SNE TECHNICAL NOTE

Scripting Modelica Models using Python

Bernt Lie”, Finn Haugen

Telemark University College, Porsgrunn, P.O. Box 203, N-3901 Porsgrunn, Norway; *Bernt.Lie@hit.no

Simulation Notes Europe SNE 23(3-4), 2013, 161 - 170

DOI: 10.11128/sne.23.tn.10212

Received: March 10, 2013 (Selected SIM 2012 Postconf. Publ.);
Revised Accepted: November 15, 2013;

Abstract. Modelica has evolved as a powerful language
for encoding models of complex systems. In control
engineering, it is of interest to be able to analyze dynam-
ic models using scripting languages such as MATLAB and
Python. This paper illustrates some analysis and design
methods relevant in control engineering through script-
ing a Modelica model of an anaerobic digester model
using Python, and discusses advantages and shortcom-
ings of the Python+Modelica set-up.

Introduction

Modelica is a modern language for describing large
scale, multidisciplinary dynamic systems (Fritzson,
2011), and models can be built from model libraries or
the user can develop her own models or libraries using a
text editor and connect the submodels either using a text
editor or a visual tool. Several commercial tools exist,
such as Dymola, MapleSim, Wolfram SystemModeler,
etc. Free/research based tools also exist, e.g. OpenMod-
elica and JModelica.org. More tools are described at
www.modelica.org.

For most applications of models, further analysis and
post processing is required, including e.g. model cali-
bration, sensitivity studies, optimization of design and
operation, model simplification, etc. Although Modelica
is a rich language, the lack of tools for analysis has been
a weakness of the language as compared e.g. to
MATLAB, etc. Two commercial products are thus
based on integrating Modelica with Computer Algebra
Systems (MapleSim, Wolfram SystemModeler), while
for other tools the analysis part has been more cumber-
some (although Dymola includes possibilities for model
calibration, an early but simple way of controlling mod-
els from MATLAB, etc.).

A recent development has been the FMI standard,
which promises to greatly simplify the possibility to
script e.g. Modelica models from MATLAB or Python
(FMI Toolbox for MATLAB; PyFMI for Python). Sev-
eral Modelica tools now offer the opportunity to export
models as FMUs (Functional Mock-up Units), where-
upon PyFMI can be used to import the FMU into Py-
thon. Or the FMU can be directly generated from
PyFMI. PyFMI is integrated into the JModelica.org tool.
More extensive integration with Python is under way for
other (free) tools, too.

Python 2.7 with packages Matplotlib, NumPy, and
SciPy offer many tools for analysis of models; a simple
installation is EPD Free , but many other installations
exist.

It is of interest to study whether the combination of
(free software) releases of Modelica and Python can
serve as useful tools for control analysis and design
studies, and what limitations currently limit the spread
of such a package. This paper gives an overview of
basic possibilities for doing model based control studies
by scripting Modelica models from Python. As a case
study, a model of an anaerobic digester for converting
cow manure to biogas is presented in Section 1. Sec-
tion 2 presents various examples of systems and control
analysis carried out by Python scripts using the model
encoded in Modelica. Finally, the results are discussed
and some conclusions are drawn in Section 3.

1 Case Study

1.1 Functional description

Figure 1 illustrates the animal waste conversion systems
at Foss Biolab in Skien, Norway, which converts cow
manure into biogas utilizing Anaerobic Digestion (AD).
In this case study, we consider the reactor only (blue
box), where the Feed is decribed by a volumetric feed
rate Vf [L/d] (control input) with a given concentration
Psys s of volatile solids (disturbance).

SNE 23(3-4) - 12/2013

B Lie, F Haugen

Scripting Modelica Models Using Python

Foss Biolab

Skien, Norway
Cow manure . _——
i i |
(diluted) hFE')'t';ﬁ @ @ .—{:}—). PC1I | PCIPCI
i wise Room --!
1= Reser- temp. -
| PC voir ® @ PC I
[2500L @ (-
@ p2 Fixed liquid | Liquid effluent
level Gutter
Separator | _ | Feed | duetowerr
(filter)
Solid manure Filtered _ AD reactor Nitrification
for aerobic manure : PC : 220 L :-P ': s reactor Nitrified
composting Iqui - foam
t——! te ! -— nitrified 200L
@ l PC1 fertilizer
[
==
he 6 PC I
(exterior coil) L]
Temp.
Isolation setpoint

Figure 1: System for converting cow manure to biogas at Foss Biolab, Skien, Norway (Figure by F. Haugen and K. Vasdal).

The ‘liquid’ level of the reactor is made constant
by the use of a weir system, and it is possible to
control the reactor temperature T accurately using
electric heating (potential control input). The main
product considered here, is the mass flow rate of me-
thane out of the reactor, mcy, , (controlled variable).

1.2 Model summary

A model of the reactor is presented in Haugen et al.
(2012); in this paper, the same model is used but with a
modified notation. The operation of the bio reactor is

described by four states j € {prus' PSyrar PxXar pXm}:

d 1V
a g—jv(Pj,f —p))+R
where V is constant due to perfect level control, the

residence time correction HS]. =1 and GXi may differ

pj =

from 1, and furthermore:
Rsbvs = Ysbvs/XaRa

Rsvfa = stfa/XaRa - stfa/XmRm

SNE 23(3-4) - 12/2013

Ry, =R, — kfzipxa
Ry =Ry, — kgszm
with
R, = HaPx,
Ry = tmPm
Aa
U = 1
1+ K D
Stws psbvs
A
Um = 1
1+K;, , —
Svfa psvfa

fla = fly = fiz5 + ag(T — 35)

with units °C for T.
The production (exit) rate of methane is given by

Mep,x = Ren,V

RCH4 = YCH4/XmRm'

LB Lie, F Haugen Scripting Modelica Models Using Python

Feed concentrations of states are given as
psbvs:f = bopsvs‘f
pSvfa‘f = afpsbvs‘f'

Nominal operating conditions for the system are given
in Table 1.

Parameter Value Unit Comment

%4 250 L Reactor volume
0x, 29 - Correction of residence time for
=0y bacteria due to nonideal flow

Yg, /x, 39 gbvs (Inverse) yield: consumption of
gX, bvs per growth of bacteria

Quantity Value Unit Comment

Ys,ax, 176 gvfa (Inverse) yield: production of vfa
gX, pergrowth of bacteria

ps,,.(0) 581 g/L Initially dissolved substrate biode-
gradable volatile solids

Y, u/xm 317 gvfa (Inverse) yield: consumption of
gX,, Vfapergrowth of bacteria

psm(O) 1.13 g/L Initially dissolved substrate volatile
fatty acids

Ycu,x, 263 gCH, (Inverse) yield: production of
gX,, methane per growth of bacteria

px,(0) 132 g/L Initially concentration of acetogen-
ic bacteria

Kg, .~ 155 g/L Half-velocity constant for bvs
substrate

Px,(0) 0.39 g/L Initially concentration of methano-
genic bacteria

K 3.0 g/L Half-velocity constant for vfa
substrate

fizs 0.326 d~! Maximal growth of rate at
T = 35°C

l'/f 50 L/d Volumetric feed flow of animal
waste/manure
T 35 °C Reactor temperature

ps,,, 324 g/L Feed concentration of volatile
solids

a 0.013 1 Temperature sensitivity of maxi-
°Cd mal growth rate, valid T €
[20,60]°C

Table 1: Nominal operational data for biogas reactor at
Foss Biolab.

Model parameters are given in Table 2.

1.3 System and control problems

A number of control problems are relevant for this sys-
tem:

simulation of the system for validation,

o study of model sensitivity wrt. uncertain parameters,

o tuning model parameters to fit the model to experi-
mental data,

e state estimation for computing hidden model states,

e operation of control system,

e optimal control and model predictive control,

e ctc.

L]

Only a selected few of these problems are considered in

the sequel.

ke =K% 002 d~! Death rate constants for aceto-
genic and methanogenic bacteria

b, 0.25 gbvs Fraction biodegradable volatile
gvs solids in volatile solids feed

as 0.69 gvfa Fraction volatile fatty acids in
gbvs biodegradable volatile solids feed

Table 2: Nominal model parameters for biogas reactor at
Foss Biolab.

2 Control Relevant Analysis

2.1 Basic Modelica description

The following Modelica encoding in file adFoss.mo
describes the basic model:
Model adFossModel
// Simulation of Anaerobic Digestion Reactor at Foss
//Biolab
// Author: Bernt Lie
// Telemark University College, Porsgrunn, Norway
// August 31, 2012
// Parameter values with type and descriptive text
parameter Real V = 250 "reactor volume,
L'y
parameter Real theta X = 2.9 "residence
time correction for bacteria,

SNE 23(3-4) - 12/2013

B Lie, F Haugen Scripting Modelica Models Using Python

dimensionless";

parameter Real Y Sbvs_Xa
bvs/g acetogens";

parameter Real Y Svfa Xa
vfa/g acetogens';

parameter Real Y Svfa Xm = 31.7 "Yield, g

vfa/g methanogens";

parameter Real Y CH4 Xm = 26.3 "Yield, g

methane/g methanogens";

parameter Real K Sbvs = 15.5 "Half-
velocity constant for bvs, g/L";

parameter Real K Svfa = 3.0 "Half-
velocity constant for vfa, g/L";

parameter Real muhat 35 = 0.326 "Maximal
growth rate at T=35 C, 1/4";

parameter Real alpha muhat = 0.013 "Tem-
perature sensitivity of

max growth rate, 1/(C d)";

parameter Real k d = 0.02 "Death rate
constants for bacteria, 1/4";

parameter Real b0 = 0.25 "Fraction biode-

gradable volatile solids in

volatile solids feed, g bvs/g vs";

parameter Real af = 0.69 "Fraction vola-
tile fatty acids in bvs feed,

g vfa/g bvs";

// Initial state parameters.

parameter Real rhoSbvs0 = 5.81 "initial
bvs substrate, g/L";

parameter Real rhoSvfa0
via, g/L";

parameter Real rhoXa0 = 1.32 "initial
acetogens, g/L";

parameter Real rhoXm0 = 0.39 "initial
methanogens, g/L";

// Setting initial values for states:

Real rhoSbvs(start = rhoSbvs0, fixed
true) ;

Real rhoSvfa(start = rhoSvfa0, fixed =
true) ;

1.13 "initial

Real rhoXa(start = rhoXa0, fixed = true);
Real rhoXm(start = rhoXm0, fixed = true);

// Miscellaneous variables
Real rhoSbvs f "feed concentration of

bvs, g/L";
Real rhoSvfa f "feed concentration of
vfa, g/L";

Real rhoXa f "feed concentration of
acetogens, g/L";
4

Real rhoXm f "feed concentration of meth-

anogens, g/L";

SNE 23(3-4) — 12/2013

3.9 "Yield, g

1.76 "Yield, g

Real R Sbvs "generation rate of Sbvs,

g/ (L*d)";

Real R Svfa "generation rate of Svfa,
g/ (L*d)";

Real R Xa "generation rate of Xa,
g/ (L*d)";

Real R _Xm "generation rate of Xm,
g/ (L*d)";

Real R CH4 "generation rate of CH4,
g/ (L*d)";

Real R_a "reaction rate acetogenesis,
g/ (L*d)";

Real R_m "reaction rate methanogenesis,
g/ (L*d)";

Real mu_a "growth rate acetogenesis,
1/4a";

Real mu m "growth rate methanogenesis,
1/d";

Real muhat a "maximal growth rate aceto-
genesis, 1/d";

Real muhat m "maximal growth rate methan-
ogenesis, 1/4";

Real mdot CH4x "mass flow methane produc-
tion, g/d";

// Defining input variables:

input Real Vdot f "volumetric feed flow -
- control variable, L/d4d";

input Real T "reactor temperature -- pos-
sible control input, C";

input Real rhoSvs f "feed volatile solids
concentration -- disturbance, g/L";

equation

// Differential equations

der (rhoSbvs) = Vdot f/V*(rhoSbvs f -
rhoSbvs) + R_Sbvs;

der (rhoSvfa) = Vdot f/V*(rhoSvfa f -
rhosSvfa) + R_Svfa;

der (rhoXa) = Vdot f/V/theta X*(rhoXa f -
rhoXa) + R _Xa;

der (rhoXm) = Vdot f/V/theta X* (rhoXm f -
rhoXm) + R_Xm;

// Feed

rhoSbvs f = rhoSvs f*b0;

rhoSvfa f = rhoSbvs_f*af;

rhoXa f = 0;
rhoXm f = 0;
// Generation rates

R Sbvs = -Y Sbvs Xa*R_a;

R Svfa = Y Svfa Xa*R a - Y Svfa Xm*R_m;
R Xa = R_a - k_d*rhoXa;

R Xm = R m - k d*rhoXm;

R _a = mu_a*rhoXa;

LB Lie, F Haugen

Scripting Modelica Models Using Python

R m = mu m*rhoXm;

mu_a = muhat_a/(1 + K Sbvs/rhoSbvs) ;
mu_m = muhat m/(1 + K Svfa/rhoSvfa);
muhat a = muhat 35 + alpha muhat*(T-35);
muhat m = muhat_a;

// Methane production

mdot CH4x = R _CH4*V;

R CH4 = Y CH4 Xm*R m;

end adFossModel;

2.2 Basic Python script

The following Python script adFossSim.py provides
basic simulation of the Anaerobic Digester reactor at
Foss Biolab starting at the nominal operating point, and
performing some step perturbations for the inputs:

Python script for simulating Anaerobic Digester at
#Foss Biolab
script: adFossSim.py
author: Bernt Lie, Telemark University College,
#Porsgrunn, Norway

location. Telemark University College, Porsgrunn

aate: August 31, 2012

Importing modules

matplotlib, numpy

import matplotlib.pyplot as plt

import numpy as np

JModelica

from pymodelica import compile fmu

from pyfmi import FMUModel

Flattening, compiling and exporting model as fmu

adFoss_fmu = compile fmu("adFossModel",
"adFoss.mo")

Importing fmu and linking it with solvers, etc.

adFoss = FMUModel (adFoss_fmu)

Creating input data

t fin = 100

adFoss_opdata =
np.array([[0,50,35,32.4],[10,50,35,32.4]
,[10,45,35,32.4],

[30,45,35,32.4],[30,45,38,32.4],[60,45,38

,32.4]7,
[60,45,38,40], [t _fin,45,38,40]])
adFoss_input = (["Vdot f", "T",
"rhoSvs f"], adFoss opdata)

Carrying out simulation

adFoss_res = adFoss.simulate(final time =
t fin, input = adFoss_input)

Unpacking results

rhoSbvs = adFoss_res["rhoSbvs"]

rhoSvfa = adFoss_res["rhoSvfa"]

rhoXa = adFoss_res["rhoXa"]

rhoXm = adFoss_res["rhoXm"]

mdot CH4x = adFoss_res["mdot_ CH4x"]

Vdot f = adFoss _res["Vdot f"]

T = adFoss_res["T"]

rhoSvs_f = adFoss_res["rhoSvs f"]

t = adFoss_res["time"]

Setting up figure with plot of results

plt.figure(1)

plt.plot (t,rhoSbvs,"-r",t,rhoSvfa, "-
g",t,rhoXa,"-k",t,rhoXm, "-
b",linewidth=2)

plt.legend ((r"$\rho {S {bvs}}$
[g/L]", r"$\rho_{s_{vfa}}$ [g/LI",

r"$\rho {X a}$ [g/L]1",r"s\rho {X m}$
[g/L1"),ncol=2,1loc=0)

plt.title("Anaerobic Digestion at Foss
Biolab™")

plt.xlabel (r"time St

plt.grid(True)

plt.figure(2)

plt.plot (t,mdot CH4x,"-r",linewidth=2)

plt.title("Anaerobic Digestion at Foss
Biolab")

plt.ylabel (r"$\dot{m} {CH 4}$ [g/dl")

plt.xlabel (r"time st$ [d]")

plt.grid(True)

plt.figure(3)

plt.plot (t,vdot f,"-r",t,T,"-
g",t,rhoSvs_f,"-b",linewidth=2)

plt.axis (ymin=30, ymax=55)

plt.title("Anaerobic Digestion at Foss
Biolab")

fal")

Running this Python script leads to the results in figures
2-4:

55

50

45

40

35

Anaerobic Digestion at Foss Biolab
— i".‘ [L/d]
- T["C]
— ps_, Lo/l
0 20 40 60 80 100

30!

time ¢t [d]

Figure 2: Nominal evolution of inputs at Foss Biolab, with

perturbation.

SNE 23(3-4) - 12/2013

B Lie, F Haugen Scripting Modelica Models Using Python

#author: Bemt Lie, Telemark University College, Porsgrunn,
Anaerobic Digestion at Foss Biolab NOfl/l{ay) 3
g T # location. Telemark University College, Porsgrunn
date: August 31, 2012
Importing modules
matplotlib, numpy, random

320

import matplotlib.pyplot as plt
import numpy as np
import numpy.random as nr

gy, [g/d]

Carrying out simulation
adFoss_res = adFoss.simulate(final time =
t fin, input = adFoss_input)

: : # Setting up figure with plot of results
2009 20 a0 60 80 100 plt.figure(1)
time ¢ [d] plt.plot (t,rhoSbvs,"-r",t,rhoSvfa,"-

g",t,rhoXa,"-k",t,rhoXm, "-b",linewidth=2)
plt.legend((r"$\rho {s {bvs}}s

[g/Ll", r"s\rho_{S_{vfa}}$ [g/L]",
r"ρ_{X_a} [g/L1",r"$\rho_{X m}$
_Anaerobic Digestion at Foss Biolab [g/L1") ,ncol=2,1loc=0)

plt.title("Anaerobic Digestion at Foss Bi-
olab")
5| it 3 . ; : i plt.xlabel (r"time t [d]")

plt.grid(True)

Figure 3: Nominal production of methane gas at Foss
Biolab, with perturbation.

Monte Carlo simulations

— ps_ la/L] — py_lo/L) Nmc = 20
M — pe loll]l = py (gl e bOnom = adFoss.get ("b0")
afnom = adFoss.get ("af")
2f for i in range (Nmc) :
b0 = bOnom* (1 + 0.1* (nr.rand()-0.5)*2)
af = afnom* (1 + 0.1*(nr.rand 0.5)*2)

()
() -
adFoss.set (["bO","af"], [b0,af])

; ; # Carrying out simulation
0 20 40 60 80 100 adFoss_res = adFoss.simulate(final time =

e t fin, input = adFoss_input)
Figure 4: Nominal evolution of states at Foss Biolab, with # Unpacking results
perturbation. rhoSbvs = adFoss_res["rhoSbvs"]

rhoSvfa = adFoss res["rhoSvfa"]
rhoXa = adFoss_res["rhoXa"]

rhoXm = adFoss_res["rhoXm"]

Suppose the value of parameters b, and a; are uncer- mdot CH4x = adFoss_res["mdot CH4x"]

tain, but that we ‘know” they lie in intervals b, € 0.25 X t = adFoss_res["time"]

[0.9,1.1] and ar € 0.69 x [0.9,1.1]. We can study the # Setting up figure with plot of results
plt.figure (1)

. . plt.plot (t,rhoSbvs,":r",t,rhoSvfa,":g", t, rho
Monte Carlo simulations were we draw values at ran- Xa,":k",t,rhoXm, ":b",

dom from these two ranges — e.g. assuming uniform linewidth=1.5)
distribution. The following modifications of the Python plt.figure(2)

code will handle this problem, excerpt of script ad- git'gig‘igrmdm_cmxl ":m",linewidth=1.5)

2.3 Uncertainty analysis

uncertainty of the model by running a number Ny, of

FossSimMC.py:

Python script for Monte Carlo study of Anaerobic Digester The results are as shown in figures 5 and 6.
at Foss Biolab
script: adFossSImMC.py

SNE 23(3-4) - 12/2013

LB Lie, F Haugen Scripting Modelica Models Using Python

360 Anaerobic Digestion at Foss Biolab

Ty, [9/d]

s ah i
1300 = a0 60 1] 100
time ¢ [d]

Figure 5: Monte Carlo study of methane production at
Foss Biolab, with variation in b, and a;.

Anaerobic Digestion at Foss Biolab

7 T

R T —rr S
— s oM — py [g)

40
time ¢ [d]

Figure 6: Monte Carlo study of evolution of states at Foss
Biolab, with variation in b, and ay .

2.4 Wash-out and recovery of reactor

Suppose that the reactor gets ‘washed out’ by acci-
dentally applying too high a feed rate Vf, e.g. Vf =
120L/d, while T and Ps, are as in Table 1. It is of

interest to see whether the original production can be
recovered. Figures 7-9 indicates the behavior over a
period of more than 4 years (1500 d) of operation.

As seen, although increasing Vf initially leads to a
significant increase in the methane production, the bac-
teria are washed out of the reactor leading to a dramatic
fall in the methane production. Furthermore, it takes an
inordinate long time to recover after a wash-out if the
input is simply set back to the original flow rate.

The steady state values at wash-out (t = 400d)
can be found to be

Psypomwash—out = 8:0999999985826001
P, rqwash—out = 3.96169944436781
Pxywash—out = 1.3193454767561001 x 10~

Pt wash—out = 0.13282069444970099

Anaerobic Digestion at Foss Biolab
T T T T T

T T
120 — V;[ud]
— T[°C]
- s, [g/L]
PO INNNNN S NS SUUONS U SO SO N—
1| RERRRN. SRS I _____ _________ _ S—
60_
0 200 400 600 800 1000 1200 1400 1600

time ¢ [d]

Figure 7: Evolution of inputs at Foss Biolab leading to
wash-out/recovery.

Anaerobic Digestion at Foss Biolab
320 T T T T T

3001 . i
1] i o o e P et
250

240

vy [g/d]

220f-mid-

200}++wereeeeie

180+

Iﬁcﬂ 200 400 600 B0O 1000 1200 1400 1600
time ¢ [d]

Figure 8: Production of methane gas at Foss Biolab during
wash-out/recovery.

SNE 23(3-4) - 12/2013

B Lie, F Haugen

Scripting Modelica Models Using Python

Anaerobic Digestion at Foss Biolab
T T T T T

— x, [9/L]

L et ST R S [.[g"rl']
il | : L= s, laml — py Lo ||
kS
P — . SV SRR SERN: ‘

: - 5 (PR
G—H I i L A L
0 200 400 600 800 1000 1200 1400 1600

time ¢ [d]

Figure 9: Evolution of states at Foss Biolab during wash-
out/recovery.

2.5 Optimal recovery of methane
production

The accidental wash-out of bacteria is a serious problem
in the operation of Anaerobic Digesters. It is thus of
interest to see whether it is possible to recover the oper-
ation in an optimal way. We consider the possibility of
recovering the operation in the 1100 d horizon spent to
wash-out the bacteria, ...g. 7 —9. We thus seek to max-
imize the production of methane, but without using too
much feed of animal waste. The following criterion is
thus sought maximized:

Th .
] == j (ThCH4‘X - vaf)dt
0

where cyis a cost parameter. We add the following
constraints to make sure that the solution has physical
meaning.

Pj >0

V; €[0,120]L/d.

We assume that the temperature T and the disturb-
ance ps, . are as in Table 1.

SNE 23(3-4) - 12/2013

To solve this problem, we use the Modelica exten-
sion class optimization in JModelica.org. In Modelica,
the criterion function is minimized, so the criterion in
Modelica needs to be —] where J is as above. The es-
sence of the Modelica code for this problem is as given
below:

optimization adFossOpt (objective =
J(finalTime), startTime=0,
finalTime=T h)

// Optimal recovery of Anaerobic Digestion Reactor at
//Foss Biolab

// Author: Bernt Lie

// Telemark University College, Porsgrunn, Norway

// September 2, 2012

// Instantiating model adf from class adFossMode/

adFossModel adf;

// Additional parameters

parameter Real T h = 1100 "time horizon
in optimization criterion, d";

parameter Real cost V = 1 "relative cost
of animal waste";

parameter Real Vdot max = 120 "maximal
allowed feed rate, L/4";

parameter Real T nom = 35 "nominal reac-
tor temperature, C";

parameter Real rhoSvs f nom = 32.4
"nominal feed concentration

of volatile solids, g/L";

// Defining cost function
Real J(start=0, fixed=true);

// Defining input variable:

input Real Vdot f (free=true,
min=0,max=Vdot max) "max feed flow,
L/d";

equation

// Passing on inputs to model instance

adf.Vdot f = Vdot f;

adf.T = T_nom;

adf.rhoSvs_f = rhoSvs_f nom;

// Computing cost function
der (J) = - adf.mdot CH4x + cost V*Vdot f;
constraint

// Constraining states
adf.rhoSbvs >= 0;
adf.rhoSvfa >= 0;
adf.rhoXa >= 0;
adf.rhoXm >= 0;

// Constraining methane production
adf.mdot CH4x >=0;
end adFossOpt;

LB Lie, F Haugen

Scripting Modelica Models Using Python

With ¢y, the result is as in figures 10 — 12. With ¢y,
the result is highly oscillatoric time evolutions.

Anaerobic Digestion at Foss Biolab

120 me ¥y (Ud)
----- r[ecl
..... pe lonl
100 Sy |9
80
60
40
20
Dﬂ 2{‘)0 4(‘]0 560 80D ldﬂﬂ 1200
time ¢ [d]

Figure 10: Evolution of optimal input Vf at Foss Biolab
after wash-out (solid lines), with initial guess
(dotted lines).

280 Anaerabic Digestion at Foss Biolab

260

240

220

gy, (9/d)

200

180 F.:"

lﬁﬂc 200 400 600 800 1000 1200

time ¢ [d]

Figure 11: Evolution of optimally recovered methane
production at Foss Biolab after wash-out
(solidlines), with initial guess (dotted lines).

3 Discussion and Conclusions

Comparing Python to MATLAB for use in control stud-
ies reveals clear advantages and clear disadvantages for
Python. Python is a free tool, and a rich programming
language. However, there is (currently) no control
toolbox for Python, the various packages and sub pack-
ages are not so well documented, and the quality of
some tools are far from perfect. Yet, the combination of
Python and Modelica/PyFMI offers ample opportunities
for analysis of models and control studies.

Anaerobic Digestion at Foss Biolab

- ps,, [a/L] = py [Q/L]
4
- ps, [a/L] we py [aiL]
Y
of
0 200 460 600 3(‘!0 1000 1200
time ¢ [d]

Figure 12: Evolution of optimally recovered states at Foss
Biolab after wash-out (solid lines), with initial
guess (dotted lines).

This paper illustrates this by showing how natural
models can be encoded in Modelica, and how easy
Modelica models can be accessed from Python using
e.g. PyFMI. Furthermore, it is shown how natural and
powerful Python is as a scripting language, e.g. for
doing uncertainty/sensitivity analysis of dynamic mod-
els. Finally, a simple optimal control problem illustrates
on-going research and development in extending the
Modelica language using JModelica.org; similar exten-
sions of the Modelica language are also studied in e.g.
Bachmann et al.(2012). And yet, in this paper, only the
most rudimentary use of Modelica and Python has been
touched upon.

Currently, some key problems with the Py-
thon+Modelica combination are:

e There is no equivalent of MATLAB’s Control
Toolbox. This is such a shortcoming that many con-
trol engineers will not seriously consider the Python
+ Modelica combination. Some work at CalTech
aims to resolve this problem by developing a Python
control toolbox, but there does not appear to be a
clear timeline for such a toolbox. Within the Modeli-
ca groups, some on-going work addresses this by de-
veloping a Linear Systems library within Modelica.

SNE 23(3-4) - 12/2013

B Lie, F Haugen

Scripting Modelica Models Using Python

e Although there are a number of powerful (and free)
optimization solvers, it is not trivial to integrate these
into Python, and those which already have simple Py-
thon installers are often poorly documented and/or
uses non-standard array packages. A minimal pack-
age should include LP, QP, NLP, and NLS solvers of
high quality, and they should be equally simple to in-
stall in the main OS platforms.

e The FMI is a very positive initiative, and well suited
to scripting using either Python or MATLAB. More
work is needed in order to make FMI export from the
various tools more standardized.

e The initiative of extending Modelica with optimiza-
tion (and model calibration) possibilities is very in-
teresting for the control society. It would be even
more interesting if some standards evolve.

The evolution of alternatives to MATLAB + SIMULINK
is very interesting, and Python + Modelica holds promise
to be such a tool. There are advantages with commercial
tools such as MATLAB+ SIMULINK and similar tools
for Modelica such as MapleSim and Wolfram Sys-
temModeler, but inacademia with limited resources for
buying software, free software is of interest.

SNE 23(3-4) — 12/2013

Acknowledgement

This contribution is a post-conference publication from
SIMS 2012 Conference (53 SIMS Conference, Rey-
kjavik, Iceland, October 4 - 6, 2012). The contribution
is a (partly) modified publication from the paper pub-
lished in the Proceedings of SIMS 2012, published by
Orkustofnun, National Energy Authority Iceland, ISBN:
978-9979-68-318-6, electronically available at
http://www.scansims.org/sims2012/SIMS2012.pdf.

References

[1] Bachmann B, Ochel L, Ruge V, Gebremedhin M, Fritz-
son P, Nezhadali V, Eriksson L, Sivertsson M. (2012).
Parallel Multiple-Shooting and Collocation Optimization
with OpenModelica. Modelica 2012. Proceedings of the
9th International Modelica Conference; Munich.

[2] Fritzson, P. Introduction to Modeling and Simulation of
Technical and Physical Systems withModelica R. |[EEE.
2011; Hoboken.

[3] Haugen F, Bakke R, and Lie B. Mathematical Modelling
for Planning Optimal Operation of a Biogas Reactor for
Dairy Manure. Presented at the IWA World Congress on
Water, Climate and Energy (IWA-WCE); 2012; Dublin.

