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Abstract. In his study Aydogdu analyzes the vibration
of axially functionally graded simply supported beams.
The main idea behind his calculation is that the vertical
displacement is supposed to have a special form, which
transforms the Euler-Bernoulli differential equation for
the motion for the lateral vibrations into an exact linear
differential equation which depends on the axial coordi-
nate only. In this paper we generalize the method used
by Aydogdu and determine the largest function class of
the form w(x, t) = F(x) ·G(t) for which the same method
is applicable.

Introduction
Finding closed-form solutions for the vibration and

buckling of the beams has been in the focus of scien-

tific engineering research for a long time. In general

case, to reach this goal appears to be not realistic. Sev-

eral special cases have been examined. A comprehen-

sive summary of the subject can be found in [2]. Further

examples can be found in [3], and [4]. The detailed de-

scription of usage and programming of Maple can be

found in [5] and [6].

1 Basic Model
This article refers to the study of Aydogdu ([1]) in

which the equation of motion for the lateral vibrations

of axially functionally graded simply supported beams

is examined by using the semi-inverse method. The

Euler-Bernoulli differential equation for the lateral vi-

brations of FG beams has the form:

∂ 2

∂x2

(
E(x)J

(
∂ 2

∂x2
w(x, t)

)
+ρ A

(
∂ 2

∂ t2
w(x, t)

))
(1)

where ρ is the density, A is the cross sectional area, w
is the transverse deflection, J is the moment of inertia

and E(x) is the elasticity modulus of the beam and t is

the time. The cross section area A and the moment of

inertia J are assumed to be constant.

In [1] Aydogdu supposes that the vertical displace-

ment has a special form w(x, t) = Wm sin(βx) sin(ωt)
and points out that the substitution of this form into the

Euler-Bernoulli differential equation above transforms

it into an exact linear differential equation which de-

pends on the axial coordinate only.

The reconstruction of this calculation is straightfor-

ward. Consider the Euler-Bernoulli differential equa-

tion of motion for the lateral vibrations and perform the

partial derivations.
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∂x2

(
E(x) J
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∂x2 w(x, t)
)
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∂x2
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)
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(
d
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E(x)
)

J
(

∂ 3

∂x3
w(x, t)

)
+

+E(x) J
(

∂ 4

∂x4
w(x, t)

)
+ρ A

(
∂ 2

∂ t2
w(x, t)

)
= 0

(2)

Next suppose that the vertical displacement is the prod-

uct of two sinus functions, more specifically let

> w(x, t) =Wm sin
(mπx

L

)
sin(ωt) (3)

where Wm is the amplitude of the vibrations, m is the

half wave number, L is the length and ω is the radial

natural frequency of the FG beam. Introducing the no-

tation β = mπ
L we obtain:
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> algsubs(mπ
L = β ,%)

w(x, t) =Wm sin(βx) sin(ωt) (4)

Substituting (4) into (2) the resulting differential equa-

tion does not depend on the variable t.

> eval((2),(4)

−
(

d2

dx2
E(x)

)
J Wm sin(βx) sin(ωt)−

−2

(
d
dx

E(x)
)

J Wm cos(βx) β 3 sin(ωt)+

+E(x) J Wm sin(βx) β 4 sin(ωt)−ρ Asin(βx) sin(ωt)ω2 = 0

(5)

> expand
(

(5)
J Wm sin(ωt) β 2

)

−
(

d2

dx2
E(x)

)
sin(βx)−2β

(
d
dx

E(x)
)

cos(βx)+

+β 2E(x) sin(βx) − ρ Asin(βx)ω2

J β 2
= 0

(6)

Note that the function w(x, t) in (3) has the form

w(x, t) = F(x) ·G(t). This observation naturally raises

the question: how should we choose the functions F(x)
and G(t) so that the choice w(x, t) = F(x) · G(t) re-

sults in a differential equation which does not depend

on variable t? In other words, denote the class of all

functions of the form F(x) ·G(t) by C and determine

the largest subset of C whose elements transform the

Euler-Bernoulli differential equation into a DE which

depends on variable x only.

2 Generalization

Proposition 1. For arbitrary function F(x) and for

the function

G(t) = A sin(ωt)+B cos(ωt)

the choice

w(x, t) = F(x) (A sin(ωt)+B cos(ωt))

transforms the Euler-Bernoulli differential equation

into a DE, which does not depends on variable t.

Proof. Suppose that w(x, t) has the desired form and

substitute it into the Euler-Bernoulli differential equa-

tion.

>w(x, t)=F(x) (A sin(ωt)+B cos(ωt)) : (7)

> eval((1),(7))(
d2

dx2
E(x)

)
J
(

d2

dx2
F(x)

)
(Asin(ωt)+Bcos(ωt))+

+2

(
d
dx

E(x)
)

J
(

d3

dx3
F(x)

)
(Asin(ωt)+Bcos(ωt))+

+E(x) J
(

d4

dx4
F(x)

)
(Asin(ωt)+Bcos(ωt))−

−ρ A F(x)ω2 (Asin(ωt)+Bcos(ωt)) = 0

(8)

Freeze the subexpression (Asin(ωt) + Bsin(ωt)) and

divide the resulting equation by Jα , provided α �= 0.

> algubs(Asin(ωt)+Bcos(ωt) = α,(8))

(
d2

dx2
E(x)

)
J
(

d2

dx2
F(x)

)
α +2

(
d
dx

E(x)
)

J
(

d3

dx3
F(x)

)
α+

+E(x) J
(

d4

dx4
F(x)

)
α −ρ A F(x)ω2α = 0

(9)

> expand( %
Jα )

(
d2

dx2
E(x)

)(
d2

dx2
F(x)

)
+2

(
d
dx

E(x)
)(

d3

dx3
F(x)

)
+

+E(x)
(

d4

dx4
F(x)

)
− ρ A F(x)ω2

J
= 0

(10)

This proofs Proposition 1.

Although this is not in the focus of our investigations

the next proposition determines the general solution of

DE.

Propostion 2. The general solution of DE (10) is

E(x) =
_C2+_C1 x+ ρ A F(x)ω2

J
∫ ∫

F(x)dx dx
d2

dx2 F(x)

Proof. The proof is a simple three step calculation.

Maple is used to evaluate the differential equation above

after the substitution the supposed value of the function

E(x). The resulting expression is huge and far from

being perspicuous. This does not mean, however, that

Maple cannot simplify it to zero.

E(x) =
_C2+_C1 x+ ρ A F(x) ω2

J
∫ ∫

F(x)dx dx
d2

dx2 F(x)
: (11)

> eval((10),%)
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⎛
⎜⎜⎝ ρ A F(x)ω2(

d2

dx2 F(x)
)

J
−

2
(
_C1 J+ρ A ω2 (

∫
F(x)dx)

)( d3
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)

(
d2
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)2

J
+

+
2
(
(_C2+_C1 x)J+ρ A ω2 (

∫ ∫
F(x)dx dx)

)( d3

dx3 F(x)
)2

(
d2

dx2 F(x)
)3

J
−

−
(
(_C2+_C1 x)J+ρ A ω2 (

∫ ∫
F(x)dx dx)

)( d4

dx4 F(x)
)

(
d2

dx2 F(x)
)2

J

⎞
⎟⎟⎠·

·
(

d2

dx2
F(x)

)
+2

⎛
⎜⎜⎝_C1 J+ρ A ω2 (

∫
F(x)dx)(

d2

dx2 F(x)
)

J
−

−
(
(_C2+_C1 x)J+ρ A ω2 (

∫ ∫
F(x)dx dx)

)( d3

dx3 F(x)
)

(
d2

dx2 F(x)
)2

J

⎞
⎟⎟⎠·

·
(

d3

dx3
F(x)

)
+

+

(
(_C2+_C1 x)J+ρ A ω2 (

∫ ∫
F(x)dx dx)

)( d4

dx4 F(x)
)

(
d2

dx2 F(x)
)

J
·

·
(

d2

dx2
F(x)

)
− ρ A F(x)ω2

J
= 0

(12)

> simpli f y((%)

0 = 0 (13)

In the end we show the reverse of Proposition 1. In

other words, we prove that the form G(t) = Asin(ωt)+
Bcos(ωt) is not only sufficient but also necessary con-

dition for fact that the choice w(x, t) = F(x) ·G(t) trans-

forms the Euler-Bernoulli differential equation into a

DE, which does not depend in variable t.

Propostion 3. If

w(x, t) = F(x) ·G(x)

and its substitution transforms the Euler-Bernoulli dif-

ferential equation into a DE, which does not depend in

variable t, then G(t) must have the form

G(t) = Asin(ωt)+Bcos(ωt).

Proof. Consider the function

> w(x, t) = F(x)G(t)

w(x, t) = F(x)G(t) (14)

and let us substitute it into

> eval((1),(14))

(
d2

dx2
E(x)

)
J
(

d2

dx2
F(x)

)
G(t)+2

(
d
dx

E(x)
)

J
(

d3

dx3
F(x)

)
·

·G(t)+E(x) J
(

d4

dx4
F(x)

)
G(t)+ρ A F(x)

(
d2

dt2
G(t)

)
= 0

(15)

All terms on the left hand side of this equation is divisi-

ble by G(t) except for the last one. Divide the equation

by J G(t) provided that G(t) �= 0.

> expand( %
J G(t) )

(
d2

dx2
E(x)

)(
d2

dx2
F(x)

)
+2

(
d
dx

E(x)
)(

d3

dx3
F(x)

)
+

+E(x)
(

d4

dx4
F(x)

)
+

ρ A F(x)
(

d2

dt2 G(t)
)

J G(t)
= 0

(16)

The first three terms and the coefficient of the second

derivative of G(t) in the numerator of the fourth term do

not depend on variable t, which yields that the equation

above can be written in the form

> A+
B
(

d2

dx2 G(t)
)

G(t)
= 0 : (17)

The solution of this differential equation can be easily

determined by means of procedure dsolve.

> dsolve(%,G(t))

G(t) = _C1sin

(√
A√
B

t

)
+_C2cos

(√
A√
B

t

)
(18)

Introducing the notation ω2 = A
B we obtain the desired

form.

> G(t) = algsubs(
√

A√
B

t = ω t,rhs(%))

G(t) = Asin(ωt)+Bcos(ωt)

This proofs Proposition 3.
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3 Conclusion
The aim of this paper has been to show the usage of

Maple general purpose computer algebraic system in

the scientific engineering calculations. We have en-

trusted the performance of all calculation step to Maple.

In this way we have used it not only to convert differ-

ent complex expressions but Maple turned out to be a

useful tool in the proofs of propositions.

We have pointed out that the largest class of func-

tions of the form w(x, t) = F(x) · G(t), which trans-

forms the Euler-Bernoulli differential equation for the

lateral vibrations of FG beams into an exact linear dif-

ferential equation depending on the axial coordinate

only, consists of the functions G(t) = F(x)(Asin(ωt)+
Bcos(ωt)) . We have also determined closed form so-

lution of the transformed DE.
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