
S N E T E C H N I C A L N O T E

 SNE 24(1) – 4/2014 11

PDE Modeling with Modelica via FMI Import of
HiFlow3 C++ Components

Kristian Stavåker1*, Stafan Ronnås2, Martin Wlotzka2, Vincent Heuveline2, Peter Fritzson1
1Programming Environments Lab, Linköping University, Sweden;

*kristian.stavaker@liu.se
2Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University, Germany

Abstract. Despite an urgent need and desire in academ-
ia as well as in industry for modeling Partial Differential
Equations (PDEs) using the increasingly popular Modelica
modeling and simulation language, there is limited sup-
port for this available at the moment. In this work, we
propose a solution based on importing PDE models with
PDE solvers implemented using the general-purpose
parallel finite element library HiFlow3 as models into the
Modelica environment using the standard Functional
Mock-up Interface. In contrast to methods based on
language extensions or automatic semidiscretizations in
space, this approach requires no change to the language,
and enables the use of specialized PDE solvers. Further-
more, it allows for full flexibility in the choice of geome-
try, model parameters, and space discretization between
simulation runs without recompilation needed. This
makes it possible to exploit advanced features of the
PDE solver, such as adaptive mesh refinement, and to
build complex multi-physics simulations by coupling
different models, of both PDE and DAE type, in a straight-
forward manner using Modelica. We illustrate our meth-
od with an example that couples a Modelica Proportion-
al-Integral-Derivative controller to a PDE solver for the
unsteady heat equation in a 3D domain.

Introduction

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 12 SNE 24(1) – 4/2014

TN

1. HiFlow3 is well maintained and has strong support
and capabilities for PDE modeling and solving;

2. HiFlow3 and OpenModelica are free to download
and use;

3. The PDE structure is not lost but is maintained
throughout the actual run-time simulation process.
This allows for mesh refinement, solver run-time ad-
justments, etc.;

4. It is possible to mix PDE and DAE systems in the
same system setting. This is also possible in [19].

1 Simulation Scenario

Figure 1: System consisting of a copper bar connected to
a temperature regulator based on a PID
controller.

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 SNE 24(1) – 4/2014 13

T N
1.1 Computing the temperature distribution

Heat Equation
Variational Formulation

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 14 SNE 24(1) – 4/2014

TN

Finite element discretization in space

Implicit Euler discretization in time

1.2 PID controller

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 SNE 24(1) – 4/2014 15

T N

2 Coupled Implementation

2.1 The Modelica language

2.2 The OpenModelica environment

2.3 The HiFlow3 Finite Element Library

2.4 The Functional Mock-Up Interface (FMI)

2.5 Simulation overview

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 16 SNE 24(1) – 4/2014

TN

Figure 2: Overview of the creation and coupling of the
simulation components.

Euler

2.6 HiFlow3-based PDE component

HeatSolver

HeatSolver run()

run()

Vh

run()

VTK

Figure 3: Interaction between the OpenModelica run-
time system and the coupled model with the
implicit Euler solver.

HeatSolver_run() {
// if this is the first call
if (first_call) {
// read mesh file and eventually refine it
 build_initial_mesh();
//initialize the finite element space and
//the linear algebra
//data structures
 prepare_system();
 first_call = false;
}
//compute the system matrix and
//the right-hand-side vector
assemble_system();
// solve the linear system
solve_system();
// visualize the solution
visualize();
//keep solution and time in memory
CopyFrom(prev_solution,old_solution);

}

Listing 1: Run function of the HeatSolver class.

run()

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 SNE 24(1) – 4/2014 17

T N

PDE_component()

HeatSolver

run() HeatSolver

2.7 Modelica model

PDE_component(
double in_Controlled_Temp,
double in_Top_Bdy_Temp,
double in_Bottom_Bdy_Temp,
double in_Time)
{

// create HeatSolver object if this is the
//first call
if (run_counter == 0)
 heat_solver = new HeatSolver();
// set input values
heat_solver->set_time(in_Time);
heat_solver->set_g(in_Controlled_Temp);
heat_solver->set_top_temp(in_Top_Bdy_Temp);
heat_solver-

>set_bottom_temp(in_Bottom_Bdy_Temp);
// run the HeatSolver
heat_solver->run();
// increment the run counter
 run_counter++;
// return the measurement value

return heat_solver->get_u(); }

Listing 2: Main simulation routine of the PDE component.

Figure 4: Schematic view of the coupled Modelica model
used in the simulation.

Component Parameter VValue

LimPID

proportional gain 0.05

integral gain 0.2

derivative gain 0.0

HeatEquationFMU

thermal diffusivity

SineA

amplitude 0.5°C

vertical offset 3.5°C

start time

frequency

SineB

amplitude 6.0°C

vertical offset 3.0°C

start time

frequency

Table 1: Internal parameters of the components in the
simulation model.

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 18 SNE 24(1) – 4/2014

TN
3 Results

Figure 5: Environmental temperature prescribed on the
boundary parts left and . Dashed ,
solid: .

Figure 6: Simulation run with constant heat source
. The temperature at the point of

measurement deviates from the desired value.
Dashed: , solid: .

Figure 7: Simulation run with controlled heat source
 The temperature at the point of

measurement accurately follows the desired value
. Dashed: solid: .

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 SNE 24(1) – 4/2014 19

T N
4 Discussion

Figure 8: Computational domain of the copper bar with
triangulation. The colors indicate the temperature
distribution on the surface at time .

Figure 9: Sectional view with isothermal lines at time
.

Figure 10: Sectional view with isothermal lines at time

.

 K Stav ker et al. PDE Modeling with Modelica via FMI Import of HiFlow3

 20 SNE 24(1) – 4/2014

TN
5 Conclusion

Acknowledgments

References
PID Controllers: Theory, De-

sign, and Tuning.

Finite Elemente

Support for Dymola in the Modeling and
Simulation of Physical Systems with Distributed Pa-
rameters

The Open-Source OpenModelica Development Environ-
ment

Theory and Practice of Finite El-
ements
The Functional Mockup Interface

Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1

Solving Ordinary
Differential Equations

Lehrbuch der Analysis 2

Discretizing pdes for maplesim

ISISE

Fourth German-
Austrian IBPSA Conference BauSIM

8th Interna-
tional Modelica Conference

Functional Mock-up Interface for
Model Exchange and Co-Simulation

The ITEA2 MODELISAR Project

Iterative Methods for Sparse Linear Systems

PDEModelica - A High-Level Language for
Modeling with Partial Differential Equations

4th
International Modelica Conference

The Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D
Graphics
The HiFlow3 Multi-Purpose Finite Element Software

