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Abstract. Inverse simulation techniques allow inverse
solutions to be found for a range of problems involving
dynamic systems described by sets of linear or nonlinear
ordinary differential equations. Techniques in common
use generally involve iterative solutions based on discre-
tised descriptions but continuous system simulation
tools can also provide solutions and are often simpler to
apply and computationally more efficient. This paper
presents a method of inverse simulation which involves
use of a very simple, but effective, approximation for
derivative terms within the model. Discussion of results
for linear and non-linear examples leads to the conclu-
sion that this technique can be applied to a wide range of
dynamic models that are of practical importance for
engineering applications.

Introduction

Conventional modelling and simulation involves a pro-
cess of finding a model ‘output’ for a given set of initial
conditions and time history of ‘inputs’, whereas inverse
modelling and simulation is a process in which ‘inputs’
are found that will produce prescribed model ‘outputs’.
Inverse simulation methods provide an alter-native to
the use of mathematical techniques for the inversion of
dynamic models, particularly in the nonlinear case. Not
only do they avoid the complexities of the mathematical
approaches for nonlinear models but they also provide
insight that may not otherwise be so readily available
from conventional simulation techniques.

A number of established inverse simulation methods
involve discretisation of continuous models. Examples
include the so-called differentiation approach [1], [2],
the widely-used integration based approaches [3], [4]
and optimisation-based methods [5], [6]. A paper by
Thomson and Bradley provides a useful review [7] of
some of these techniques, which are essentially iterative
in nature and were developed, initially, for aeronautical
applications.

Other techniques are based on continuous system
simulation models and include the use of differential
algebraic equation (DAE) solvers such as those availa-
ble in the Modelica® environment (see, e.g. [8]) but
DAE methods do not yet appear to have been applied
routinely to large and complex models of the type that
typically arise in engineering applications. A useful and
proven alternative involves the use of feedback princi-
ples and continuous system simulation tools (see, e.g.
[9-13]).

The approximate differentiation method of inverse
simulation outlined in this paper provides yet another
approach which involves continuous system simulation
methods and may be simpler to apply in some cases. In
common with other methods of inverse simulation it has
obvious limitations, but can be used for a range of mod-
el structures of importance for engineering applications.

1 The Approximate
Differentiation Method

This is a continuous simulation equivalent of the dis-
crete ‘differentiation method’. The basic idea is to re-
arrange the given model in state space form so that the
inputs of interest appear on the left hand side of the
equations.
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Derivatives of state variables appearing on the right
hand side can then be approximated using a simple
continuous representation based on the use of an inte-
grator block and feedback pathway, as shown in the
block diagram of Figure 1. This may be seen from the
first order equation defining that system which is given
by:
= =2 (v(®) —w(®) (1)

dt

dwin)/dr

wirh + win)

Figure 1: Block diagram of the approximate
differentiator.The block 1/s represents the
operation of integration in terms of the Laplace
variable s.

If the variable V(t) in Figure 1 is replaced by x;4(t) which
represents the desired time history for a state variable x;
then, provided the time constant T is very small in relation
to the dynamics of the given model, the variable w(t) in
Figure 1 is a close approximation to the desired variable
Xiq(t) and to the state variable x;(t). The quantity found
at the input to the integrator block in Figure 1 is given by

%(xid(t) —x;(t)) and is thus an approximation to the

derivative x;. Hence a derivative of a state variable x;
within a given state-space model may be replaced by a
quantity — (xia(t) — x;(t)) where x;q(t) is the desired
time history.

The approach, which was mentioned in an invited
keynote lecture at the 8" EUROSIM Congress in Septem-
ber 2013 [14], is best presented through a simple illustra-
tive example which has also been used in investigations
of other inverse simulation methods [6], [15]. Consider a
linear single-input single-output system model of the
form:

x = Ax + Bu 2)
y=Cx+Du 3)
0 1 0 1
where A=1|0 0 1|, B=]|-5],
-6 —-11 -6 69

C=[1 0 0],D=0
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Simple linear analysis shows that this linear single-
input single-output (SISO) system model has poles at
positions S = -1 rad/s, S= -2 rad/s and S = -3 rad/s and
zeros at S=-0.50004j7.0534 rad/s. The range of frequen-
cies of interest for this model is from 0 to 30 rad/s. The
set of ordinary differential equations for the system as
given above is:

X, =X, +u 4
X, = X3 —5u 5)
X3 = —6x; — 11x, — 6x5 + 69u )
y=x )

Let the desired output be denoted by x; 4. The derivative
X, may then be approximated by % (x14 — x1) and we

have a new ‘output equation’ of the form:
; 1
U=Xp = X17X2 — ;(xm — 1) (®)

We now have a modified set of equations of the form:

. 1 1

xl = _;xl +;xld (9)

J'CZ =;x1+5x2+X3—;X1d (10)

i3 = —(6+D)x; — 80x, — 633 + 2y (11)
1 1

U=--x — %+ %q (12)

This set of equations has zeros at S = -1 rad/s, s = -2
rad/s, s = -3 rad/s and poles at $=-0.5 + j7.0534 rad/s
and at s= -1/T rad/s so, clearly, the zeros of the inverse
simulation model are at the same positions as the poles
of the given model and the poles lie at the positions of
the zeros of that model, apart from an additional pole at
Ss= -1/T. Provided the time constant T can be made very
small, this additional pole of the inverse simulation can
be positioned at a point in the S-plane far from the other
poles and zeros, where its effect is insignificant. For
example, a value of T of 0.001s would give an addition-
al pole at s = -1000 rad/s, and this is so far removed
from all the other poles and zeros that it would have a
negligible influence on the dynamic behaviour of the
inverse simulation. One could, of course, make the time
constant T even smaller but this would tend to increase
the stiffness of the inverse simulation and there is a
clear trade-off between the overall accuracy of the in-
verse simulation and computational efficiency.

Consider the specific case of an desired time history
for the state variable x;(t) which takes the form of a
triangular waveform involving a negative going ramp,
starting from zero at time t = 0 with a gradient -0.5
units/s, changing to a positive slope of 0.5 units/s at time t
= 1.5s and then repeating this pattern at time t =3 s.
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Using MATLAB® software to implement the inverse
simulation based on Equations (9)-(12) for this desired
form of output waveform and a value of T of 0.001s, we
find that the required input has the form shown in the
upper trace of Figure 2. The lower traces show the re-
quired output, together with the output found from a
forward simulation for the given model when the wave-
form obtained from the inverse simulation is applied as
input. It can be seen from this that the two plots almost
coincide, so the input found from inverse simulation
generates the required output almost exactly for the
chosen value of T.
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Figure 2: The upper trace shows the input found from
inverse simulation of the linear SISO system of
Equations (2) and (3). The lower traces
(superimposed) show the demanded output
together with the output obtained from
application of the input found from inverse
simulation to the conventional forward
simulation model for this system.

2 An Example Involving a
Nonlinear Model

Consider a mathematical model of a coupled-tanks
system shown in schematic form in Figure 3, involving
two interconnected tanks of liquid, (Tank 1 and Tank 2)
with input flow rates, Q;; and Q;, respectively. These
inputs are from electrically driven variable-speed
pumps. There is a single outlet flow Q,3 from the second
tank which may be adjusted manually by means of a
tap. Both tanks are equipped with sensors that can detect
the level of liquid and provide a proportional output as
an electrical voltage signal.
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Figure 3: Schematic diagram of the coupled-tanks system.

If the levels of liquid in the two tanks (H; and H,) are
regarded as output quantities and the flow rates from the
pumps as inputs, a two-input two-output second-order
nonlinear state-space description may be developed for
this system using simple physical principles based on
the fact that the rates of change of volume of liquid in
each tank must be equal to the difference between the
total flow rate into that tank and the total flow rate out
(see e.g. [13], [16]).

For situations in which the liquid level in Tank 1 is
greater than the level in Tank 2 the equations are as
follows:

afy _ Qu® _ Cartq -
e Tt CTCAGEY ) IERIE)
aH; _ Qi)

+ 8 2O — F0)

— S22 [29(H; (D) — H) (14)

Values of parameters are defined below for a specific
laboratory-scale system [13], [16]:

Cross-sectional areas of tanks A; = A, = 9.7x107 m?;
Cross-sectional area of orifice 1 a; = 3.956x10° m%;
Cross-sectional area of orifice 2 @ = 3.85x10™ m?;
Coecfficient of discharge of orifice 1 Cy = 0.63;
Coecfficient of discharge of orifice 2 Cyp = 0.58;

Height of outlet above base of tank H; = 0.03m;
Gravitational constant g =9.81 m/s*;

Maximum flow rate Qjmax = Qiamax = 5%10™ m?/s;
Minimum flow rate Qijmin = Qiamin= 0 m’/s;

Maximum liquid level Hyyax = Homax = 0.3m.
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This model is nonlinear in structure because of the
nonlinear relationship between the liquid levels in the
Tanks 1 and 2 and the flow between them and also be-
cause of the nonlinear relationship between the output
flow rate and the liquid level in Tank 2.

The inverse simulation developed from the applica-
tion of the approximate differentiation method is readi-
ly, obtained using the principles outlined above, and
involves the following set of equations:

T8 = 2 [Hyreg(©) — Hy (0)] (15)
T2 = 2 [Hayreq(t) — Hy(0)] (16)

Qi1 (£) = 2 [Hireq(t) — Hy()]
+Cd1a1\/29(H1(t) — H,(1)) (17)
Qiz() =22 [Hareq (t) — Hy(8)]
—Ca101+/29(Hy1(2) — Hy(t)

—Cq2a, 29 (H,(t) — H3) (18)

where Hjyeq(t) and Hyyeq(t) are the required time his-

tories of liquid levels in Tanks 1 and 2 respectively.

Figure 5 and Figure 6 show results obtained using
MATLAB® for the method outlined above for a case
involving the required time histories of level changes
shown in Figure 4. The value of the time constant T
used in the equations for the inverse simulation is 0.1s,
which is very small in relation to the dynamic character-
istics of the system. The results from the inverse simula-
tion for the desired level changes of Figure 4 are given
in Figure 5 and these show that the pattern of input flow
rate changes do not cause either of the inputs to reach
the maximum flow rate of 5x10° m*/s or to drop to zero
flow rate (the minimum allowed) at any time in the
simulated test. The results do, however, show strong
interactions between the two tanks, especially during the
initial phase of the test where the input flow to Tank 2
falls rapidly to compensate for the rising level in Tank 1
(and thus allows the required level in Tank 2 to be main-
tained). When the input flow patterns shown in Fig-
ure 5 are applied to a forward simulation of the coupled-
tanks system, the levels of liquid in the two tanks are
very close to the required levels in Figure 4, as is shown
by the results of Figure 6 which show maximum differ-
ences of the order of 1.4x10"" m between the levels
found from forward simulation results and the desired
levels.
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Figure 4: Required liquid levels for the first case

considered.
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Figure 5: Flow rates determined by inverse simulation for
the first case considered.
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Figure 6: Differences between reference liquid level time
histories and liquid levels found by applying
inputs from inverse simulation to the forward
simulation model.
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The pattern of demanded reference levels shown in
Figure 7 relates to a case in which the required level
changes result in one of the input flow rates reaching its
maximum value of 5x10”° m?s. The input flow rate to
Tank 1 remains at that maximum value for a period of
about 40s and then falls to a new constant value of
about 4x10” m?/s, while the input flow to Tank 2 drops
to zero, as is shown in Figure 8. In this case, if the input
flow rates obtained from inverse simulation are applied
to the forward simulation model, significant differences

012

Differance, required and simulated levels ()

are found between the levels achieved and the desired 06 s R s s ‘ . . ‘

. . . . . o a0 100 1580 200 250 300 350 400 450 500
levels, as shown in Figure 9. The inverse simulation Time (s}
thus shows, in this case, that for the given system con- Figure 9: Differences between the desired levels and the
figuration the required pattern of liquid level changes levels found from forward simulation of the
cannot be achieved. Hence, this might suggest that de- coupled-tanks model for the case defined by

sign changes would be required within the system if this the inputs of Figure 8.

pattern of level changes was an essential requirement
for some specific application.

T 3 Discussion and Conclusions

o
[
4]

The linear example involving a single-input single-
output model defined in state-variable form shows that
the approximate differentiation approach to inverse
simulation can give results in which poles of the inverse
simulation match the zeros of the given model. The
approximation is equivalent to adding one pole at a
point in the S-plane which is located on the negative real
axis far from all the poles and zeros of the model. The

"o Em e Tlrieécésj R IR effect of this additional pole resulting from the approx-
imation can thus be made negligibly small by choosing
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Figure 7: Required liquid levels for second case involving
a larger difference between final levels in Tank 1 a small value for the time constant associated with the

and Tank2 resulting in a required flow rate for differentiation process.

Tank 1 that exceeds the maximum. In the case of a multi-input system, if all the inputs

are to be found by inverse simulation, the number of

- additional time constants would be equal to the number

of inputs, but the time constants would again have neg-
ligible effect if they had appropriate small values.

The success of the approximate differentiation ap-
proach for the case of a model involving nonlinear
8 equations has been demonstrated through use of the
.0 , coupled-tanks example. In this case, provided the model
—————— | input variables are within their limiting values, the in-
7777777777777777777 verse simulation gives an accurate prediction of the
Yo &0 100 150 20 280 300 380 400 480 500 inputs required to produce desired model output time

e histories.

Input flows from inverse sim. (m3/s)

Figure 8: Input flow rates found using inverse simulation
for level variations defined in Figure 7.
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The method also provides the user with a clear indi-
cation of the effects of input limits when they arise, thus
providing insight about the reasons why a specific de-
sired time history of outputs is not achievable. Depend-
ing on the context in which inverse simulation is being
applied, such situations may lead to modification of the
desired pattern of outputs or to a change in the design of
the system represented by the model.

As mentioned in the introductory section of this
note, another commonly-used approach to inverse simu-
lation which uses continuous system simulation meth-
ods is based upon feedback techniques (see e.g. [13]).
This has been found to be a powerful approach and has
been applied to a wide range of practical systems. How-
ever, that method requires the design of a feedback
structure around the given simulation model, which can
be time-consuming and difficult for those with little
experience of closed-loop system design. It can also
present significant problems if limit cycle oscillations
arise. The approximate differentiation method thus
provides an interesting alternative approach which
avoids such difficulties but is also based on continuous
system simulation principles.
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