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Abstract. This paper presents an extended and modi-
fied approach and solution to ARGESIM benchmark C17
‘Spatial Dynamics of SIR-type Epidemic, which is compar-
ing modelling and simulation approach with ODEs
(McKendrick's SIR model) and with cellular automata
(LCGA - Lattice Gas Cellular Automaton). Model imple-
mentations (ODE and CA) are directly programmed in
MATLAB, using the MATLAB ODE solvers, and program-
ming the CA update by means of vector and matrix ma-
nipulations. The contribution analyses and documents
the differences between ODE solutions and aggregated
CA solutions, mainly investigating dependencies on initial
values. And on the other hand , the contributions pre-
sents ‘similarities’ between ODE solutions and CA solu-
tions by balancing spatial inhomogenities in the CA dy-
namics using equally distributed populations.

1 Modeling

1.1 ODE model

The differential equations model is based on Kermack
and McKendrick’s SIR model and consists of three
equations for the numbers of susceptible (S), infected
(I) and recovered (R) individuals as functions of the
time t:

S'(t) = —yS@®I®)

I'(t) = yS(@)I(t) — 6R(t)

R'(t) = 6R(t)

The infection rate y can be expressed by y = aﬁ
as stated in Benchmark C17. The recovery rate § can
simply be expressed by the provided parameter . This
model was simulated using Matlab's numerical ODE-
solver ode45, which is based on an explicit Runge-

Kutta (4,5) method.

1.2 LGCA model

The LGCA was implemented in Matlab using a three
dimensional n X n X 6 array for the cellular automaton
(n? cells with 6 sub cells each). Each array entry takes
one of the four following values representing its state: 0
(empty), 1 (susceptible), 2 (infected) or 3 (recovered).

For the initialization the given initial numbers of in-
dividuals are distributed randomly across the LGCA. In
each time step, the three phases of the update rules are
carried out. For the infections, recoveries and collisions
a loop among all cells is made. First, the number of
infected individuals in the cells is calculated, as it is
necessary for computing the infection probability. Then
the recoveries and infections are executed using the
probabilities a., for infection of a susceptible particle
from an infected particle and B, for recovery of an in-
fected particle. Next it is checked whether the cell is in
one of the possible configurations for collisions and the
reflections of the particles take place.

The movement phase was implemented according to
the FHP-I rules, particles on the boundary reenter the
LGCA on the opposite side. For each time step, the
number of individuals in the three states is calculated as
a result. The model parameters a., B, and n are identi-
fied with provided system parameters according to the
specifications of Benchmark C17.



A Gerstenmayer et al.

Comparison of Epidemic CA Model and ODE Model

2 Differences in ODE and CA
Solutions

The aim of this first investigation is to compare the
simulations obtained by the two modeling approaches
varying the parameters I, (and correspondingly S;), «
and f to find settings for similar and different results
and analytical explanations for these findings. The other
three parameters, the population N = 100 000 as well as
the initially recovered persons Ry = 0 and the number
of contacts C, are kept constant.

The results for both models in the first parameter
setting, in which the initial number of infected people is
rather high and a and 8 quite low, are nearly indistin-
guishable, as can be seen in Figure 1.
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Figure 1: S(t), I(t) and R(t) simulated with
differential equations (solid line)
and LGCA (dashed line)
for I, =5000,a = 0.1and 8 = 0.1.

In the second setting (Figure 2), where only /; is dimin-
ished by a factor 100, the outbreak of the epidemic is
delayed by approximately 50 time steps in comparison
to the first setting. Qualitatively the behavior of both
models is still the same, but the LGCA epidemic occurs
slightly later with a lower maximum of infected indi-
viduals.

The increase of @ and B in the third setting
(Figure 3) leads to a faster outbreak and shorter duration
of the epidemic. There are considerable differences
between the results for both models. The maximal value
of I is about four times as high for the differential equa-
tions model than for the LGCA and the duration of the
epidemic is about twice as long for the LGCA.

Also, with the LGCA model a lot more individuals
stay susceptible for all time.
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Figure 2: S(t), I(t) and R(t) simulated with
differential equations (solid line) and LGCA
(dashed line) for I, = 50, « = 0.1 and 8 = 0.1.
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Figure 3: S(t), I(t) and R(t) simulated with differential

equations (solid line) and LGCA (dashed line)
forl, =50,a =0.6and g = 0.3.

In the last setting (Figure 4) I, is set to the very low
number of only five individuals. For the differential
equations model this just results in a small time delay
compared to the third simulation. The LGCA model on
the other hand responds quite differently, the curve of
infected individuals is so flat that an outbreak of the
epidemic is hardly visible and R and S increase and
decrease very slowly.
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Figure 4: S(t), I(t) and R(t) simulated with
differential equations (solid line) and LGCA
(dashed line) for I, =5, = 0.6 and 8 = 0.3.

One conclusion that can be drawn from these results is
that the LGCA reacts much more sensitively to changes
of the initial values I, and S, than the continuous model.
For the differential equations model the changed initial
values merely seem to shift the outbreak of the epidemic
to the left or right, the shape of the curves hardly chang-
es. This does not hold for the LGCA. The smaller the
initial number of infected individuals, the flatter the
graph for I becomes due to the spatial distribution of the
individuals. If just a small number of infected individu-
als is placed in the LGCA, the propagation of the dis-
ease takes very long because only the few individuals in
the neighborhood of the infected ones can get infected,
but as the speed of recovery is not affected, I is kept
down and reaches a lower maximum.

So the results for high values of I, are similar in
both models, but for low initial values of infections the
LGCA epidemic curve is a lot flatter. This shows that in
some cases the LGCA does not provide a sufficiently
homogeneous mixing of infected and susceptible parti-
cles, and hence the simulation results differ from the
ODE.

Also the infection parameter a can cause different
behavior for the two models. For low values of a both
models behave alike. This can be explained analytically
by calculating the expected number of new infections
per time unit in the LGCA.

The probability of an infection is given by
2 0qi(1— (1 —a)b), where q; is the probability of i
places in the cell being occupied by infected individuals
(given by a hypergeometric distribution), and the proba-
bility of an infection of a susceptible individual in this
cellis (1 — (1 — a)?). For values of a close to zero it is
reasonable to approximate this term with the Taylor
expansion of first order. This yields

5 5

. , c
Zoqi(l—(l—a)l)zazoqimafN_l M
= i=

Multiplied with the number of susceptible individuals
we have that the expected number of infections equals

aSl ﬁ, which is consistent with the differential equa-

tions. For higher values of «a the Taylor approximation
is not sufficiently accurate, it overestimates the infection
probability (1 — (1 — a)!) and thus the actual number
of infections per time step in the LGCA is much lower
than for the simulation with differential equations.

The recovery parameter f has the same influence on
both models, as the expected number of infected indi-
viduals in the LGCA who recover per time step equals
BI which corresponds to the differential equations. Also
the recoveries are not dependent in any way on the
spatial distribution. Higher values of f lead to smaller
epidemic outbreaks in both models.

3 Balancing Spatial Inhomo-
genities in CA Model

In this investigation a modified version of the LGCA
model, in which all individuals are distributed randomly
across the LGCA after each time step, was implemented
and compared to the previous results.

For the implementation, the movement and collision
parts of the LGCA code were simply replaced by a
random permutation of all array entries. This was
achieved by reshaping the three-dimensional array into
a vector, using Matlab's random permutation function
randperm to permute its entries, and then converting
the vector back into ann X n X 6 array.

All three models were simulated with the parameter
values S, = 99900,/, = 100,R, = 0and § = 0.5.
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This time a and C were varied, for the first simula-
tion @ = 0.075 and C = 4 were used, for the second
a = 0.3 and € = 1. The results are shown in figure 5.

It can be observed that the differential equations
model yields the exact same result for both simulations.
This is due to the fact that only the product of C and « is
relevant for this model in form of the infection rate

y=a3=

As this product equals 0.3 in both settings, there cannot
be any difference in the simulation results of this deter-
ministic model.
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Figure 5: S(t), I(t) and R(t) simulated with
differential equations (solid line), LGCA (dashed
line) and LGCA with random
distribution (dotted line) for C=4 and a=0.075
(upper panel) and
for C=1 and a=0.3 (lower panel).

In the first setting, both LGCA versions lead to very
similar results, and also match the differential equation
simulation rather closely, with approximately the same
maximal number of infected individuals. A small delay
in the outbreak of the epidemic is probably caused by
the relatively small number of initially infected individ-
uals [, = 100 in a population of N = 100 000.

The second simulation gives more interesting re-
sults. As already observed in the previous task, the
higher value for a leads to a quite different behavior of
the LGCA. Here the epidemic occurs later and with a
lower maximum of infected individuals than obtained
with the differential equations model. The results for the
modified LGCA however have not changed with the
parameter a. The random placement of all individuals
after each time step riddens the model of the spacial
inhomogeneities that would otherwise form and delay
the outbreak of the epidemic.

4 Conclusions

It can be concluded from the previous tasks and simula-
tions that for some situations, especially those with a
low infection rate and a high number of infected indi-
viduals at time zero, both models behave very much
alike. In some cases however, the locality of the LGCA
leads to spatial groupings of the infected individuals and
thus slows down the speed of the epidemic in compari-
son to the differential equations model. This occurs for
high values of o and low values of I 0. By distributing
all individuals randomly across the LGCA after each
time step the influence of this locality can be prevented,
but still a difference remains between the discrete calcu-
lations and the continuous model.

Model sources

ODE models are implemented with MATLAB ODE
solvers, and the CA propagation is directly programmed
in MATLAB using vector and matrix feature. All
MATLAB m-files and a short file documentation can be
downloaded (zip format) by EUROSIM sociteties’ mem-
bers from SNE website, or are availably from the author.
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