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Abstract. This article is about the mathematical de-
scription, analysis and background of the simulation
environment SIMULINK. This simulation environment is
a well-known tool in applied mathematics and a wide
range of fields in engineering, mainly control engineer-
ing. SIMULINK is driven by control engineering which is
recognisable in the block oriented structure as well as in
the notation and characterisation of simulation models.
This article will give an overview about the mathematics
behind the simulation models in SIMULINK and discuss
several items. The structure of the article starts in the be-
ginning with the mathematical definitions and context. A
relation between the mathematical aspects and the situ-
ation in the simulation environment is given.

Introduction
As an introduction of the article the setup of dynamical

systems will be given and discussed. Mainly dynamical

systems are linked for many people with ordinary dif-

ferential equations, initial vale problems or partial dif-

ferential equation in more complicated modelling ap-

proaches. This link is wrong in general, a dynamical

system can be defined without a differential equation.

This allows to consider a wider range of dynamical sys-

tems, e.g. time continues and time discrete. In the case

of time continuous systems the connection to differen-

tial equations can be established a shown in the follow-

ing steps.

Dynamical System. Assume sets T and X �= /0 with

T ∈ {�0,�,�
+
0 ,�}. Furthermore define a mapping

g : T ×X →X which satisfies the for x∈X and t1, t2 ∈ T

1. g(0, t) = x,

2. g(t1,g(t2,x)) = g(t1 + t2,x).

The triple (T,X ,g) is named a dynamical system, in

case of T ∈ {�0,�} it is called time discrete, in case

of T ∈ {�+
0 ,�} it is called time continuous. X is called

the state space and g the flow. For easier notation g is

redefined to

gt(x) = g(t,x). (1)

It is easy to proof that for t, t1, t2 ∈ T the mapping g
fulfills

1. g0 = id,

2. gt1+t2 = gt1 ◦gt2 = gt2 ◦gt1 ,

3. g−1
t = g−t .

Time Continuous Dynamical Systems. As-

sume x : �→�
n, x ∈ C 1(�) and g continues differen-

tiable. With x(0) = x0 and x(t) = gt(x0) let’s consider

d

dt
x(t) = lim

h→0

1

h

(
gt+h(x0)−gt(x0)

)
=

=

((
lim
h→0

1

h
(gh − id)

)
◦gt

)
(x0) =

=

(
∂
∂ t

gt

∣∣∣∣
t=0

◦gt

)
(x0) =

=

(
∂
∂ t

gt

∣∣∣∣
t=0

)(
x(t)

)
.

(2)

Time continuous dynamical systems with conditions re-

garding x and g assumed above can be described by

x′(t) = f
(
x(t)

)
, f

(
x(t)

)
=

(
∂
∂ t

gt

∣∣∣∣
t=0

)(
x(t)

)
. (3)
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1 Model Structure in SIMULINK
Let’s consider an arbitrary SIMULINK model, e.g. as

illustrated in Figure 1.

Figure 1: An arbitrary SIMULINK model to illustrate different
relations between certain SIMULINK elements.

The model structure shows two issues:

1. input-output relation of each component

2. graph structure defines the the topology of the

component connection

The following sections will discuss this two aspects,

the signal flow graphs as a mathematical environment

to describe the interconnection and the input-output re-

lation of the individual blocks to implement different

behavior.

2 Graph Concept for SIMULINK
Models

Oriented Graphs and SIMULINK-Models. Con-

sider V = V (G) as the set of nodes and E = E(G) the

set edges. The tuple G = (V,E) is called a graph and

e ∈ E(G) an edge. The edge is called oriented if e
is represented as an ordered pair e = 〈v1,v2〉 of nodes

v1,v2 ∈ V (G), the starting node v1 and the end node

v2. The edge is called not oriented if the edge is rep-

resented via a not oriented pair e = (v1,v2) of nodes

v1,v2 ∈V (G).
As illustrated in Figure 1 each SIMULINK-model

has an orientation. For this purpose the oriented graph

is a suitable mathematical environment to represent the

orientation in a SIMULINK-model. Next step is to ex-

press the mathematical and technical manipulations in

the model, which are represented in a block with certain

input and output signals or vectors of signals.

Weighted Graphs and Signal Flow Graphs.
Let’S assume G= (V,E) to be a graph and w : E →�

+
0 .

The triple (V,E,w) is called weighted graph and w the

weighting function. Let (V,E,w) be a weighted graph

and (ek) a series of edges of the graph. The weight of

the series of edges is defined as

w
(
(ek)

)
=

k

∑
i=1

w(ek). (4)

Furthermore the distance between two nodes in the

graph is defined as the minimum of weights thru all se-

ries of nodes which are connecting the two discussed

nodes. The illustration of a particle of a weighted

graphs is illustrated in Figure 2.

Figure 2: An illustration of a particle of a weighted graph, (a)
classical representation in graph theory, (b)
representation focusing on signal flow graphs.

The last step in the mathematical environment is the in-

tegration of signal flow in the graph concept.

Assume Gw = (V,E,w) as an oriented and weighted

graph wit the set of nodes V = {v1, . . . ,vk}, the set

of edges E = {e1, . . . ,em} and the weighting function

w : E → �
+
0 . Furthermore is X = {x1, . . . ,xk} with

xi ∈� for i = 1, . . . ,k defined. The mapping

μ : V → X , vi 	→ xi
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relates each node vi with a value xi. The values x j =
μ(v j), x� = μ(v�) of X are connected to w by the equa-

tion

x� = x j ·w(e j), (5)

if e j =
〈
v j,v�

〉
is valid. If the node v� is the end of more

than one edge e j, e.g. r ∈�

e j =
〈
v j,v�

〉
, e j+1 =

〈
v j+1,v�

〉
, . . . ,e j+r =

〈
v j+r,v�

〉
,

than for x� hold

x� =
r

∑
s=0

x j+s ·w(e j+s).

The tuple S = (Gw,μ) is called a signal flow graph.

To have in mind that this mathematical environment

is designed for a description for SIMULAINK-models

this definition of a signal flow graph is not general-

ized enough to represent more than linear models in

SIMULINK. For this purpose the concept has to be re-

designed to cover more general model structures.

Generalised Signal Flow Graphs. In the defini-

tion given up to now the relation between two nodes x j
and x� is given by the weighting function w along the

edge e j according to

x j = x� ·w(e j).

This limitation in the mathematical description will not

allow to include all SIMULINK-models, so the defini-

tion need a more general approach. The fist step is to

generalize the weighting.

Assume S as a signal flow graph. The mapping

we j : X → X , x j 	→ x� = we j(x j) (6)

defines the so-called generalised weighting function of

the signal flow graph S.

This definition of a generalised weighting function

allows to cover a wider range of relations between

nodes in the signal flow graph. If there are no possi-

bilities of misunderstanding the shorter notation

x� = w(x j)

can be applied.

The next step of the generalisation in the signal flow

graph concept addresses the subject of signals. The def-

inition up to now didn’t cover the flow of signals, only

the relation was oriented which implied a flow. This

will be improved in the following extension.

Assume a set Ω ⊆� and a function f : Ω →�.

1. The function f is called a signal, if the character-

istics over the time t ∈ Ω covers some information

of a physical quantity.

2. A signal is called causal, if f (t) = 0 for all t < 0t.

More general also f (t) = 0 for all t < t0 possible.

3. The set

L2(Ω) =

{
f : Ω →� :

∫
Ω
| f (t)|2 dt < ∞

}

is called the set of quadratic integrable functions.

4. (L2(Ω),+, ·) with the composition

is a vector space. With

〈 f ,g〉L2 =
∫

Ω
f (t)g(t)dt

a scalar product is defined and its induced norm

‖ f‖L2 =
√

〈 f , f 〉L2 =

√∫
Ω
| f (t)|2 dt.

For that reason the vector space (L2(Ω),+, ·) is re-

garding ‖·‖L2 complete and so a Hilbert-space.

This mathematical excursion brings the definition to

the second most important generalisation related to the

signal space. The Hilbert-space (L2(Ω),+, ·) with the

scalar product 〈·, ·〉L2 , whose elements are signals, is

called signal space. Also for this vector space the nota-

tion L2 is used, for causal signals for example the nota-

tion would be L2(�+
0 ).

Finally the introduced concepts are combined in the

definition of the generalised signal flow graph.

Assume Gw = (V,E,w) as an oriented and weighted

graph with the set of nodes V = {v1, . . . ,vk}, the set

of edges E = {e1, . . . ,em} and the weighting function

w : E → �
+
0 . Moreover are xi ∈ L2(I) for i = 1, . . . ,k

and I ⊆�. The mapping

μ : V → X , vi 	→ xi

relates each node vi with a corresponding signal xi. The

values x j = μ(v j), x� = μ(v�) of the set X are associated

via w referred to

x�(t) = we j

(
x j(t)

)
,
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if e j =
〈
v j,v�

〉
is valid.

Is v� the end node of more than one edge e j, so for r ∈�

e j =
〈
v j,v�

〉
, e j+1 =

〈
v j+1,v�

〉
, . . . ,e j+r =

〈
v j+r,v�

〉
,

for x� the relation

x� =
r

∑
s=0

we j+s (x j+s)

is valid. The graph S = (Gw,L
2(I),μ) is called a gener-

alised signal flow graph.

In simulation environments the mathematical de-

scription has a disfigurement. In computer the L2 for-

mulation is not representable. By sampling of the sig-

nals the set X can be constructed and a purely discrete

graph is used for the numerical simulation.

The interval I = [a,b] ⊂ � with a < b and a sig-

nal x ∈ L2(I) will be considered. Moreover Z =
{t1, t2, . . . , tk−1, tk} is a segmentation of I with t1 = a and

tk = b. Is ti+1 − ti = Δt for all i = 1, . . . ,k the segmenta-

tion is called equidistant. Via the determination

x(ti) = xi

it is defined a mapping δa : L2(I)→�, which is called

the discretisation of I. This mapping is the connec-

tion point between the generalized signal flow graph -

the continues mathematical framework - and the regu-

lar signal flow graph - the numerical setup for system

simulation. The link between is given by the mapping

δa : L2(I)→�, x 	→ x(ti)

and the construction of the set X by

X =
{

x1 = x(t1),x2 = x(t2) . . . ,xk = x(tk)
}
.

3 Input-Output Relation

SIMULINK is designed by definition via input-output

relations. In linear cases the input-output scheme is

mathematical well observed and there are several the-

ories available for the model analysis. In the nonlinear

case the mathematical toolbox is smaller or the avail-

able methods and theorems are not that global and gen-

eral as it is in the linear domain. The following subsec-

tions will discuss this difference.

3.1 Linear Time Invariant Systems

Time Continuous Systems. Linear time invariant

systems are described via a charming mathematical en-

vironment - the Laplace transform. This is an integral

transform of the form

L ( f )(s) =
∫ ∞

0
f (t)e−st dt. (7)

Only signals of exponential order, this means that s0 > 0

and M > 0 exist that satisfy for T > 0 the condition

| f (t)| ≤ M · es0t (8)

for all t > T .

The standard description of LTI–systems in time do-

main is given by the state space description

x′(t) = A x(t)+b u(t), x(0) = x0

y(t) = cT x(t)+d u(t),
(9)

with b,c,x ∈ �n, A ∈ �n×n and u,y,d ∈ �. This state

space description is equivalent to a ordinary differential

equation n–th order. The Laplace transform lead to a

system description in the Laplacian domain.

Assume U = L (u) the Laplacian of the input sig-

nal and Y = L (y) the Laplacian of the output signal

of a LTI-system with the state x ∈�n and x0 = 0. The

function G : �→� which fulfills the relation

Y (s) = G(s) ·U(s) (10)

for each input signal is called the transfer function of

the LTI-system.

This mathematical environment offers a structure

which is called an algebra. Interpreted with the transfer-

function, represented as blocks in the signal flow graph,

a particular model can be built by using a certain topol-

ogy of transfer function blocks. Some basic circuit ar-

rangements are illustrated in Figure 3.

Discrete Time Systems. The discretisation intro-

duced in the section above leads also to the description

of discrete linear time invariant systems. The equiva-

lent to the Laplace transform in the discrete time is the

Z–Transform. This transformation is as well linear and

is applied on series’ instead of signals.
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Figure 3: Illustration of Block Circuits: (a) Basic Topologies, (b) Algebra of Transfer Functions.

It is evident that this series are results from the sam-

pling process, following denoted as ( fn)n∈�.

1. If the series ( fn)n∈� satisfy the inequality

| fn| ≤ Mγn, ∀n ∈�

and for suitable γ,M > 0, ( fn) is called from expo-

nential order.

2. S(�,�) denotes the set of all series which are from

exponential order.

3. With

Z ( fn)(z) =
∞

∑
n=0

fnz−n

a mapping Z is defined, the so-called z–

Transform.

Due to the correlation of the sampling process the z–

Transform correspond with the Laplacian. Assume

f̃ (t) =
∞

∑
n=0

f (nT )δ (t −nT )

for T > 0 and δ : �→�∪{∞}, defined by

δ (t) =

{
∞ for t = 0,

0 otherwise,

and the condition
∫
�

δ (t)dt = 1.

Apply on f̃ the Laplacian it results in

L ( f̃ )(s) =
∫ ∞

0

∞

∑
n=0

f (nT )δ (t −nT )e−st dt =

=
∞

∑
n=0

f (nT )e−snT .

In summary for fn = f (nT ) and z = esT it results the

formula of the z–Transform.

This relation between the two domains allows the

definition of a sampling system by observing a continu-

ous LTI-system with a discretisation and reconstruction

interface as illustrated in Figure 4.

Figure 4: Split-up of a sampling system with sample and
hold interface and a corresponding continuous
LTI-system.
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3.2 Nonlinear systems

Nonlinear Systems has as well a description which

is oriented to an input-output relation. It is a gen-

eralisation of the state space description for lin-

ear time invariant systems, given by two mappings

f : �×�n×�m →�
n and g : �×�n×�m →�

p for

m,n, p ∈� satisfying the form

x′(t) = f (t,x(t),u(t)) ,

y(t) = g(t,x(t),u(t)) .
(11)

Not only this systems are addressed when the term non-

linear is used. Also systems with a certain saturation or

discretisation effect are covered in this field. Systems

like Rate-Limiter, Saturation, Quantizer and Hit Cross-

ing are counting to this systems as well. Nevertheless

the general mathematical formulation fits also to this

class of systems.

4 Simulation Models in
SIMULINK

The introduced mathematical framework for

SIMULINK is suitable to describe systems in a

formal way. For simulation aspects this description

is not helpful or offers optimizing opportunities. But

in a modelling context this framework offers a new

level in the coexistence of modelling and simulation.

The common approach is that the modelling process

provides a description of the model and the simulation

environment runs the calculation.

The description of the model is normally given

in a mathematical framework or an computer science

approach. This produce the first problem, there is

no common layer where the model can be compared

or analysed. The introduced framework offers the

possibility to separate a abstract mathematical model,

graphical simulation model and the model implemented

in the simulation environment by itself. In case of

SIMULINK models this approach offers an abstract

layer for model descriptions.
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