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Abstract. Data mining with a multitude of methodolo-
gies is a good basis for the integration of intelligent
systems. Small, specialised systems have a large num-
ber of feasible solutions, but developing truly adaptive,
and still understandable, systems for highly complex
systems require domain expertise and more compact
approaches at the basic level. This paper focuses on the
integration of methodologies in the smart adaptive
applications. Statistical methods and artificial neural
networks form a good basis for the data-driven analysis
of interactions and fuzzy logic introduces solutions for
knowledge-based understanding the system behaviour
and the meaning of variable levels.

Efficient normalisation, scaling and decomposition
approaches are the key methodologies in developing
large-scale applications. Linguistic equation (LE) ap-
proach originating from fuzzy logic is an efficient tech-
nique for these problems.

The nonlinear scaling methodology based on advanced
statistical analysis is the corner stone in representing
the variable meanings in a compact way to introduce
intelligent indices for control and diagnostics. The new
constraint handling together with generalised norms
and moments facilitates recursive parameter estima-
tion approaches for the adaptive scaling.

Well-known linear methodologies are used for the
steady state, dynamic and case-based modelling in
connection with the cascade and interactive structures
in building complex large scale applications. To achieve
insight and robustness the parameters are defined
separately for the scaling and the interactions.

Introduction

Models understood as relationships between variables
are used for predicting of properties or behaviours of the
system. Variable interactions and nonlinearities are
important in extending the operation areas of control
and fault diagnosis, where the complexity is alleviated
by introducing software sensors (Figure 1).

Adaptive systems can be developed for nonlinear
multivariable systems by various statistical and intelli-
gent methodologies, which are in sensor fusion com-
bined with data pre-processing, signal processing and
feature extraction [14]. Fault diagnosis is based on
symptoms generated by comparing process models and
measurements [15], signal analysis [38], limit checking
of measurements [14] and human observations [19]. All
these are used in intelligent control and detection of
operating conditions, which introduce reasoning and
decision making to the smart adaptive systems, whose
hybrid nature is seen in literature where these topics are
combined from different perspectives.

The linguistic equation (LE) approach originates
from fuzzy set systems [35]: rule sets are replaced with
equations, and meanings of the variables are handled
with scaling functions which have close connections to
membership functions [27]. The nonlinear scaling tech-
nique is needed in constructing nonlinear models with
linear equations [28]. New development methodologies
[32,23], improve possibilities to update the scaling func-
tions recursively [33,24].

This paper classifies methodologies and focuses on
combining advanced statistical analysis and soft compu-
ting in developing LE based applications for complex
systems.
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Figure 1: Methodologies for modelling of complex system.

1 Steady-State Modelling

The steady-state simulation models can be relatively
detailed nonlinear multiple input, multiple output
(MIMO) models y = F(x), where the output
v = (¥4, Y32, .., V) is calculated by a nonlinear function
F from the input vector x = (x4, Xy, ..., X, ). More gen-
erally, the relationship could also be a table or a graph.
Fuzzy set systems, artificial neural networks and neu-
rofuzzy methods provide additional methodologies for
the function F (x).

Statistical modelling in its basic form uses linear regres-
sion for solving coefficients for linear functions. In the
response surface methodology (RSM), the relationships
are represented with multiple input, single output (M-
S0O) models, which contain linear, quadratic and interac-
tive terms [5]. Application areas of the linear modelling
can also be extended by arbitrary nonlinear models, e.g.
semi-physical models, developed by using appropriate
calculated variables as inputs, see [39]. Principal com-
ponent analysis (PCA) compresses the data by reducing
the number of dimensions: each principal component is
a linear combination of the original variables, usually

vector

the first few principal components are used. Various
extensions of PCA are referred in [21]. Partial least
squares regression (PLS) uses potentially collinear vari-
ables [17].

Fuzzy logic emerged from approximate reasoning,
and the connection of fuzzy rule-based systems and
expert systems is clear, e.g. the vocabulary of Al is kept
in fuzzy logic [13]. Fuzzy set theory first presented by
Zadeh (1965) form a conceptual framework for linguis-
tically represented knowledge. Extension principle is
the basic generalisation of the arithmetic operations if
the inductive mapping is a monotonously increasing
function of the input. The interval arithmetic presented
by Moore (1966) is used together with the extension
principle on several membership a-cuts of the fuzzy
number x; for evaluating fuzzy expressions [6-8]. The
fuzzy sets can be modified by intensifying or weakening
modifiers [11]. Type-2 fuzzy models introduced by
Zadeh in 1975 take into account uncertainty about the
membership function [42]. Most systems based on in-
terval type-2 fuzzy sets are reduced to an interval-
valued type-1 fuzzy set.
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Linguistic fuzzy models [12], where both the ante-
cedent and consequent are fuzzy propositions, suit very
well to qualitative descriptions of the process as they
can be interpreted by using natural language, heuristics
and common sense knowledge. Takagi-Sugeno (TS
fuzzy models [48], where each consequent y;,i=
1, ...,n is a crisp function of the antecedent variables x,
can be interpreted in terms of local models. For linear
functions, the standard weighted mean inference must
be extended with a smoothing technique [2]. Singleton
models, where the consequents are crisp values, can be
regarded as special cases of both the linguistic fuzzy
models and the TS fuzzy models. Fuzzy relational
models [44] allow one particular antecedent proposition
to be associated with several different consequent
propositions.

Fuzzy Fuzzy Fuezy
arithmetics
Fuzzy Fuzzy
rulebase relations
Fu=y Fuzzy Fuzzy
Fuzzification aritmetics
Crisp
Fuzzy

Defuzzification | Crisp

Fuzzy Fuzzy S
inequalities Fuzzy

Figure 2: Combined fuzzy modelling.

Several fuzzy modelling approaches are combined in
Figure 2: fuzzy arithmetics is suitable both for pro-
cessing fuzzy inputs for the rule-based fuzzy set system
and the fuzzy outputs; fuzzy inequalities produce new
facts like A < B and A = B for fuzzy inputs A and B;
fuzzy relations can be represented as sets of alternative
rules, where each rule has a degree of membership.

Artificial neural networks (ANN) are used as behav-
ioural input-output models consisting of neurons. Net-
work architectures differ from each other in their way of
forming the net input, use of activation functions and
number of layers. Linear networks correspond to the
models with linear terms in RSM models. The most
popular neural network architecture is the multilayer
perceptron (MLP) with a very close connection to the
backpropagation learning [45].

Neurofuzzy systems use fuzzy neurons to combine
the weight factors and the inputs (Figure 3). The activa-
tion function is handled with the extension principle
from the fuzzy input, which is obtained by the fuzzy
arithmetics [16]. Also cascade architectures of fuzzy
set systems and neural networks are often called neu-
rofuzzy systems. Neural computation is used for tuning
fuzzy set systems which can be represented by neural
networks, see [20].

Fuzzy anthmetics
X1,

Extension principle

W1
.Y =W XaeWadz)
.)—.

Figure 3: A fuzzy neuron.

A function expansion presented in [40] provides flexible
way to present several types of black box models by
using basis functions, which are generated from one and
the same function characterised by the scale (dilation)
and location (translation) parameters. The expansion can
contain, for example, radial basis functions, one-hidden-
layer sigmoidal neural networks, neurofuzzy models,
wavenets, least square support vector machines, see [39].

Approximate reasoning based on T-norms and S-
norms, also called T-conorms, is an essential part of
combining antecedents and rules in fuzzy logic [12]. T-
norms and S-norms can be used in neurofuzzy systems
if the inputs are normalised to the range [0,1] [16].

2 Decomposition Methodologies

A modelling problem can be divided into smaller parts
by developing separate models for independent subpro-
cesses (Figure 4). Cluster analysis can be used in the
data-driven approach. Composite local models can be
used, and fuzzy set systems provide feasible techniques
for handling the resulting partially overlapping models.
The system may also include models based on the first
principles.
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A process plant consists of several processing units
interconnected with process streams. Decomposition can
be continued within process units. In an electric furnace
presented in [22], a cylindrically symmetrical one-
electrode model was based on two-dimensional areas
defined by overlapping rectangular grids where the
amount of detail can be increased in selected parts [25].
In addition to spatial or logical blocks decomposed
modelling can be based on different frequency ranges.

Modelling Clustering
Subprocesses Hierarchical
+ Hierachical + Partitioning: K-means
Composite models Fuzzy
— Linear parameter — Fuzzy c-means (FCM)
varying (LPV) - Subtractive
— Piecewise affine (PWA) Neural: SOM
— TSfuzzy modeis + Shape (Gustafson-Kessel)
— Ensemble of redundant Robust
neural networks i
+ Optimal number

Figure 4: Decomposition for modelling.

Hundreds of clustering algorithms have been developed
for the data-driven analysis by researchers from a num-
ber of different scientific disciplines. Hierarchical clus-
tering groups data by creating a cluster tree, where
clusters at one level are joined as clusters at the next
higher level. Partitioning-based clustering algorithms,
e.g. K-means, minimise a given clustering criterion by
iteratively relocating data points between clusters until a
(locally) optimal partition is attained.[1].

Numerous fuzzy clustering algorithms have been
proposed and applied to a variety of real-world prob-
lems [4]. Fuzzy c-means (FCM) clustering is a partition-
ing-based method: each data point belongs to a cluster
to some degree membership. Subtractive clustering [10]
is an algorithm for estimating the number of clusters
and the cluster centres according to the parameters of
the algorithm. Neural clustering use competitive net-
works based on competitive layers, e.g. self-organising
maps (SOM) [36] have several alternatives for calculat-
ing the distance in the competitive layer. The response
of a radial basis functions (RBF) neuron is obtained
from an exponential function [9].

The clustering algorithms have limitations in shape,
cluster centres and generalisation of the results. The
algorithm with the standard Euclidean norm imposes a
spherical shape on the clusters, regardless of the actual
data distribution [2]. Gustafson and Kessel (1979) ex-
tended the standard by employing an adaptive distance
norm to detect clusters of different geometrical shapes.
Robust clustering, which is based on a spatial median, is
aimed for problems where classical clustering methods
are too sensitive to erroneous and missing values [1].
Optimal number of clusters is selected iteratively by
using some quality criteria, see [49].

Composite local model approach constructs a global
model from local models, which usually are linear ap-
proximations of the nonlinear system in different neigh-
bourhoods. If the partitioning is based on a measured
regime variable, the partitioning can be wused in
weighting the local models. Linear parameter varying
(LPV) models, where the matrices of the state-space
model depend on an exogeneous variable measured
during the operation, are close related to local linear
models [40]. Piecewise affine (PWA) systems are based
on local linear models, more specifically in a polyhedral
partition [47]. The models can be state-space models or
parametric models. The model switches between different
modes as the state variable varies over the partition [40].

Fuzzy models can be considered as a class of local
modelling approaches, which solve a complex model-
ling problem by decomposing into number of simpler
understandable subproblems [2,3]. The smoothing prob-
lem around the submodel borders of TS fuzzy models
needs special techniques, e.g. smoothing maximum [2],
or by making the area overlap very strong. Multiple
neural network systems improve generalisation through
task decomposition and an ensemble of redundant net-
works [46].

A mixed approach using both the rigorous first prin-
ciples and the black box modelling in an integrated
environment is an interesting alternative for complex
systems, see [41]. [40] classifies the models as a palette
of grey shades from white to black into six categories:
first principles, identified parameters, semi-physical
models, composite models, block oriented models, and
black box models. In semi-physical models, linear mod-
elling used together with nonlinear transformations
which are based on process insight.
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3 Adaptive Nonlinear Scaling
Membership

Membership definitions provide nonlinear mappings
from the operation area of the (sub)system, defined with
feasible ranges, to the linguistic values represented
inside a real- valued interval [—2,2]. The feasible range
is defined by a membership function, and membership
functions for finer partitions can be generated from
membership definitions [34]. The basic scaling ap-
proach presented in [28] has been improved later: a new
constraint handling was introduced in [32], and a new
skewness based methodology was presented for signal
processing in [23].

3.1 Working point and feasible ranges

The concept of feasible range is defined as a trapezoidal
membership function. In the fuzzy set theory [51], sup-
port and core areas are defined by variable, x;, specific
subsets,

supp(F;) = {x]- € U]-|,upj(x]-) > 0}, (1)

core(F}-) = {xj € Uj|upj(xj) = 1}, 2)
where U; is an universal set including F;; HF; (x;) is the

membership value of x; in Fj. The main area of opera-
tion is the core area, and the whole variable range is the
support area.
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Figure 5: Nonlinear scaling [28]

For applications, a trapezoidal function providing linear
transitions between 0 and 1 is sufficient (Figure 5). The
corner parameters can be defined on the basis of expert
knowledge or extracted from data.

The slope can be different on upper and lower part
depending on the linearity or nonlinearity of the system.
The complement of a fuzzy set is defined as a subset [51]

F=1{x € Ulur, (%) = 1 - ue(x;)}, ®

where HF; (%) is the membership value of x; in Fj. The

membership function of the complement corresponds to
the highest and lowest membership functions (Figure 5).

The support area is defined by the minimum and
maximum values of the variable, i.e. the support area is
[min(xj) ,max(x;)] for each variable j,j = 1,...,m.
The central tendency value, ¢;, divides the support area
into two parts, and the core area is defined by the central
tendency values of the lower and the upper part, (¢;);
and (cp);, correspondingly. This means that the core
area of the variable j defined by [(c);, (ch) j] is within
the support area.

The corner points can be extracted from existing
rule-based fuzzy systems or defined manually. Feasible
ranges should be consistent with membership defini-
tions, and therefore they are defined together in the data-
driven approach. Earlier the analysis of the corner
points and the centre point has been based on the arith-
metic means or medians of the corresponding data sets
[28]. The norm defined by

1/ 1/p
Ml = (M) = EEh@)] T @

where p # 0, is calculated from N values of a sample,
T is the sample time. With a real-valued order p € R
this norm can be used as a central tendency value if
||’M]P||p € R, ie. x; >0 when p <0, and x; = 0 when

p > 0. The norm (4) is calculated about the origin, and
it combines two trends: a strong increase caused by the
power p and a decrease with the power 1/p. All the
norms have same dimensions as x;. The norm (4) is a
Holder mean, also known as the power mean. The gen-
eralised norm for absolute values |x;| was introduced
for signal analysis in [37].

For variables with only negative values, the norm is
the opposite of the norm obtained for the absolute val-
ues. If a variable has both positive and negative values,
each norm is an average of two norms obtained from
data sets made positive and negative. [33]
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The operating area of each variable is defined by a
feasible range represented with a trapezoidal member-
ship function = whose  corner  points are
min(x]-) ,(c)j,(cp); and max(x;). Warnings and
alarms can be generated directly from the degrees of
membership of the complement (3).

3.2 Membership definitions

A membership definition is defined as a (nonlinear)
mapping of variable values x; inside its range to X; €
[—2,2], denoted as linguistic range. It more or less
describes the distribution of variable values over its
range. The range [—2,2] includes the normal operation
in the range [—1,1] and the areas with warnings and
alarms. The values X; are called linguistic values since
the scaling idea originates from the fuzzy set systems:
values —2,—1,0,1 and 2 associated to the linguistic
labels are defined with membership functions (Figure
5). The number of membership functions is not limited
to five: the values between these integers correspond to
finer partitions of the fuzzy set system. The early appli-
cations of the linguistic equations used only integer
values [27].

In present systems, membership definitions are used
in a continuous form consisting of two second order
polynomials: one for negative values, X; € [—2,0), and

one for positive values, X; € [0, 2]. The polynomials

f7 () = a7 X + b7 X; + 6, X; € [-2,0),
(5)
fJ+(XJ) = aj+X1'2 + bj+Xj +¢, X €[02],

should be monotonous, increasing functions in order to
result in realisable systems. The upper and lower parts
should overlap at the linguistic value 0. [28].

The functions are monotonous and increasing if the
ratios

- _ (c)j— min(x]-)

/ ¢ — (Cz)j ' ©
ot = max(xj) — (cn);
/ (Ch)j -G '

are both in the range E, 3] see [25]. If needed, the
ratios are corrected by modifying the core [(c;);, (cp)]

and/or the support [min(xj) , max(xj)].

Errors are checked independently for f~ and f™:
each error can always be corrected either by moving the
corner of the core or the support. In some cases, good
results can also be obtained by moving c;. If these con-
straints allow a non-empty range, the maximum of the
lower limits and the minimum of the upper limit are
chosen to define the limits for continuous definitions.

The coefficients of the polynomials can be repre-
sented by

__1 e
i =5 (1-a)Ac,

bj = %(3 - a]-_)Ac-_, -

+

1
4 = E(“j+ - 1)Acf,

1
b = > (3- a]-’r)chr,

where Ac;” =¢; — (¢;); and ch+ = (cp)j — ¢j. Mem-
bership definitions may contain linear parts if some
coefficients a; or aj’ equals to one.

For each variable, the membership definitions are
configured with five parameters, which can be presented
with three consistent sets. The working point (centre
point) ¢; belongs to all these sets, where the other pa-
rameters are:

e the corner points (Figure 5) are good for visualisa-
tion;

« the parameters {a; , Ac;, ", Ac/"Jsuit for tuning;

« the coefficients {a;, b, a;, Ab/"} are used in the
calculations.

3.3 Adaptation of nonlinear scaling

Recursive data analysis facilitates the adaptation of the
functions to changing operating conditions, also the
orders of the norms are re-analysed if needed. The exist-
ing scaling functions provide a basis for assessing the
quality of new data: outliers should be excluded, but the
suspicious values may mean that the operating condi-
tions are changing. In this research, the scaling func-
tions are extended for analysing outliers and suspicious
values to select data for the adaptive scaling. Different
operating areas can be analysed with clustering, and
statistical process control provide additional tools for
detecting changes, anomalies and novelties.
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The parameters of the nonlinear scaling functions
can be recursively updated by including new equal sized
subblocks into calculations. The number of samples can
be increasing or fixed with some forgetting, and
weighting of the individual samples can be used in the
analysis. If the definitions should cover all the operating
areas, also suspicious values are included as extensions
of the support area. In each adaptation step, the accepta-
ble ranges of the shape factors ;" and aj+ are checked
and corrected if needed. The orders (p;);, (po); and
(pn)j of the corresponding norms are re-analysed if the
distribution is changing considerably with new meas-
urements.

4 Intelligent Systems

Nonlinear models can be constructed by using scaled
values in linear modelling based on data and expertise
[27,28]. Compact model structures are beneficial in
building and tuning dynamic and case-based models for
complex systems. The recursive analysis provides new
tools for both the adaptation of the scaling functions and
the model interactions to changing operating conditions.
Linear interactions are used in steady-state models and
extended to dynamic systems by parametric structures
used in identification. Decomposition of the modelling
area is used for case-based systems which can include
both steady state and dynamic models. The nonlinear
scaling is performed twice: first scaling from real values
to the interval [—2,2] before applying linguistic equa-
tions, and then scaling from the interval [—2,2] to real
values after applying linguistic equations. Variable
selection is needed in large-scale systems.

4.1 LE models

The nonlinear scaling with membership definitions
transforms the nonlinear model y = F(x) to a linear
problem. The basic element of a linguistic equation
(LE) model is a compact equation

m
j=1

where X; is a linguistic value for the variable j,j =
1...m. Each variable j has its own time delay n; com-
pared to the variable with latest time label. Linguistic
values in the range [—2, 2] are obtained from the actual
data values by membership definitions. The directions
of the interaction are represented by interaction coeffi-
cients 4;; € R.

In the original system [35], the linguistic labels
{very low, low,normal, high, very high} were re-
placed by numbers {—2,—1,0,1,2}. The approach was
generalized for finer fuzzy partitions in [34]. The bias
term B; € R was first introduced as an additional com-
ponent in fuzzy LE models [26], and later extended for
fault diagnosis systems [28].

The coefficients A;; and B; in (8) have a relative
meaning, i.e. the equation can be multiplied or divided
by any nonzero real number without changing the mod-
el. A LE model with several equations can be represent-
ed as a matrix equation

AX+B =0, (€))

where the interaction matrix A contains all coefficients
Ajjyi=1,..,n,j=1,..,m,and the bias vector Ball
bias terms B;,i = 1, ...,n. The time delays of individual
variables are equation specific. As linear equations, each
model can be used in any direction, i.e. the output vari-
able can be chosen freely.

4.2 Hybrid LE systems

Statistical analysis is an essential part of the develop-
ment and tuning of the LE systems: data-driven devel-
opment of the scaling functions, which is based on ad-
vanced generalised norms and moments, is suitable for
different statistical distributions. The linguistic equation
approach originates from the fuzzy set systems which
keeps the connections of the methodologies strong.
Compact LE models provide a good basis for multi-
model systems, where local LE models are combined
with fuzzy logic, to handle transitions between models,
some special situations and uncertainty with fuzzy set
systems. Fuzzy reasoning is an important part of the LE
based fault diagnosis and the decision making in the
recursive adaptation.

The LE based development of fuzzy systems on any
partition can be done if a sufficient number of variables
are known or variated by selecting membership loca-
tions. Fuzzy set systems, which represent gradual
changes by interpolating with membership functions,
can be handled by membership definitions and linguistic
equations, i.e. the system does not necessarily need any
uncertainty or fuzziness. Fuzzy set systems have been
moved to higher levels in applications, when first mod-
elling and control, and later also the detection of the
operating conditions was realised with the LE approach.
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Fuzzy numbers can be handled in LE models by the
extension principle [29-31. LE models are extended to
fuzzy inputs with this approach if the membership defi-
nitions, i.e. functions f;~ and fj+ defined by (5) and the
corresponding inverse functions, are replaced by the
corresponding extensions of these functions. The square
root functions are used in the linguistification part. The
extension principle is needed for fuzzy inputs. The re-
sult of the fuzzy extension is a nonlinear membership
function for the output even if the membership function
of the input is linear. The number of membership levels
should increase with the growing fuzziness of the input.

5 Conclusions

Data mining need to be combined with domain expertise
to develop practical systems. The LE approach provides
a feasible integration framework for practical intelligent
applications. The process insight is maintained since all
the modules can be assessed by expert knowledge and
the membership definitions relate measurements to
appropriate operating areas. The nonlinear scaling
methodology based on statistical analysis enhanced with
domain expertise is the corner stone of the approach,
which represents the variable meanings in a compact
way to introduce intelligent indices for control and
diagnostics.

Different statistical and intelligent methods are used
together with the LE approach. The weighting of sub-
models also is based on the scaled values and fuzzy
logic. The cascade and interactive model structures are
used in building more complex large scale applications.
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