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Abstract.  An essential part in the simulation of blood 
flow in arteries is the incorporation of the arterial elastic-
ity by modeling the vessel wall and its interaction with 
the fluid inside the vessel. We suggest a simple approach 
for modeling elastic walls in lattice Boltzmann simula-
tions of arterial blood flow that produces physically cor-
rect results. We have developed a simulation software 
that implements this approach combined with the lattice 
Boltzmann method and conducted numerical experi-
ments on a generic vessel model. Preliminary results 
presented in this work are promising and encourage 
using this method for further simulations with real phys-
iological parameters in medical applications. 

Introduction

Cardiovascular diseases are the most common cause of 
death in industrialized countries [1]. Since experi-
mental methods in the cardiovascular system are 
diffcult and limited, mathematical models and numeri-
cal methods to simulate the hemodynamic processes 
have gained importance in the past years. Research in 
that domain includes studies incorporating the whole 
arterial tree [2] as well as studies of only parts of it, 
e.g. a segment of an artery [3].  

Since arteries are elastic and change in diameter 
depending on the blood pressure inside (which oscil-
lates due to the periodic pumping of the heart), it is of 
particular importance to incorporate this elasticity in 
models of physiological flows in blood vessels. 

Common numerical methods for blood flow simula-
tions with elastic walls are complex. We present a 
simple method for modeling the blood flow in an ar-
tery and the elastic walls of the vessel. The flow field 
inside the vessel is computed by using the lattice 
Boltzmann method, which is a numerical approach for 
solving problems of computational fluid dynamics. In 
the lattice Boltzmann simulation, we include the de-
veloped model for the elastic walls. The model fulfills 
the essential properties of an elastic wall and respects 
the basic conservation laws. 

This paper shows a short overview of the lattice 
Boltzmann method and its use in hemodynamics in 
Section 1. In Section 2, we present the method to 
model the elastic vessel wall. Numerical experiments 
presented in Section 3 show that the developed ap-
proach provides correct physical behavior. Section 4 
gives an outlook on the possible application of the 
method in the simulation of blood flow in stented  
arteries. 

1 Lattice Boltzmann Method 
The lattice Boltzmann (LB) method is a mesoscopic 
approach based on the Boltzmann equation and can be 
used to solve various problems of computational fluid 
dynamics. It describes the dynamics of fictitious parti-
cles on nodes of a regular lattice.  

The dynamics of the flow field are modeled by the 
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evolution of density distribution functions (also called 
`populations') , , which 

describe the probability of finding at time t a particle 

located at site and traveling along the lattice in direc-
tion  with the speed . For a more detailed introduc-
tion to the LB method the reader is referred to [4] and 
[5]. 

1.1 LBGK model for blood flow simulation 
The lattice Boltzmann method has been successfully 
applied to hemodynamics by many authors [6, 7, 3, 8], 
which has proven its value as an alternative to numeri-
cal methods based on the discretization of the Navier-
Stokes equations of continuum mechanics. 

For our simulations of the blood flow, we consider 
a so-called D2Q9 model (2 spatial dimensions, 9 direc-
tions ) and calculations are based on the lattice 
Boltzmann equation with single-time relaxation 
(LBGK approximation) 

 

 
(1)

 
with  being the temporal resolution and  being 
the relaxation frequency. The right-hand side of (1) 
represents molecular collisions through a relaxation 

towards local equilibrium  which is given by a 
second-order expansion of the Maxwell-Boltzmann 
equation. The fluid density  and the momentum 
are defined based on the distribution functions : 

 

 (2)

 

 (3)

 
Since we focus on large arteries, the flow in the vessel 
can be assumed to be Newtonian. Investigation of non-
Newtonian flows in hemodynamics can be found else-
where [9]. 

1.2 Elastic walls 
In simulations of blood flow, it is important to consider 
the compliance of the vessel. Therefore, a model for 
the vessel wall has to be developed that describes its 
spatial displacement as it interacts with the flow dy-
namics. Fang et al. [6], for example, uses a parametri-
zation of the vessel wall with special treatment for 
curved boundaries.  

The method has been successfully applied to un-
steady flow in elastic tubes in two dimensions (see 
[10]). However, the method is very complex in three 
dimensions where the vessel wall is described by 
means of surfaces. 

For our approach, we have developed a simple 
method to model the elastic vessel which does not 
need a parametrization of the wall. It is based on the 
method of Leitner [3] and acts strictly locally like the 
LB method itself. By this, the complexity of the algo-
rithm is not increased and the method can be used for 
simulations in two and three dimensions. 

In the method of Leitner [3], lattice nodes can have 
two different states: fl , representing the blood inside 
the vessel, and , describing the vessel wall. The 
compliance of the wall is modeled by changing the 
type of a node – from solid to fluid in the case of ex-
pansion and vice versa in the case of contraction of the 
vessel. This change of node type, which models the 
displacement of the wall, is dependent on the local 
pressure of the surrounding fluid nodes. To avoid a 
rupture of the vessel wall, Leitner [3] uses a cellular 
automaton (CA) with rules to update the wall in every 
simulation time step.  

In the following section, we present an improved 
method to model the elastic wall that does not require 
the use of cellular automata. 

2 Improved Method to Model 
Elastic Vessel Wall 

Our approach for the elastic wall is based on the work 
of Leitner [3] which uses node type changes in a lattice 
as mentioned above to model the displacement of the 
wall. In order to ensure mass conservation in the mod-
el, we developed methods that redistribute the popula-
tions when a node changes its type. Node type changes 
are based on the local fluid properties and are per-
formed by means of pressure thresholds, which will be 
explained below. 
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2.1 Wall modeling 
We consider a computational domain of dimesions 

, where and are the number of lattice 

nodes (equally spaced) in direction  and , respec-
tively. Each node  can have two different states: 
fl or . Solid nodes represent the tissue of the 
vessel, fluid nodes represent the blood inside the ves-
sel. The initial configuration of solid and fluid nodes is 
gained by reading the data from a PGM binary image. 
Contrary to the modeling described by Leitner [3], the 
wall of the vessel is not situated on the solid nodes but 
is imagined to be located between the last fluid and 
first solid node in a given direction. All nodes that are 
not fluid are by default solid. Thus, the problem of 
rupture of the vessel wall does not occur and the ap-
proach does not require the use of CA. 

In the following, the terms destruction and crea-
tion of nodes are used to signify the state change of a 
node. One must be aware that in this type of modeling, 
nodes are neither destroyed nor created – the geomet-
rical domain being fixed of dimensions – but 
that nodes change only their type. The state change 
`fluid to solid' will be termed as destruction and `solid 
to fluid' as creation. 

Created fluid nodes need to be initialized with val-
ues of the density  and the velocity (corresponding 
to the momentum ). This is done by averaging the 
populations from the fluid nodes surrounding the new 
fluid node (one average for each direction ) and as-
signing these values to the new node. The values of  
and can be computed based on the assigned values of 
the distribution functions by using (2) and (3). 
Compared to the method of Leitner [3], who initializes 
new fluid nodes with an equilibrium distribution func-
tion, this approach includes also the non-equilibrium 
part of the populations, which is not negligible for 
nodes in proximity of the wall. 

A mass conservation problem arises when nodes 
are created or destroyed in a way that the total number 
of fluid nodes changes. Mass is a priori not conserved 
as mass is added when initializing a new fluid node or 
subtracted when a fluid node is destroyed. Leitner [3] 
does not refer to this problem, and it is not clearly 
evident how it is circumvented. In order to ensure 
mass conservation in our approach, we have developed 
methods that rescale the populations in a part of the 
domain when a node type change occurs. 

2.2 Population rescaling methods 
Mass conservation is imposed each time fluid nodes 
change their type (from solid to fluid in the case of 
expansion and vice versa in the case of contraction of 
the vessel). Below, we present two methods to rescale 
the populations. 

 

Local Rescaling. The local rescaling takes into ac-
count only the nearest neighbors of the node changing 
its state. At expansion, mass (density) is redistributed 
in the following way: Let  be a node changing its 
state from solid to fluid and  the sum of the densi-
ties at fluid nodes neighboring node . After ini-
tializing the new 
fluid node , its populations and those from the 
neighboring fluid nodes are rescaled by the factor 

. Density and velocity are computed based 

on these new populations. In this way, mass is con-
served. The scaling factor is equal to the fraction 

and is smaller than 1. This approach mod-

els the transfer of mass to a new fluid node from the 
neighboring nodes. 

In a similar way, mass is redistributed locally when 
a fluid node is destroyed, i.e., when a node changes its 
state from fluid to solid (contraction). The scaling fac-

tor is again and is in this case greater than 

1. All fluid nodes surrounding the disappearing fluid 
node are rescaled by this scaling factor. By this proce-
dure, mass is transfered from the destroyed node to the 
neighboring fluid nodes. 

The local rescaling inuences the flow field in the 
vessel only locally. Depending on the fluid viscosity 
and the vessel geometry, it takes a certain time until 
this perturbation of the flow field is damped in the 
simulation. 

 

Rescaling ‘by columns’. This method of rescaling 
takes into account the whole column of nodes - the 
vessel can be considered as a sequence of `rings' ad-
joint to each other – in which a node type change oc-
curs. When a node next to the wall changes its state 
(from solid to fluid or vice 
versa), the populations of every node in the same col-
umn are rescaled to ensure mass conservation (a 
rescaling factor similar to the one above is used.)  
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2.3 Pressure thresholds 
Node type changes occur depending on the local pres-
sure surrounding a given node. In our model, pressure 
thresholds are assigned to each node, increasing with 
the radius of the vessel segment. Nodes that are further 
away from the center of the vessel have a higher 
threshold that has to be exceeded for an outwards dis-
placement of the wall, i.e., for changing the type of the 
neighboring solid node to fluid. 

A linear relationship between the pressure  and 
the radius  is assumed, similar to the one of the pul-
monary blood vessels (see [11]): 

 

 (4)

 
Here,  is a compliance constant. is the radius 
when the transmural pressure is zero and the pres-
sure at a node located at distance from the center of 
the vessel. The linear pressure-radius relationship is a 
good approximation for large arteries [10]. 

Pressure thresholds are computed based on this lin-
ear relationship and assigned to each node. Since the 
vessel is embedded in a lattice of fixed dimensions, 
there are nodes that can never become fluid consider-
ing that there is a maximum expansion of the vessel. 
To all those nodes, a pressure threshold exceeding the 
allowed pressure range is assigned. This prevents that, 
in the simulation, the vessel expands more than is 
physiologically possible. 

Our model uses the precomputed thresholds to 
simulate wall displacement by appropriate node type 
changes. The following shall exemplarily explain our 
procedure of node type changes based on the pressure 
thresholds. Let  be a solid node neighboring a 
fluid node  at the upper wall of the vessel. 
The wall is imagined to be located between those two 
nodes. Let  be the pressure threshold of node 

. If the pressure at node  exceeds 
, i.e. , the node  

becomes fluid, i.e., the vessel expands. Conversely, let 
us suppose that the nodes  and  are 
both fluid. If , node  
changes its state from fluid to solid, i.e., the vessel 
contracts. 

3 Simulation and Preliminary 
Results 

We implemented a simulation software for the lattice 
Boltzmann algorithm combined with our elastic wall 
model using the programming language C. The pro-
gram includes the rescaling methods and the pressure 
threshold algorithm described above. Using our soft-
ware program, we conducted numerical experiments to 
show the feasibility of our approach. 

3.1 Numerical experiments 

The main objective of the numerical experiments pre-
sented here is to prove that the model provides correct 
physical behavior. Simulation with real physiological 
conditions will be performed in a later work. 

For our experiments, we consider a straight channel 
with flat walls modeling the vessel. We impose period-
ic boundary conditions in direction of the channel to 
model an infinite long tube. This condition will be 
replaced by inlet/outlet boundary conditions in a later 
work. At the wall, we impose bounce-back boundary 
conditions which represent a no-slip condition (i.e., the 
fluid velocity at the wall is zero.) Furthermore, the 
pressure is increased `manually' at a certain time, just 
enough to provoke an increase of the channel radius of 
one unit (expansion), and at a later time decreased 
again, just enough to induce a decrease of the radius of 
one unit (contraction). Thus, we investigate the behav-
ior of the flow field for only one cycle of expansion and 
subsequent contraction (of the whole channel). The 
uniform pressure increase/decrease is used only to test 
the method. In a later stage, it will be replaced by an 
oscillating pressure gradient at the inlet simulating the 
periodic pumping of the heart. 

For the simulation, the following physical parame-

ters are used: viscosity , maximum velocity 

, and initial density . All parame-
ters and variables are normalized and thus dimension-
less. The computational domain is fixed with 200  
100 nodes. 
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As mentioned above, a straight channel is consid-

ered having the macroscopic variables  (and thus ) 

and at nodes with the same y-coordinate equal, re-

spectively. Furthermore, all nodes with the same y-
coordinate have the same pressure threshold. By this, 
the flat wall of the straight channel is displaced at all 
nodes with the same y-coordinate (i.e., one layer of 
nodes) within a single time step. 

To induce an expansion in our model, the pressure 
is increased manually by adding an amount  to the 
pressure of all fluid nodes at a certain time and 
then decreased again at time . We chose 

so that the wall is moved by only one layer at the 
lower and upper boundary. Due to the forced increase 
(decrease) of pressure at ( ), mass increases 
(decreases) by a value proportional to  at 
( ). 

In order to check whether the implemented method 
provides correct physical behavior, the following steps 
are executed: 
1. Wait for fully developed flow (until time ). 
2. At time  ( ), when flow is fully developed, 

add mass by adding a small value to the popula-
tions at each node. This corresponds to an in-
crease of pressure by  in each node, with 

 and  being the speed of sound. 
Then wait for the flow to be fully developed (until 

 
3. At time , expansion occurs because the pressure 

thresholds at the wall are exceeded due to the in-
crease of pressure at time . The channel is ex-
panded by one layer at the upper and lower wall, re-
spectively. The populations  are rescaled so as to 
ensure mass conservation. Then wait for fully de-
veloped flow (until time ). 

4. At time  ( ), reduce mass by subtracting  
from the populations  at each node. This corre-
sponds a decrease of pressure. Wait again until flow 
is fully developed (until time ). 

5. At time , contraction occurs because the pressure 
has fallen below the pressure threshold due to the 
decrease of pressure at time . The radius of the 
channel is reduced by one unit, so one layer of 
nodes is destroyed at the lower and upper wall, re-
spectively. The populations   are rescaled so as to 
ensure mass conservation. 
 

In this procedure, we ensure that mass is conserved 
any time except when mass is added (step 2) or sub-
tracted (step 4) by proper rescaling. The results of this 
approach are presented hereafter. 

3.2 Simulation results 
Comparison between analytical solution and 
simulation result. The analytical solution of a 2-
dimensional fully developed steady flow in a channel 
of width , driven by a constant pressure gradient  
and with constant viscosity  (Newtonian flow as-
sumed) is given by the following formula (Poiseuille 
flow): 

 

 (5)

Herein, and  denote the y-coordinates of 

the upper and lower boundary, respectively. Thus, 
. The pressure gradient  is 

given by 
 

 (6)

 
We compared our simulation output to the analytical 
solution using the same parameters. Figure 1 displays 
the velocity profile of the exact solution and the result 
of the numerical simulation of a symmetric straight 
channel. It can be observed that the computed velocity 
profile (blue crosses) and the analytical solution by 
Poiseuille (green dashed line) coincide. 

 

 
Figure 1: Velocity: Comparison between analytical  

solution and numerical result. 
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Approach for testing the modeling of elastici-
ty using local rescaling. We conducted a simula-
tion in the straight channel using the local rescaling 
method to show that it follows expected physical be-
havior. The procedure described below is only an arti-
ficial setup to enforce expansion and contraction 
through pressure increase/decrease for conducting this 
simulation experiment.

For this simulation, the problem of expansion and 
contraction has been separated in the parts explained in 
Section 3.1 and local rescaling has been used. Figure 2 
shows the total mass (equal to the sum of the density  
at each fluid node of the lattice) over time. It can be 
seen that mass is conserved at expansion (occurring at 
time ) and contraction (occurring at time 

). After the wall has reached its initial posi-
tion again, i.e., after having performed the steps 1 to 5 
cited above, the value of the total mass is the same as 
the initial value. However, to reach the same value of 
the total mass as at the beginning, in step 4 has to 

be multiplied by ,  being the width of the initial 

channel. This is due to the fact that the diameter 
(width) of the channel increases by 2 after expansion, 
i.e., there are two layers of fluid nodes more than be-
fore expansion. Thus, , being subtracted at every 
node, has to be reduced by this proportionality factor 
to take into account the increase of nodes. 

 

 
Figure 2: Total mass as a function of time. 

 
Figure 3 depicts the density at a fluid node next to the 
wall resulting from this simulated experimental setup. 
It can be observed that the density oscillates after ex-
pansion or contraction due to the propagation of the 
local perturbation throughout the channel (oscillation 
period) created by the local rescaling.  

The duration of the oscillations is inuenced by the 
fluid parameters (viscosity). The value of  returns to 
the initial value after one cycle (expansion and subse-
quent contraction). Due to the local rescaling of the 
populations at the changed nodes and their neighbors, 
the value of  decreases at expansion and increases at 
contraction. 

The resulting velocity component  at a fluid 
node next to the wall is displayed in Figure 4. Small 
oscillations occur at expansion and contraction due to 
the local perturbation of the flow field. After one cycle, 
the value of returns to the initial value (when flow is 
fully developed).  

 

 
Figure 3: Density at fluid node next to the upper wall as a 

function of time (local rescaling used).  
 

 
Figure 4: Velocity component at fluid node next to the 

upper wall as a function of time (local rescaling 
used). 
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The simulation results presented above show ex-

pected physical behavior. Mass is conserved and initial 
values of the density and the velocity are recovered 
after one cycle of expansion and subsequent contrac-
tion. The oscillatory transient lasts a few hundred time 
steps, which is an expected duration for the chosen 
viscosity. As described, the method works strictly 
locally as does the lattice Boltzmann method itself. 
This allows straight-forward implementation of the 
method in lattice Boltzmann simulations and makes it 
suitable for parallel computation. 

Approach for testing the modeling of elastici-
ty using rescaling ‘by Columns’. For this simula-
tion, the same steps 1–5 cited in Section 3.1 have been 
performed and rescaling `by columns' has been used. 
The time history of the total mass shows the same 
behavior as the one for the local rescaling method. 
Contrary to the local rescaling method, where contrac-
tion (as well as expansion) occurs at both the upper 
and lower wall at the same time step in the simulation, 
the contraction of the channel when using rescaling `by 
columns' is split into two steps. First, contraction at the 
lower boundary occurs followed by a contraction at the 
upper boundary a few hundred time steps later. This is 
related to the order in which the lattice nodes are pro-
cessed in the implementation (here, from lower bound-
ary to upper boundary). Since rescaling `by columns' 
does not affect only the nearest neighbors of a node 
becoming fluid (as in the local rescaling method), but 
the populations of all nodes in the same column, a 
node type change at the lower wall affects the flow 
field at the upper wall in the same time step. As a con-
sequence, the condition for expansion or contraction at 
the upper wall is not necessarily fulfilled anymore as 
soon as a node type change (and thus rescaling of the 
whole column) has occurred at the lower wall. 

Figure 5 displays the density at a fluid node next to 
the wall. It can be observed that the density oscillates 
much less after expansion (contraction) compared to 
the oscillations occurring with the local rescaling 
method as local perturbations are limited. Further-
more, oscillations are completely absent at contraction. 
The value of  returns to the initial one after one cycle 
(expansion and subsequent contraction) as expected. 

 

 
Figure 5: Density at fluid node next to the upper wall as a 

function of time (rescaling `by columns' used). 

The time history of the velocity component at a 
fluid node next to the wall, depicted in Figure 6, exhib-
its a similar shape as the time history of when using 
local rescaling, but without oscillations at expansion 
and contraction. After one cycle, the initial value of 
is recovered. 

 

 
Figure 6: Velocity component at fluid node next to the 

upper wall as a function of time (rescaling `by 
columns' used). 

 
Although the rescaling `by columns' provides expected 
physical behavior (mass conservation, recovery of the 
initial values after one cycle) and minimizes local 
perturbation, it exhibits the drawback that node type 
changes at one wall boundary affect the flow field 
within the whole channel without propagation latency. 
Since this specific effect does not correspond to real 
fluid dynamics, the method can only be used in special 
cases where this side effect is negligible. Therefore, the 
rescaling `by columns' method minimizes perturbations 
in the simulation but lacks the generality of the local 
rescaling method. 
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4 Outlook 
The aim of the future work is the simulation of blood 
flow in stented arteries. A stent is a wire metal mesh 
inserted into a blood vessel to prevent its occlusion. 
Due to the geometry and the different elasticity of the 
stent, the behavior of the blood flow changes and thus, 
turbulences can occur. It is assumed that those turbu-
lences can cause a renewed narrowing of the vessel, so-
called in-stent restenosis, which is a pathobiologic pro-
cess prevalently occurring after stent implantation [12]. 

The modeling of elastic walls presented in this 
work has the advantage that it can also be applied to 
stented arteries. For the modeling, we consider three 
different types of nodes: fluid, representing the blood 
inside the vessel, tissue, describing the tissue of the 
vessel, and stent, representing the stent. Since the 
stented part is stiffer than the rest of the vessel, nodes 
of type stent will have higher pressure thresholds. 
This enhanced model will be implemented in our simu-
lation software and further elaboration of our approach 
will be reported in a later work. 

5 Conclusion 
We presented a simple approach for modeling elastic 
walls in lattice Boltzmann simulations of blood flow in 
arterial segments. The described method provides 
correct physical behavior of vessel walls interacting 
with the simulated blood flow. The preliminary results 
are promising and encourage extending our approach 
to allow simulations of stents placed in arteries to in-
vestigate their inuence on the flow field. 
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