested the method with the
simple implicit Euler solver, and verified that the calls
were indeed performed in this way. For more complicat-
ed solvers, such as DASSL, this requirement is no longer
satisfied.

The entry point of the PDE component is the
PDE_component () function, see Listing 2. This function
is called within the Modelica simulation loop. When it is
called for the first time, it creates a HeatSolver object.
It sets the input values for the heat source, the tempera-
tures at the top and bottom boundary, and the current
time. Then the run() function of the HeatSolver is
called to compute the solution of the heat equation. Fi-
nally, the run counter is incremented and the measure-
ment value is returned.

2.7 Modelica model

Our Modelica model is shown schematically in Figure 4.
It contains the PDE component, the PID controller, and
four source components. Two of the sources represent
the environmental influences, which are given by sinus-
oidal functions.

They are connected to the PDE component to give
the top and left boundary temperatures ., and w5, in
Equations (1d) and (le), respectively. One source is
connected to the PID controller and gives the reference
value u,..; for the desired temperature.

PDE_component (
double in Controlled Temp,
double in Top Bdy Temp,
double in_Bottom_Bdy Temp,
double in Time)
{
// create HeatSolver object if this is the
//first call
if (run counter == 0)
heat solver = new HeatSolver();
// set input values
heat solver->set time(in Time);
heat solver->set g(in Controlled Temp) ;
heat solver->set top temp(in Top Bdy Temp) ;
heat solver-
>set_bottom temp (in Bottom Bdy Temp) ;
// run the HeatSolver
heat solver->run();
// increment the run counter
run_counter++;
// return the measurement value
return heat solver->get u(); }

Listing 2: Main simulation routine of the PDE component.

The fourth source is connected to the dummy state
variable of the PDE component. The dummy state varia-
ble and its derivative are in the model due to the fact that
the OpenModelica implementation of FMI 1.0 import
does not allow for an empty state variable vector. There
is however nothing in the FMI 1.0 model exchange spec-
ification that disallows this. Additionally, the measure-
ment value of the PDE component is connected to the
input of the PID controller, and the output signal of the
PID controller is connected to the heat source input of
the PDE component.

[sinea |-
[Sines |-=
¥

u_left u_top ulx0)

LimPID HeatEq
I—‘ um [ 0 | ] dummy

Figure 4: Schematic view of the coupled Modelica model

used in the simulation.

The internal constant parameters of the components are
summarized in Table 1.

Component Parameter Value
LimPID
proportional gain w,, 0.05
integral gain w, 0.2
derivative gain w 0.0
HeatEquationFMU

thermal diffusivity 1.11-107*m?2s™?

SineA
amplitude 0.5°C
vertical offset 3.5°C
start time 150.0s
frequency 0.001s71
SineB
amplitude 6.0°C
vertical offset 3.0°C
start time 350.0s
frequency 0.002s71

Table 1: Internal parameters of the components in the
simulation model.
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3 Results

We carried out a numerical experiment with the follow-
ing setting. We took a simulation time of T = 1500
seconds and a time step of d, = 1. We set the initial
temperature u, = 0 everywhere in the computational
domain, and we specified the desired temperature as
Urer = 3. On the upper part of the boundary I}, and
on the left part of the boundary [}.f; we modeled envi-
ronmental influences by the functions

3.5 ift <150
Utop(t) = {3_5 +0.55in EBOT s 150
500
and
3 if t <350
Uiepe(t) = { 34 6Sm% if t > 350

which are shown in Figure 5.

(] @mmuwm:ﬁuma%gm..n\nmugnummm
L

Figure 5: Environmental temperature prescribed on the
boundary parts I, left and I;,,. Dashed: w . (t),
solid: u,, (t).

For comparison, we first performed a simulation run
with a constant, uncontrolled heat source g = 3 on the
lower boundary [,.. Figure 6 shows that the tempera-
ture at the point of measurement deviates from the de-
sired temperature U, = 3 due to the environmental
influences.

00 200 S0 AN 500 600 h){‘ b.‘:[?. R0 000 1100 1200 1300 1400 1500
me

Figure 6: Simulation run with constant heat source
g = 3. The temperature u(x,, t) at the point of
measurement deviates from the desired value.
Dashed: g, solid: u(x, t).

The results of our simulation run with a controlled heat
source g = g(t) are shown in Figure 7. At the begin-
ning, we fixed the heat source at g = 2.5 to let the
temperature distribution in the copper bar evolve from
the initial state to an equilibrium, at which the measured
temperature is slightly higher than desired. The PID
controller was switched on at t = 50 to take control
over the heat source. The curves show that the controller
first cools the bottom to bring the temperature at the
point of measurement down to the target value. During
the rest of the simulation, the PID controller reacts to the
environmental influences and adjusts the heat source
dynamically over time, so that the temperature accurate-
ly follows the desired state. Figures 8-10 illustrate the
temperature distribution in the copper bar.

|cnmxuuu'vu':ua'xiyﬂ\inu-iuumuwuul-wuw

Figure 7: Simulation run with controlled heat source
g = g(t). The temperature u(x,, t) at the point of
measurement accurately follows the desired value
u..r = 3. Dashed: g(t), solid: u(x,, t).
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4 Discussion

The numerical results for the example presented in the
previous section show that our method of integrating the
PDE solver from HiFlow3 into a Modelica simulation
functions correctly. The realization of this particular
scenario serves as an illustration of how one can inte-
grate other, more complicated, PDE models into the
complex dynamical simulations for which Modelica is
especially suited.

The coding and maintenance effort for importing an
existing PDE model implemented in HiFlow3 with the
method presented here is minimal: in essence only a set
of wrapper functions dealing with input and ouput of
parameters and state variables is all that is required. The
fact that HiFlow3 is free and open source software sim-
plifies the process greatly, since it makes it possible to
adapt and recompile the code. This is significant, since
the FMI model import requires the component to be
available either as C source code or as a dynamic shared
object, which is loaded at run-time.

Lica

Figure 8: Computational domain of the copper bar with
triangulation. The colors indicate the temperature
distribution on the surface at time t = 440.

Figure 9: Sectional view with isothermal lines at time
t = 440.

Figure 10: Sectional view with isothermal lines at time
t = 1250.

Compared to the efforts aiming at extending the Modeli-
ca language with support for PDEs, we are working at a
different level of abstraction, namely that of software
components. The advantage of this is the ability to make
use of the large wealth of existing implementations of
solvers for various models, in the present case the multi-
purpose HiFlow3 library. Extending the Modelica lan-
guage would also make it considerably more complex,
since problems for PDEs generally require descriptions
of the geometry and 7 the conditions applied to the dif-
ferent parts of the boundary. Furthermore, using this
information to automatically generate a discretization
and a solution algorithm would require a sophisticated
classification of the problem, since different types of
PDEs often require different numerical methods. A
drawback of working at the software level is that the
mathematical description of the problem is not directly
visible, as it would be if it was part of the language.

In contrast to the use of ‘co-simulation’, in this work
we have chosen to import the PDE component into the
OpenModelica environment, and to make use of one of
its solvers. The main benefit is again simplicity: very few
changes were required to the PDE component itself, and
it was possible to maximize the reuse of existing soft-
ware. On the other hand, co-simulation, where each sub-
model has its own independent solver, which is executed
independently of the others, also has its advantages. In
particular, specialized, highly efficient solution algo-
rithms can be applied to each part of the model, and it is
possible to execute the various components in parallel.
We are considering to extend the present work to make it
usable in a co-simulation setting. Furthermore, we want
to investigate the parallelization of the simulation both
within and between components.
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5 Conclusion

In this paper we have investigated a method of incorpo-
rating PDEs in the context of a Modelica model, by
using FMI to import a PDE solver from the finite ele-
ment library HiFlow3. Numerical results obtained using
a simple coupled model controlling the heat equation
using a PID controller demonstrate that this method
works in practice. The main advantages of this type of
coupling include its simplicity and the possibility to
reuse existing efficient and already validated software.
This approach allows to make use of more complex PDE
models including high-performance, parallel computa-
tions. It has the potential of greatly simplifying the de-
velopment of large-scale coupled simulations. In this
case, however, an extension of the method presented
here to support co-simulation might be necessary.

Acknowledgments

Work in this publication was funded by the ITEA2 Eu-
ropean Union MODRIO Project, by SSF in the EDOp
project, and by the Swedish National Graduate School of
Computer Science (CUGS).

This contribution is a post-conference publication from
SIMS 2013 Conference (54™ SIMS Conference, Bergen
University College, Norway, October 16-18, 2013). The
contribution is a modified publication from the paper
published in the Proceedings of SIMS 2013, to be found
at http://www.scansims.org/sims2013/SIMS2013.pdf.

References

[1] Astrém KJ, Hagglund T. PID Controllers: Theory, De-
sign, and Tuning. Durham: The Instrumentation, Sys-
tems, and Automation Society, 1995. 343 p.

[2] Braess, D. Finite Elemente. Heidelberg: Springer, 2007.
376 p.

[3] Dshabarow, F. Support for Dymola in the Modeling and
Smulation of Physical Systems with Distributed Pa-
rameters [master thesis]. [Department of Computer Sci-
ence, Institute of Computational Science, (CH)] ETH
Ziirich; 2007.

[4] The Open-Source OpenModelica Devel opment Environ-
ment. http://www.openmodelica.org.

[5] Ern A, Guermond JL. Theory and Practice of Finite El-
ements. New York: Springer; 2010. 526 p.

[6] The Functional Mockup Interface (FMI).
https://www.fmi-standard.org/.

[7] Fritzson, P. Principles of Object-Oriented Modeling and
Smulation with Modelica 2.1. Wiley-IEEE Press, 2004.
944 p.

[8] Hairer E, Norsett SP, and Wanner G. Solving Ordinary
Differential Equations. Springer, 2008. 528 p.

[9] Heuser, H. Lehrbuch der Analysis 2. Stuttgart: Teubner,
2002. 737 p.

[10] Khan, S. Discretizing pdes for maplesim. adept scientific
plc. 2012.

[11] Li Z, Zheng L, and Zhang H. Solving pde models in

modelica.In IS SE. Proceedings of a meeting; 2008, Dec;

Shanghai. IEEE Computer Society; 53-57.

Ljubijankic M, Nytsch-Geusen C. 3D/1D Co-Simulation

von Raumlufstromungen und einer Luftheizung am Bei-

spiel eines thermischen Modellhauses. Fourth German-

Austrian IBPSA Conference, BauSIM 2012;167-175.

Ljubijankic M, Nytsch-Geusen, Rédler J, Loffler M.

Numerical coupling of Modelica and CFD for building

energy supply systems. In: ClauB C, editor. 8th Interna-

tional Modelica Conference; 2011 Mar; Dresden. Linko-
ping: The Modelica Association and Linkoping Univer-
sity Electronic Press. 286-294. doi: 10.3384/ecp11063

[14] Maple and MapleSim by MapleSoft.
http://www.maplesoft.com/products.

[15] Modelica and the Modelica Association.
http://www.modelica.org.

[16] Modelica Association. Functional Mock-up Interface for
Model Exchange and Co-Smulation, v. 2.0 beta 4 edi-
tion, 2012. https://www.fmi-standard.org/downloads
[Accessed 2013-08-06].

[17] The I TEA2 MODELISAR Project.
http://www.itea2.org/project/index/view/?project=217.

[18] Saad, Y. Iterative Methods for Sparse Linear Systems.
2000.

[19] Saldamli L. PDEModelica - A High-Level Language for
Modeling with Partial Differential Equations [disserta-
tion]. [Department of Computer and Information Sci-
ence]. Linkdping University, 2006.
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7281.

[20] Saldamli L, Bachmann B, Wiesmann HJ, Fritzson P. A
framework for describing and solving PDE models in
modelica. In: Schmitz G, editor. Proceedings of the 4th
International Modelica Conference; 2005 Mar; Ham-
burg, Germany. Hamburg: The Modelica Association
and Hamburg University of Technology. 113-122.

[21] Schroeder W, Martin K, and Lorensen B. The Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D
Graphics. 4" ed. Kiteware, Inc., 2006. 528 p.

[22] The HiFlow3 Multi-Purpose Finite Element Software.
http://www.hiflow3.org/.

[12

—_—

[13

—_




