
S N E T E C H N I C A L N O T E

 SNE 23(3-4) – 12/2013 179

Hydro Power Systems: Scripting Modelica Models
for Operational Studies in Education

Dietmar Winkler*, Bernt Lie

Faculty of Technology, Telemark University College, P.O. Box 203, N-3901 Porsgrunn, Norway;
*Dietmar.Winkler@hit.no

Abstract. Telemark University College is offering a mas-
ter degree program called ‘Systems and Control Engi-
neering’. Most students of that program have a back-
ground in either electrical, mechanical, control engineer-
ing or a combination of those. Since Norway covers
about 99% of its electrical energy demand using hydro-
electric power plants it is natural to also educate master
students in the subject of hydro power systems.
About three years ago the Telemark University Colleges
started a cooperation with the Norwegian power com-
pany ‘Skagerak Energi’ in order to offer real-life projects
for students and to establish a new teaching course for
second year master students called ‘Modelling and Simu-
lation of Hydro Power Systems’. That course teaches the
students the basic principles of hydro-electric power
generation starting the prediction of precipitation “down”
to the distribution of electrical power in the grid with
other loads and consumers connected to it.
This paper presents the teaching approach we have
taken so far and our evaluations of opensource tools to
be used within the ‘Modelling and Simulation of Hydro
Power Systems’ course. The evaluations were also fo-
cused on possibilities of scripting model simulations.

1 Teaching Hydro Power
Systems

1.1 Overview

•
•
•

•

•

•

•

D Winkler Hydro Power Systems: Scripting Modelica Models for Education

 180 SNE 23(3-4) – 12/2013

TN
Openness

Multi-domain nature

Object-orientation

1.2 Using modelling and simulation in
projects

2 Modelling Tool Chain used so
far

2.1 The modelling language Modelica

Modelica Asso-
ciation

Modelica Association
Modelica Standard Library

2.2 The modelling tools

Dymola

HydroPowerLibrary

2.3 Example from the HydroPowerLibrary

•
•
•
•
•

Figure 1: Screenshot from a HydroPowerLibrary ex-
ample modelled in Dymola.

 D Winkler Hydro Power Systems: Scripting Modelica Models for Education

 SNE 23(3-4) – 12/2013 181

T N

•
•

•

2.4 Drawbacks of the commercial tools

Dymola

Py-
thon Dymola

3 Going Open-Source in
Modelling and Simulation

OpenMod-
elica JModelica.org

OpenModelica

OpenModelica
MetaModelica

OpenModel-
ica

JModelica.org

JModelica.org

JMod-
elica.org OpenModelica

JModelica.org

3.1 Simplifying the models
HydroPower-

Library

JModelica.org

Hy-

droPowerLibrary

HydroPowerLibrary

D Winkler Hydro Power Systems: Scripting Modelica Models for Education

 182 SNE 23(3-4) – 12/2013

TN

Figure 2: Screenshot of a simple system.

SimpleSystem

hpTorque

hpInertia

•
•
•

gridInteria

loadTorque

SyncSwitch

3.2 Simulation with JModelica.org

JModelica.org
JModelica.org

The binding expression of the variable in-
itType does not match the declared type of
the variable

String variables are not supported

Modelica Standard Li-
brary.

SimpleSystem JModeli-
ca.org:

Import the function for compilation
of models and the FMUModel class
from pymodelica import compile_fmu
from pyfmi import FMUModel

Import the plotting library
import matplotlib.pyplot as plt

Define model file name and class name
mofile = ’SimpleSystemTotal.mo’
model_name = ’SimpleSystem’

Compile model
fmu_name = compile_fmu(model_name,mofile)

 D Winkler Hydro Power Systems: Scripting Modelica Models for Education

 SNE 23(3-4) – 12/2013 183

T N
Load model
grid = FMUModel(fmu_name)

Simulate the model
res = grid.simulate(final_time=600)
f_gen = res[’wToHz.y’]
f_grid = res[’gridInertia.w’]
t = res[’time’]

Generating the Plot
plt.figure(1)
plt.title(’Synchronising a generator’)
plt.ylabel(’Frequency [Hz]’)
plt.xlabel(’Time [s]’)
plt.plot(t, f_gen, t, f_grid)
plt.grid()
plt.show()

Figure 3: Simulation result from JModelica.org

3.3 Scripting and Optimisation

MW MW

Import the function for compilation
of models and the FMUModel class
from pymodelica import compile_fmu
from pyfmi import FMUModel

Import the plotting library
import matplotlib.pyplot as plt

Import numpy
import numpy as np

Define model file name and class name
mofile = ’SimpleSystemTotal.mo’
model_name = ’SimpleSystem’

Compile model
fmu_name = compile_fmu(model_name,mofile)

Load model
grid = FMUModel(fmu_name)

Define initial conditions
p_var = 10
p_min = 40e6
p_max = 140e6
turbine_gain =
np.linspace(p_min,p_max,p_var)/
(2*np.math.pi*50)

Setup of plot
plt.figure(1)
plt.hold(True)
plt.title(’Synchronising a generator’)
plt.ylabel(’Frequency [Hz]’)
plt.xlabel(’Time [s]’)

Running the different simulations
for i in range(p_var):

Set initial conditions in model
grid.set(’turbineGain’,turbine_gain[i])
Simulate
res = grid.simulate(final_time=600)
Get Simulation result
f_gen = res[’wToHz.y’]
f_grid = res[’gridInertia.w’]/
(2*np.math.pi)
t = res[’time’]
plt.plot(t, f_gen, t, f_grid)
plt.grid()

plt.show()

D Winkler Hydro Power Systems: Scripting Modelica Models for Education

 184 SNE 23(3-4) – 12/2013

TN

Figure 4: Simulation result of a simulation sweep with var-
ying

4 Conclusion

JModelica.org

Matplotlib Dymola

Acknowledgement

References

Proceedings of the 8th
International Modelica Conference

SIMS 2011. Proceedings of the 52nd Scandinavian Con-
ference on Simulation and Modeling

Pro-
ceedings of the 8th International Modelica Conference

A Unified Object-
Oriented Language for Physical Systems Modeling –
Language Specification

