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Abstract. Parameters derived from aortic pressure and
flow waves are considered to be important indicators of
cardiovascular risk. To reduce the measurement effort,
validated methods already exist to transfer non-
invasively assessed peripheral blood pressure curves to
central ones. In this work, an optimal control model is
introduced, which could potentially be used to simulate
the corresponding ejection from the heart. It is based on
the well-established three-element Windkessel model of
the arterial system, coupled with an optimality criterion.
The resulting optimal control problem was solved in part
symbolically, in part numerically and simulation experi-
ments were performed to investigate the capability of
the model to generate pathophysiological flow and pres-
sure patterns with meaningful parameter values. Moreo-
ver, the sensitivity of the model to variations in the pa-
rameters, that were considered relevant for the use as a
blood flow model, was analysed. The results show that it
is indeed possible to simulate realistic flow and pressure
waves for parameters within the pathophysiological
range of humans. Moreover, the sensitivity analysis indi-
cates that parameter identification based on a pressure
measurement might be possible. Overall, the model
shows a big potential for the simulation of blood flow
based on pressure alone.

Introduction

The hemodynamics in the human body is determined by
the characteristics of the heart and the vascular system
as well as by their interplay. The corresponding state
variables, blood pressure and flow, are therefore sup-

posed to hold important information about the status of
the cardiovascular system of a specific person. Parame-
ters derived from one or both of these two quantities are
used for the stratification of cardiovascular risk and
have been shown to have predictive power for the oc-
currence of adverse events [1].

However, measuring aortic pressure and flow re-
quires elaborate equipment and trained operators and
represents, in the case of invasive measurements, an
additional risk for the patient. To overcome this limita-
tion, methods have been developed to estimate the aor-
tic pressure waveform from non-invasive peripheral
readings [2,3]. Part of these methods has been validated
for various cardiac conditions and is now commercially
available for the use in everyday (clinical) life [4-7].
Central pressure parameters derived from these synthe-
sized curves have proven their value in a multitude of
studies [1].

Regarding the flow waves, different attempts have
been made to provide an approximation using solely
information from the corresponding pressure signal [8-
10]. In the 1970ies, an approach based on the assump-
tion of minimal cardiac cycle work was proposed
[11,12]. The main idea is to combine a so called Wind-
kessel (WK) model of the arterial system with an opti-
mality criterion. For a given parameterisation of the WK
model and a suitable choice of constraints, the resulting
optimization problem then simultaneously yields opti-
mal patterns of flow and pressure [13]. By comparing the
latter to a measured pressure curve, a fitting procedure
can be used to identify the parameters in the WK model
and thus, finally, a flow curve is obtained. This approach
has been investigated extensively in the 1970ies and 80is
[14-17] using different optimality criteria and WK mod-
els. A blood flow model of this type is also used nowa-
days in a commercially available device [18].
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The aim of this work is to examine an optimal con-
trol model based on an optimality criterion proposed by
Héamaéldinen et al. [19] using a slightly different WK
model as well as different boundary conditions. Simula-
tion experiments were performed and the ability of the
model to imitate physiological as well as pathological
flow and pressure patterns was investigated. Further-
more, the sensitivity of the model to variations in the
parameters, that are considered relevant for the use as a
blood flow model, was analysed.

1 Methods

The optimization model presented in this work is based
on the well-established 3-element Windkessel (WK)
model that describes the dynamic relation between pres-
sure and flow when the system is in steady state, and the
idea that the heart works in an optimal manner. Combi-
nation of the WK model and the optimality criterion
results in an optimal control problem which has to be
solved appropriately. Therefore, suitable boundary con-
ditions have to be formulated and adequate methods
have to be chosen to subsequently solve the problem
numerically.

1.1 Modelling

Aortic pressure p and flow g are assumed to be related
according to the so called 3-element Windkessel model

p(®) = Zc - q(t) + pwi(t) + P (M
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whereby the dot represents the time derivative. The
peripheral resistance R describes the resistance opposed
to the flow by the vascular system, which is mostly
caused by the small arteries and arterioles. The arterial
compliance C specifies the distensibility of the large
elastic arteries, in particular the aorta, and the character-
istic impedance Z. takes into account the compliance
and inertance of the very proximal aorta [20]. P, is an
asymptotic pressure level that represents the pressure
that is not caused by the ejection of the heart but is
maintained by the vascular system. It is often set to zero
for simplicity [20]. p, 1s an auxiliary quantity called
the Windkessel pressure.

An optimization problem proposed by Hamaildinen
et al. [19] was chosen for this work (t, denotes the ejec-
tion duration): Find (p, q) such that

ts
J= J ap(t)q(t) + g (t)*dt - min 3)
0
under the constraint that a given stroke volume
ts
SV = f q(t)dt )
0

has to be reached.

The first term of the integral (3) represents the hy-
draulic work done by the heart per beat, times a
nonnegative weighting factor a. Thus, one tries to find
those patterns of pressure and flow that minimize the
energy used by the heart to generate a given stroke
volume. The second term in (3) is a structural penalty
term that penalizes peaks in the acceleration of blood,
which are considered to lower the efficiency of the
cardiac contraction [19].

In order to formulate an optimal control problem,
equation (1) is used to eliminate p from equation (3) and
the acceleration g is set to be the control, which is de-
noted by u. Furthermore, an additional equation for the
left ventricular volume V is included in order to enable
the specification of the stroke volume SV as a boundary
condition. In systole, the volume of blood contained in
the left ventricle changes solely due to the ejection of
blood into the arterial system and hence, the derivative
of V is given by -q(t). The optimal control problem
then reads:

Minimize
tS

J(w) = f Q(Zeq + P + Po)q +12dt (5)
0

under
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V, denotes the left ventricular end-diastolic volume,
which can be chosen arbitrarily since the absolute val-
ues of V do not affect p,,;, or q. At the end of systole,
this initial volume has been reduced by SV, i.e. V(t,) =
Vo — SV. During diastole, the aortic valve is closed and
therefore flow from the heart is assumed to be zero
during this phase, which yields the boundary conditions
for q. Those for p,, result from the assumption of the
system being in a steady state, i.e. p,,; has to be a peri-
odic function.



More precisely, q(0) =0 yields p,,(0) =P, —
P,, according to equation (1). From equation (2) it fol-
lows that p,,; describes an exponential decay in diasto-
le, when q = 0. Together with the assumption of perio-
dicity, i.e. pyi(0) = pui(T), for T denoting the dura-
tion of the heartbeat, the diastolic WK pressure is thus
given by

T—t
Pwi(t) = (Py —Py)eRC, t,<t<T (®)
which finally yields the boundary condition stated in (7).

The optimal control problem (5)-(7) can be solved
with Pontryagin’s maximum principle [21] which re-
sults in a system of 6 linear ordinary differential equa-
tions (ODE) for the optimal solution: 3 for the state
variables V, q, p,i and 3 for the costate variables 4,, 4,
and A;.

V() = 1—q(t)
4(6) =5 2(0)

Pinc) = ~ 2P + 740
/1_1(15) =0
120 = @2Z:4(0) + puc(®) + P.) + 1 (0
- %Ag(t) ©)

. 1
A3() = aq(®) + = 25(6)

This system has 6 degrees of freedom. Thus, together
with the boundary conditions specified in (7), the
solution of the optimal control problem is, if it exists,
uniquely described.

1.2 Implementation

A numerical solution of the system given in (9) satisfy-
ing the boundary conditions (7) cannot be found straight
forward with common ODE solvers, since these require
initial values for all variables. An iterative procedure
like the shooting method would be needed that adjusts
the unknown initial values of the costates until (7) is
satisfied. However, this again requires an adequate
initial guess of 4;(0) for i = {1,2,3}, which is difficult
since the costates do not represent physiological quanti-
ties and thus their magnitude is hard to estimate.

Therefore, another approach was used in this work.
The system of ODEs (9) with the initial values
V(0),q(0) and p,,«(0), i.e. the left hand side in (7), was
symbolically solved using Maple 15 (Maplesoft, a divi-
sion of Waterloo Maple Inc., Waterloo, Ontario).
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The solutions obtained for V, g and p,,;, thus depend
on the time t, the ejection duration t; and the length of
the heartbeat T, the parameters V;, Py, P, R, C, Z, and «
as well as three unknown constants c: = (Cy, Cy, C3),
which represent the remaining degrees of freedom.

In a next step, a system of linear equations Ac = b
for the unknowns was built up using the right hand side
of (7), whereby the matrix A as well as the vector b
depend on t,, T, Py, P, R,C,Z. and a. Finally, the ex-
pressions for q(t), pwi(t), A and b were simplified and
automatically translated to Matlab code using the “Co-
deGeneration” package in Maple.

All further computations and simulation experiments
were performed by using Matlab R2011b (The Math-
Works, Inc., Natick, Massachusetts, United States). To
generate pressure and flow for a given parameter set,
first, the system of linear equations is solved to obtain
C;, C; and C3. From these, q(t) and p,,;(t) are evaluat-
ed during systole and finally p(t) is obtained from
equation (1). During diastole, p,,,(t) is computed ac-
cording to (8) and since it holds that p(t) = py,(t) +
P,, during this phase, p(t) can be determined for the
whole cardiac cycle.

1.3 Simulation experiments

In order to examine the capability of the model to repre-
sent different physiological as well as pathological con-
ditions, simulation experiments were performed. In a
first step, the possible shape variations were investigat-
ed for parameterisations within the pathophysiological
range of humans found in literature [17,22].

Then, the sensitivity of the model to changes in the
model parameters was assessed. Since the final goal of
this approach is to provide an estimate of the flow curve
for a given pressure signal, the initial pressure P,, the
duration of the heartbeat T as well as the mean pressure
mBP were supposed to be given. Furthermore, the time
constant RC of the modelled exponential pressure decay
(8) as well as P, and the ejection duration can be esti-
mated from the pressure wave [23,24] and were thus
also assumed to be known. Therefore, only R, C,Z,. and
a were varied and the corresponding SV was computed
from the following equation which can be easily derived
from the Windkessel model (1), (2) and the definition of
the total peripheral resistance: TPR :== mBP - T /SV.
_(mBP—-P,)-T

sV
R+2Z,

(10)
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2 Results

Figure 1 shows 2 pairs of pressure and
flow curves obtained with the parameter-
isation given in table 1. For both, pres-
sure and flow, substantial differences in
the shapes can be seen. The parameters
chosen for case 1 are in a physiological
range for a healthy individual, whereas
those for case 2 imitate a pathological

Flow ml's
Pressure mmHg

T 7] |.ml‘v\ T
Figure 1. Comparison of qualitatively and quantitatively different, simulated
flow and pressure patterns corresponding to the parameterisation of

case 1 (dashed line) and case 2 (solid line) given in table 1.

arterial stiffness. The corresponding pressure and flow Parameter Casel Case2 Unit
waves reflect these characteristics. R 0.204 0410 mmHg*s/ml
For the sensitivity analysis, the parameterisation of C 1.50 0.67  ml/mmHg
case 1 was taken as default and R,C,Z ¢ and a were var- Z, 0.04 0.09  mmHg*s/ml
ied, see figure 2. The diastolic part of the pressure signals a 25000 500 N
is the same for all parameters because the time constant Po 834 834  mmHg
. . Py 91.4 93.5 mmHg
of the decay remained unchanged. Moreover, since mean
. .. mBP 108.8 113.6 mmHg
pressure is fixed, the variations generally have a stronger ¢ 300 276 ms
S
effec‘F on the flow than on the pressure curves. T 714 625 ms
Figure 2A shows the effect of changes in R and C SV 735 378 ml
while keeping their product RC fixed and adapting the TPR 10571 1.879 mmHg*s/ml

stroke volume according to (10). In the pressure signal,
small changes in the upstroke, the height of the maxi-
mum as well as its position can be observed. The flow
curves are mainly affected by the decrease in stroke
volume resulting from the increase in resistance. How-
ever, for very elastic arteries, i.e. C high, and little re-
sistance, also the wave shape is altered.

Simulation runs for different values of the charac-
teristic impedance Z c are depicted in figure 2B. When
Z c increases, the maximum pressure is shifted to the
right and the decline of the flow curve changes from

Table 1. Parameterisation simulating a healthy (case 1)
and a pathological (case 2) case.

3 Discussion

The aim of this work was to investigate the capability of
the introduced optimal control model to generate patho-
physiological flow and pressure patterns with meaning-
ful parameter values. Furthermore, we wanted to exam-
ine its potential to be used to simulate blood flow for a
given pressure signal.

The parameters C, TPR and Z, chosen for case 1 are
within the range reported in literature for healthy indi-
viduals [22] and also the pressure and flow waves re-
semble typical contours as given for example in [1].

convex to concave.

Finally, simulation results for variations in o are pre-
sented in figure 2C. The higher a becomes, the earlier
maximum flow is reached. Also, the decline of the flow
wave is affected in a similar way as before for varying
Z c. The pressure wave exhibits a flatter shape for
higher values of a.
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Figure 2. Sensitivity of the model to variations in R and C for fixed RC (A), in Z. (B) and in « (C).

1]
s

[0 [} %l
0 [T}



S Parragh et al.

Simulating Aortic Blood Flow and Pressure by an Optimal Control Model

In case 2, the lower value of arterial compliance, a
direct index of arterial stiffness, and the higher value of
characteristic impedance, an indirect index of arterial
stiffness, imitate stiffer arteries compared to case 1 [25].
The furthermore elevated resistance is typical for sub-
jects with hypertension [1]. As would be expected based
on these parameters, the pressure indeed rises higher
than for case 2 even though the stroke volume is lower.
These examples indicate that (1) it is possible to gener-
ate realistic flow and pressure patterns with the optimal
control model and (2) the different model parameters
affect the simulated patterns in accordance with their
physiological meaning.

In order to use this model to simulate blood flow for
a given pressure curve, the model parameters have to be
identified by comparing the modelled pressure to a
measurement (e.g. minimizing the squared error be-
tween them). For this purpose, it is desirable to reduce
the number of unknown parameters, since the complexi-
ty of the model identification increases with the number
of parameters. As it is assumed that the pressure pattern
is known anyways, it seems logical to derive as much
information as possible beforehand. Therefore, we as-
sumed the initial pressure level Py, mean pressure mBP
as well as the timing information T and ¢, to be given.
The first three can be extracted directly from the record-
ed signal, the latter can be estimated from it [24]. Fur-
thermore, the diastolic part of the pressure curve can be
used to determine P,, and RC [23]. Thus, altogether, P,
mBP, P,,, RC,T and t; can be assumed to be known and
only the remaining parameters R, C,Z., SV and a have
to found. Because RC is fixed and SV can be calculated
according to (10), this set of parameters is further re-
duced to R (or C), Z. and a. Therefore, we studied the
sensitivity of the model only with regards to these pa-
rameters.

The results of the sensitivity analysis show that
changing these parameters does affect important charac-
teristics of the shape of the simulated pressure wave,
like its upstroke or the position of its maximum. Thus,
although the quantitative changes were overall rather
subtle, parameter identification from a pressure record-
ing might be feasible. However, since the effect of low-
ering Z, resembles that of increasing R, providing good
first estimates for the fitting procedure might be a cru-
cial point.

The weighting factor a strongly affected the position
of maximum flow. For healthy individuals, it seems

convincing from an evolutionary point of view to as-
sume that the heart works in such a manner that the
energy expenditure is minimized [26]. Applied to the
optimality criterion given in (3), this corresponds to
high values of a. In this case, the simulated flow pat-
terns show an early maximum resembling those report-
ed for healthy hearts [1]. Lower values of a indicate that
less emphasis is led on the minimization of stroke work
in (3), which could imply that the heart cannot work
optimally any more. The obtained ejection patterns
reach their maximum later in systole and also the shape
of the decline is changed, which is indeed characteristic
for failing hearts [1].

The optimal control model used in this investigation
is based on an optimality criterion by Himéldinen et al.
[19]. However, in contrast to [19], we included an as-
ymptotic pressure level P, in the WK model. Moreover,
we used different boundary conditions (BC) for the WK
pressure p,,,. Himéildinen et al. tried 6 different options
for fixed t,, namely specifying both or only one value
of pyr(0) and p,,.(ts), their difference, their sum as
well as using purely periodic BC. Their model reacted
very sensitively to changes in the BC, which the authors
stated as major drawback. It has to be kept in mind
though, that the BC have to meet the assumptions of the
WK model and thus, not all choices of BC are valid. For
example, for fixing both values p,,, (0) and p,,, (ts), the
periodicity, i.e. the assumption of steady state, is not
fulfilled. The same holds for specifying the difference
or the sum of p,,,(0) and p,,,(ts). Therefore, it seems
logical that the choice of BC strongly affects the model
itself. In our approach, the value of p, (ts) depends on
P, as well as on R and C and thus, the periodicity is
fulfilled for any value of R and C.

Hamaldinen et al. also reported a hypersensitivity of
their models to variations in single parameters. Howev-
er, satisfying an optimality criterion is a very strong
requirement and both, the parameter values and the BC
form the optimal solution. In other words, BC and mod-
el parameters are not independent from each other. It
therefore seems logical that changing one parameter
independently possibly destroys this balance.

Our results furthermore show that by using all in-
formation available from a pressure signal and by con-
sidering the dependency between R,Z. and SV (10)
induced by the WK model, a wide range of parameter
values produces realistic results.
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4 Conclusion

The results show that it is indeed possible to generate
flow curves with this approach that resemble physiolog-
ical ones. Furthermore, the identification of the model
parameters from a given pressure curve seems feasible.
However, further research is needed to verify these
considerations.
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