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Abstract. Although microscopic models are nowadays
getting more and more popular among, still the model-
ling approach lacks of appropriate mathematical theory
to confidentally rely on the outputs of the derived mod-
els. Especially unexpected chaotic group behaviour and
the inability to validate and parametrise the model often
leads to unusable simulations. The investigated test-
case, a simple cellular automaton (CA) simulating the
temporal development of a SIR (Susceptible-Infected-
Recovered) type epidemic, shows a field of application
for so called complexity theory. In order to explain and
analyse the aggregated simulation results of the CA,
certain methods usually used in Markov theory for quan-
tum mechanics, basically extensions of so called diffu-
sion approximation [1], are applied. Finally, already sus-
pected, correlations to the solutions of the famous SIR
differential equations, formerly derived by Kermack and
McKendrick [2], can be proven with analytical methods
and extended by convergence results and qualitative
error estimations.

Introduction

Due to tough limited resources usage of modelling and
simulation to support strategic planning has nowadays
become an indispensable part of management. Especial-
ly the increasing number of simulations for emerging
problems within so called soft-sciences like medicine,
biology or sociology can be observed. Main reason for
this development is the exponentially increase of com-
putational resources (compare Moore’s law [3]) making
it possible to simulate very complex, individual-based

models, which, correctly validated, produce reliable
results. Nevertheless the validation process for these
models is very difficult, requires lots of data and heuris-
tic parameter-sweeps for sensitivity analysis. The usage
of microscopic models always involves the danger, that
maybe unpredictable chaotic group behaviour distorts
the results. Most of the microscopic modelling methods,
like agent-based models and cellular automata, some-
how lack of necessary mathematical basis.

Nevertheless compared to classic macroscopic mod-
elling methods some of the advantages and disad-
vantages of so called microscopic or individual-based
models can be summarized in Table 1.

Advantages Disadvantages

Difficult to validate

Lower abstraction level
compared to reality

Easy to understand for High computational ef-
non-experts forts

Difficult to document
regarding reproducibility

Very flexible regarding
system changes

More suitable for eye-
catching visualisations

Sometimes unpredictable
and chaotic results

Table 1: Some advantages and disadvantages of
microscopic models.

Within epidemiology so called SIR (Susceptible — In-
fected - Recovered) strategy already poses the base for
lots of flexible microscopic models for diseases and
vaccine strategies (see e.g. [4],[5]). Hereby the spread of
one single serotype in a certain environment among
certain individuals is studied, wherein the individuals
are divided into the aformenetioned three subclasses.
Infected individuals forward the spread of the disease
among the susceptible individuals. Recovered individu-
als are meant to stay immune against the serotype for
the further progress of the disease (died individuals are
included here).
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Several years ago a team of the AMSDM group
(Applied Modelling, Simulation and Decision Making),
a cooperation of the “dwh GmbH” and the group of
Prof. Felix Breitenecker at Vienna University of Tech-
nology), created lots of epidemics-related teaching ma-
terial for modelling lectures. This material was devel-
oped in the context of a huge project with the Federation
of Austrian Social Insurance analysing the effect of
different vaccine strategies against influenza viruses on
the Austrian social system (population, financial as-
pects, etc.) supported by theoretical models ([6], [7]).
Due to interesting results especially one of them attract-
ed special attention. The emphasis is laid on a stochastic
cellular automaton (short CA), in detail described in
chapter 1, which can be used to simulate simple epidem-
ics with the aformentioned SIR strategy. For more in-
formation the reader is referred to [18]. In addition the
influence of vaccinations before the breakout of the
disease can be investigated confirming the flexibility of
agent-based models compared to most macroscopic
models.

1 Comparison of two Modelling
Approaches

Some resulting curves of the mentioned cellular au-
tomaton model can be seen in Figure 1. The three
graphs located at the lower part of the figure are calcu-
lated by the number of cells sharing the same state. The
green line shows the number of “susceptible” cells, the
red and blue line illustrate the number of “infected” and
“immune” cells. The upper part of the figure shows the
state of the cellular automaton at a certain time during
the simulation run.
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Figure 1: Example Result of the Cellular Automaton.

SNE 23(3-4) - 12/2013

Studies (see [8]) have shown, that a comparison be-
tween the aggregated CA-results and the famous SIR
differential equation model (short ODE model) by Ker-
mack and McKendrick, 1927 [2], seen in (1) is justified.

dS_ /s
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dr_ IS — BI (1)
ac ¢ B
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This nonlinear system of differential equations can only
be solved using numerical integration algorithms, as it
does not have any nontrivial analytical solutions. A
MATLAB generated plot of the Runge-Kutta-Fehlberg
(4™ order with step-size control) approximation of the
solution is shown in Figure 2.

B =scepsble
[ infeceed
W recoversd

10 20 0 40 50 60 0 80 20 100
time

Figure 2: Example Result of Classic SIR Differential
Equations.

It is undeniable that the solution curves of both models
look very similar. Further comparative studies (also [9])
showed that there is a correlation between the parame-
ters of the ODE model (Infection rate o, Regeneration
rate B) and the stochastic CA model (movement rules,
regeneration probability, neighbourhood, population-
density and infection-probability) in form of closed
equations. Unfortunately these were mostly derived via
basic stochastics and experiments, without any state-
ments regarding convergence and errors between those
two approaches.

A possible way to compare these two completely
different modelling ideas with mathematical techniques
is presented in the following chapters. One must not
forget that a stochastic, time and space discrete model is
hereby compared with a deterministic, completely con-
tinuous model posing a big challenge. Starting to ana-
lyse the CA model by a series of transformations finally
the ODE formulation will be derived. Convergence
results and error estimations are going to appear as by-
products of these.




2 Cellular Automaton -
Definition

Although usually presented and implemented as a cellu-
lar automaton the most comprehensible description of
this model is claimed in form of an agent-based model.
The transition rules for the cellular automaton can be
derived analogously. Although the underlying model-
ling concept is completely different in this simple case
both modelling approaches (agent-based and CA) end
up with the same model.

2.1 Space

Let Q be a discrete two-dimensional rectangular grid
with M = M, - M,, aligned cells ¢;;,i € {0,..,M,}, j €
{0, ..., M, }. Each cell itself is partitioned into four cell-

fractions: {¢; j 1,1, Ci j,1,2: Cij,2,10 Ci j2,2}-

2.2 Agents (non-empty cells)

A number N < 4M of agents a,(t),n € {0, ..., N} are
placed onto the grid. Each agent is assigned exactly one
cell-fraction: a,(t); € {i,j, k,1}. Furthermore each
agent has one of three states (‘susceptible’, ‘infected’ or
‘recovered’): a,(t), € {1,2,3}. To simplify the speech
and to support a pictorial representation, the state of the
agent is usually called as a prefix of the word agent: e.g.
‘infected agent’.

2.3 Simulation

The simulation is performed time discrete with equidis-
tant steps {1, ..., tonq}- Each time step is split into two
phases. First of all the so called infection-phase is per-
formed wherein new-infections and regenerations are
calculated. During this phase each agent is addressed
once and basically two cases can lead to a state-change:

e If'the agent is susceptible and shares a cell with
an infected agent, there is a certain probability
P(1,2) that the agent gets infected too.

e If the agent is already infected, there is a cer-
tain probability P(2,3) that the agent recovers
and becomes immune against the disease.

All state changes are done simultaneously.

After this a series of movement rules are applied
during so called movement-phase. Hereby all agents are
shifted corresponding to certain laws to achieve new
arrangements. Basically they are inspired by movement
rules of so called lattice gas cellular automata (compare
FHP model [10]) and will not be explained here in detail.
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A summary of all these ideas is found in Figure 3. It
can be seen that even this rather simple model (it is
usually very well understood if a picture similar to Fig-
ure 3 is given) is very difficult to be described in a for-
mal language especially regarding mathematical formu-
las, functions and equations.

3 Analysis and Transformations

In order to achieve convergence results and error esiti-
mation several stochastic methods known from Markov
theory can be used. Concrete a three-dimensional ver-
sion of the so called diffusionapproximation can be
applied. Therefore it is, first of all, necessary to convert
spatial influences like neighbourhood and transition
conditions into probabilities.
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Figure 3: Visualisation of the rules for the SIR Cellular
Automaton.

3.1 Extracting probabilities

Defining movement rules in general is basically related
to two main ideas: First the motion needs to guarantee a
good mixture among the individuals. A bad systematic
motion could lead to (usually) unwanted loops or clus-
tering. From this point of view, the ideal movement rule
to guarantee a perfect mixture would be a complete
stochastic re-arrangement of all agents at the end of
each time-step:

a, ), =05 kD)=>a,(t+1);,=XYUYV).
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Though this is not compatible with the second basic
aspect of movement, namely that agents cannot cover an
infinite range (usually only 1-2 cells) during one time
step, a closer look at this aspect is taken. Defining the
agitation of all agents completely randomly, basically
two independent random processes are responsible for
the state of each agent, hence the model is cleanly sto-
chastic and can be described by transition probabilities
then. For a fixed index k the probability of agent k
changing its state from susceptible to infected can be
calculated by multiplying the probability of being
placed next to an infected agent during movement-phase
and the probability of getting infected by this agent. By
simple uniform distribution argument this probability
can be calculated to:

Pla(t +1); = 2|lax (1), = 1) =
_3p#a (), =2}

N P(1,2).

Hereby p denotes the population-density p = % and

model parameter P(1,2) is a fixed infection probability
(as described earlier). Analysis of the original model
using the original, lattice gas automaton inspired
movement rules, shows that a random initial placement
of the agents is enough to ensure at least (2) holds.

w1 = P(a(t + 1), = 2|a (1), = 1) =

_ w P(1,2) + O(N"")

2
The Landau-symbol O indicates the asymptotical order
of the expression. In this case the asymptotical expres-
sion is a result of accidentally clustering of infected or
immune agents and strange distributions close to the
borders which can lead to other contact probabilities. In
both cases they can asymptotically be neglected regard-
ing big numbers of agents (with constant density).
Obviousely the result of (2) can, in case of high den-
sities and high numbers of infected agents, end up with
a value higher than 1, which in terms of probability
theory cannot be correct. Reason for this observation is
a basically wrong ansatz wherein the contact probability
is sloppily calculated via a simple multiplication of the

number of neighboured cells (3) times the probability of

observing an infected agent (p;: = M). Never-

theless the correlation between the correct calculation,
seen on the left hand side in (3) and the used calculation
on the right hand side is very small and vanishs second
order for small densities.
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1-(1—p)®=3p;+0(p? (3)

Surely the probability of regeneration is completely
independent of the agents’ position:

w3 = P(ay(t + 1), = 3la,(t), = 2) = P(2,3).

Thus, eliminating the influence of the spatial grid, the
agent-vector can be described by an N-dimensional
Markov-chain with transition tensor (4).

1 - 0)12 wlyz 0
Q; = 0 1—-wy3(a) wy3(a)
0 0 0 4)
i€{0,..,N}

As the transition probabilities depend on the sum of all
agents sharing the same state the agents itself cannot be
described by single Markov-chains which poses the
main difference to classic microscopic Markov-models.

Furthermore Markov-theory is going to pave the
way to overcome the obstacles between discrete (CA
model) and continuous (ODE model).

3.2 Time discrete to continuous

Suppose a given regular, homogeneous, time continuous
but space discrete Markov-process X(t),t € [0, tong]
with transition matrix R and three possible states the
Kolmogorov equation (5) holds which is in case of
sufficient regularity solved by (6).

PX(®) =ilX(0) = Diepr23)
=R-PX(6) = iX(0) = jie1,23

P(X(t) = i|X(0) = j) = exp(Rt) - &;. 6)

(&)

Therefore a time continuous Markov-process according
to QO =exp(R-1) = R :=1log(l) seems to be an ap-
propriate choice to approximate the time discrete one.
Surprisingly the first order Taylor approximation:
R:=R;=0;—1d,i €{0,..,N} turns out to be the
better choice in our case conserving mean and variance.
Errors regarding this approximation can e.g. be calcu-
lated using the Taylor series remainder.

3.3 Spatial discrete to continuous

Key observation for the transformations is definitely
that the so called observable vector defined by (7)
‘counting’ all Markov-processes sharing the same state
is also a time continuous Markov-process with transi-
tion rates ¢ of which only two do not vanish.
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The two non-zero rates are given in (8) and (9).

()T e
f-(6) T e

These two transition rates, also called jump rates denote
the rate for jumps of single agents from state 1 to 2
respectively from state 2 to 3. As the process is continu-
ous and regular no more than one agent can change its
state during an infinitesimal time-interval. Therefore all
other rates vanish.

Summarizing the performed transformations Fig-
ure 4 is given.

Classic agent-based
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Figure 4: Transformation from CA to Markov Process.

For big numbers of N the observable can take any value
between 0 and | and thus the probability function
p(t,0|0y) can be approximated with a continuous and
differentiable function taking account interpolation
errors. As the observable vector is still markovian the so
called diffusion approximation can be performed.

4 Diffusion Approximation

The Kolmogorov equation respectively the closely re-
lated master-equation poses the base for a lot of analyti-
cal transformations known within physicists under the
name “diffusion approximation”. This technique, first
time published 1983 by N.G. Van Kampen ([1], [11]), is

based on Taylor-series expansion (named after Kramers
and Moyal [12]) and the variable substitution
0 =:(0)(t) + N"Y2E(t)  (compare Itd [13]). This
technique is commonly used to describe the temporal
development of particle-probabilities. Here only the
results of these technique are presented witch are valid
with respect to asymptotic errors of order 0 (vVN—1).

Key observation of these estimations is the derivation of
an ODE for the mean value of the observable vector:

-1 0
((5)(15)), = ( 1 )(5)1(13)(»1‘2 + <—1> (0)2(H)wy 3,

0 1
which, resubstituted, leads to
(()®)
3
/ —(B) (D(6)() 2 P(1,2) \
_ 3 (10)
N K(an(t)(az(t)ﬁpu,z) —(6),(0)P(2.3) )
(6),(£)P(2,3)

Equation (10) can be determined to match the SIR ODE
by Kermack and McKendrick. Variance of the observa-
ble can be calculated to vanish for N — oo with square-
root order. Applied time-scaling T = t/c in addition to
inverse scaling of the rates 6 := cw finally leads to
convergence of the aggregated results of the stochastic
CA towards the solution of the ODE system when

¢ = 0 and p — 0. Although the sloppily calculated
probability for a state change from susceptible to infect-
ed is slightly wrong the error does not disturb the re-
sults. Nevertheless the better fitting ODE curves would
be (compare with (1)):

I =las@-a-D3-pI| (11)

(5)’ —aS(1-(1-103)
R Bl

5 Conclusion

The presented strategy can without loss of generality be
extended to other microscopic models and can help to
improve understanding of unexpected group behavior in
general. The diffusion approximation introduced by Van
Kampen [1] was extended and used to show conver-
gence between a classic ODE model and a time discrete
Cellular Automaton. Hereby a similar strategy as intro-
duced on the example on economic models in Aoki [14]
and on the example of queuing processes in Dohse [15]
was used to achieve the transformation from discrete to
continuous.
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Figure 5: Direct comparison between ODE and CA model.

Figure 5 affirms the success of the explained tech-
nique with respect to small errors.

Though the restrictions for analysis of microscopic
models using this strategy are very sharp, the validity of
the central limit theorem for somehow weak dependent
random variables/processes (see e.g. strong mixing
[16],[17]), which in general poses the basis for the anal-
ysis of aggregated numbers, makes hope for the success
of further analysis of aggregated observable vectors of
individual-based models. Hopefully further theoretical
research can help developing and validating new models
on the one hand benefiting from the great flexibility of
time discrete microscopic models and on the other hand
profiting from fast computation properties and good
validation methods of macroscopic models.
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