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Abstract. Large-scale simulations of blood flow allow for
the optimal evaluation of endothelial shear stress for
real-life case studies in cardiovascular pathologies. The
procedure for anatomic data acquisition, geometry and
mesh generation are particularly favorable if used in
conjunction with the Lattice Boltzmann method and the
underlying cartesian mesh. The methodology allows to
accommodate red blood cells in order to take into ac-
count the corpuscular nature of blood in multi-scale
scenarios and its complex rheological response, in par-
ticular, in proximity of the endothelium. Taken together,
the Lattice Boltzmann framework has become a power-
ful computational tool for studying sections of the hu-
man circulatory system.

Introduction

Mathematical models and numerical simulations of the
cardiovascular system are one of the major challenges in
applied sciences nowdays. The rapid development of
computing power and the progress in numerical tech-
niques for parallel computers have resulted in signifi-
cant breakthroughs in vascular research and blood flow
simulations constitute a rapidly growing field for the
bioengineering and clinical communities. The study of
blood in the macrovasculature, as much as in capillaries,
has deep implications in understanding and prevention
of the most common cardiovascular pathologies, with
atherosclerosis being perhaps the best known example.

Atherosclerosis is responsible for ~ 35% of annual
deaths in civilized countries and its development de-
pends on the presence of systemic risk factors. The
disease results from the accumulation of lipid molecules
within the vessel walls, as well as from enhanced expo-
sure to intramural penetration of nano-sized biological
bodies [1]. The build up of the resultant soft tissue and
the eventual changes in its consistency leads to serious
atherosclerotic  pathologies, including catastrophic
events such as plaque rupture. Atherosclerotic plaques
appear in regions of disturbed blood flow where the
local wall shear stress (WSS) is low (< 1.0 Pa) or of
alternating direction [2]. Hence, plaques tend to form
near arterial bifurcations where the flow is always al-
tered compared to unbranched regions [3].

Atherosclerosis primarily affects the coronary arter-
ies and the evidence that low average WSS has a key
role in the disease localization and progression is widely
accepted [4, 5, 6]. Predictions of where and how the
illness is likely to develop can be obtained by fluid
dynamics simulations as a routine methodology to study
blood flow patterns in human arteries. As a matter of
fact, the shape and the structure of endothelium plays a
number of important roles in the vascular system and its
dysfunction may lead to several pathological states,
including early development of atherosclerosis [7]. The
microscopic shape of the endothelium is defined by the
presence of endothelial cells (EC's henceforth), making
the arterial wall undulate. This effect becomes more
pronounced in small-sized vessels, where the corruga-
tion degree increases. The study of blood flow over a
regularly undulating wall made of equally aligned and
distributed EC's has been recently carried out in [8]
where the variation of wall shear stress over the EC's
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has been computed. Furthermore, the endothelium is
coated by long-chained macromolecules and proteins
which form a thin porous layer, called the glycocalyx
[9]. The glycocalyx has a brushlike structure and a
thickness which varies with the vessel diameter, but its
average is 100 nm for arterioles. It has several roles: it
serves as a transport barrier, to prevent ballistic red
blood cell (RBC) interactions with the endothelium, and
as a sensor and a transducer of mechanical forces, such
as fluid shear stress, to the surface of EC's. Actually, it
has been recognized that the glycocalyx responds to the
flow environment and, in particular, to the fluid stress,
but the mechanism by which these proteins sense the
shearing forces and transduce mechanical into biochem-
ical signals is still not fully understood [7].

The glycocalyx itself is remodeled by the shearing
flow and by the compression exerted by the deformed
erythrocytes in capillaries [10]. Flow induced mechano-
transduction in EC's has been studied over the years
with emphasis on correlation between disturbed flow
and atherosclerosis. Recently, some mathematical mod-
elling work has been carried out, using a porous medi-
um to model the endothelial surface layer (ESL hence-
forth) [11, 12]. However, none of these works include
the effect of the roughness, or wavy nature, of the wall,
which should be incorporated for a more realistic de-
scription at the microscopic level. In the following sec-
tions we will present a coarse-grained model that at-
tempts to include some of the basic physical microscale
effects of the ESL attached to the EC's and hence, ex-
amine to what extent the wall shear stress may vary due
to this layer in addition to the previously examined EC
shape and particulate transport.

Simulations of blood flows based on the Lattice
Boltzmann (LB) method provide a particularly efficient
and exible framework in handling complex arterial
geometries. In the past, the LB method has been applied
to a broad range of fluid-dynamic problems, including
turbulence and multiphase flows [13], as well as in
blood flow simulations in steady and pulsatile regimes
and with non-Newtonian flows through stenoses [14]. A
direct benefit of the joint use of simulation and imaging
techniques is to understand the connection between
fluid-mechanical flow patterns and plaque formation
and evolution, with important implications for predict-
ing the course of atherosclerosis and possibly prevent-
ing or mitigating its effects, in particular by non-
invasively and inexpensively screening large numbers
of patients for incipient arterial disease, and to intervene

at clinical level prior to the occurrence of a catastrophic
event. One option is to obtain the arterial wall shape,
plaque morphology and lumen anatomy from the nonin-
vasive Multi-Detector Computed Tomography (MDCT)
imaging technique, as in the newest systems with 320-
detector rows, a technology that enables 3D acquisition
of the entire arterial tree in a single heart beat and high
accuracy of nominal resolution of 0.1 mm [15].

The LB method is particularly suitable for handling
such complex arterial geometries, since most of its sim-
plicity stems from an underlying cartesian mesh over
which fluid motion is represented. LB is based on mov-
ing information along straight-line trajectories, associat-
ed with the constant speed of fictitious molecules which
characterize the state of the fluid at any instant and
spatial location. This picture stands in sharp contrast
with the fluid-dynamic representation, in which, by
definition, information moves along the material lines
defined by fluid velocity itself, usually a very complex
space-time dependent vector field. This main asset has
motivated the increasing use over the last decade of LB
techniques for large-scale simulations of complex he-
modynamic flows [16, 17, 18, 19].

The main aim of this paper is to show that the inclu-
sion of crucial components such as RBC's, the corrugat-
ed wall and the glycocalyx, can be done within a single
unified computational framework. This would allow us
to reproduce blood rheology in complex flows and ge-
ometrical conditions, including the non-trivial interplay
between erythrocytes and wall structure. The possibility
of embedding suspended bodies in the surrounding
plasma and the glycocalyx representation over an undu-
lated endothelial wall addresses major steps forward to
model blood from a bottom-up perspective, in order to
avoid unnecessary an sometimes wrong assumptions in
hemodynamics.

1 The Lattice Boltzmann
Method and Hemodynamics

In the last decade, the LB method has captured increas-
ing attention from the fluid dynamics community as a
competitive computational alternative to the discretiza-
tion of the Navier-Stokes equations of continuum me-
chanics. LB is a hydrokinetic approach and a minimal
form of the Boltzmann kinetic equation, based on the
collective dynamics of fictitious particles on the nodes
of a regular lattice.
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The dynamics of fluid particles is designed in such a
way as to obey the basic conservation laws ensuring
hydrodynamic behavior in the continuum limit, in which
the molecular mean free path is much shorter than typi-
cal macroscopic scales [13]. This condition is clearly
met in most blood flow regimes, together with the New-
tonian rheological behavior of blood in large arterial
systems. Non-Newtonian rheological models appropri-
ate for simulating blood flow in medium or small-sized
arteries, such as the Casson, Carreau or Carreau-Yasuda
models, can be also incorporated within the LB ap-
proach [20, 21].

The LB method can be regarded as a mesoscopic
(between microscopic and macroscopic) approach for
modeling macroscopic hydrodynamics. Rather than
following the position and velocity of each particle in
the system, as is done in microscopic models (i.e. mo-
lecular dynamics), the fluid flow is described by track-
ing the evolution of the density distribution function (or
population). In other words, the LB method is based on
the collective dynamics of fictitious particles on the
nodes of a regular lattice where the basic quantity is
fp(X,t), representing the probability of finding a ‘fluid
particle p’ at the mesh location x and at time ¢ and trav-
eling with discrete speed ¢,. ‘Fluid particles’ represent
the collective motion of a group of physical particles.

Figure 1: The D3Q19 cubic lattice.

The rate of change of the particle distribution function is
given by the following discrete Boltzmann equation:

1
Ocfp+¢pVfy = _;(fp - fpeq) (1)

in which the left-hand side represents the molecular free
streaming, whereas the right-hand side represents mo-
lecular collisions via a single-time relaxation towards
local equilibrium £,”? on a typical timescale 7 [13]. The
latter is called the relaxation time and, in macroscopic
terms, it is related to the fluid viscosity.

To discretize the previous equation, we employ the
common three-dimensional 19-speed cubic lattice
(D3Q19) with mesh spacing Ax, where the discrete
velocities ¢, connect mesh points to first and second
neighbors (Fig. 1) [22]. The fluid populations are ad-
vanced in a timestep At = 1 through the following
evolution equation:

fo(x+ €At t + At) = f,(x, ) —
—w(fy = f, )X t) + Fy(x, 1)
The right hand side of Eq. (2) represents the effect of
fluid-fluid molecular collisions, through a relaxation
towards a local equilibrium, typically a second-order
expansion in the fluid velocity of a local Maxwellian

2

with speed u,

u-c, uu(c,c,—cl)

2 4
cé 2¢4

fo = wpp |1+ 3)
where ¢; = 1/4/3 is the speed of sound, wy, is a set of
weights normalized to unity, and I is the unit tensor in
Cartesian space. The relaxation frequency w =% con-
trols the kinematic viscosity of the fluid. The kinetic
moments of the discrete populations provide the local
mass density p(x,t) =%, f,(X,t) and momentum
pu(x,t) = ¥, c,fp(X,t). The last term F, in eqn. (2)
represents a momentum source, given by the presence
of suspended bodies, if RBC's are included in the mod-
el, as discussed in the following sections. Through the
Chapman-Enskog procedure, in the incompressible
limit, the Navier-Stokes eqns:

V-u=0

au+( Vu = 1VP+ VZu+F
gy R E VA )

are recovered from eqn. (2) [13], where P is the pres-
sure, v = c2At (% - %) the kinematic viscosity and F is

any body force, corresponding to F, in eqn. (2).
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The LB is a low-Mach, weakly-compressible fluid
solver and presents several major advantages for the
practical implementation in complex geometries. In
particular, in hemodynamic simulations, the curved
blood vessels are shaped on the Cartesian mesh scheme
via a staircase representation, in contrast to body-fitted
grids that can be employed in direct Navier-Stokes
simulations. This apparently crude representation of the
vessel walls is suffcient at macroscopic level and can be
systematically improved by increasing the mesh resolu-
tion. In addition, at the high mesh resolution required to
sample low-noise WSS data, the LB method requires
rather small time steps (of the order of 10° s for a reso-
lution of 20 pm).

The wall shear stress, which is a crucial quantity in
hemodynamic applications, can be computed via the
deviatoric stress tensor o(X,t) = vp(d4u + du’),
evaluated via its kinetic representation:

3
o(x,t) = —%Z e, (fp — ) (5)
P

The tensor second invariant is the Wall Shear Stress or
WSS,

Sy, t) = % (o:0) (X, ) (6)

where X,, represents the position of sampling points in
close proximity to the mesh wall nodes. §(x,,,t) pro-
vides a direct measure of the strength of the near-wall
shear stress [23]. It is worth mentioning that the WSS
evaluation via Eq. (5) is completely local and does not
require any finite-differencing procedure. This is partic-
ularly advantageous near boundaries where the compu-
tation of gradients is very sensitive to morphological
details. In order to sample high signal/noise WSS data,
the LB mesh needs high spatial resolution, with mesh
spacing being as small as Ax = 50 pm for standard
fluid dynamic simulations, or being as small as Ax = 10
pm in order to account for the presence of RBC's. Simu-
lations in extended arterial systems are based on the
acquisition of MDCT data which are segmented into a
stack of slices, followed by a mesh generation from the
segmented slices. For a typical coronary artery system,
the procedure to build the LB mesh from the MDCT
raw data starts from a single vessel, formatted as
stacked bidimensional contours (slices), with a nominal
resolution of 100 pm.

In spite of recent technological progress, this resolu-
tion is still insuffcient and the inherently noisy geomet-
rical data pose a problem in the evaluation of WSS, a
quantity that proves extremely sensitive to the details of
the wall morphology. Raw MDCT data present a mild
level of geometric irregularities that can affect the quali-
ty of the LB simulations. For the simulation, we resort
to regularize the initial geometry by smoothing the
sequence of surface points via a linear filter along the
longitudinal direction. Similarly, one could filter out
surface points along the azimuthal contour. We have
shown that such smoothing is necessary in order to
avoid strong artifacts in the simulation results [24].
Even if the precise shape of the vessel is unknown, as it
falls within the instrumental indeterminacy, the numeri-
cal results converge to a common fluid dynamic pattern
as the smoothing procedure reaches a given level. The
regularized geometries are still of great interest because
they obey the clinical perception of a smooth arterial
system and, moreover, the smoothing procedure falls
within the intrinsic flexibility of the arterial system.

When studying coronary arteries as a prototypical
system for plaque formation and development, one issue
regards the presence of deformable vessels. Whereas
larger arteries undergo high deformations, a simple
calculation shows that the distensibility index of a coro-
nary artery of sectional area A is b~ = 1.5 mmHg.
Therefore, the arterial section during a heartbeat has a
maximal deformation of §A/A = bAP, with AP the
maximal pressure variation over a cardiac cycle. For a
pressure jump of 40 mmHg, the deformation is less than
3% and thus the rigid coronary systems do not introduce
major artifacts in the computed flow and pressure distri-
butions.

LB allows to impose no-slip boundary conditions at
the endothelium by employing the bounce-back method;
this consists of reversing at every time step the post-
collisional populations pointing towards a wall node,
providing first-order accuracy for irregular walls [13].
In the bounceback method the points corresponding to
the exact no-slip hydrodynamic surface fall at interme-
diate positions between the external fluid mesh nodes
and the nearby wall mesh nodes. Owing to its simplici-
ty, the method handles irregular vessel boundaries in a
seamless way, although more sophisticated alternatives
with higher order accuracy are available [25, 26, 27].
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In a branched portion of arteries, boundary condi-
tions at the inlet and multiple outlets can be chosen in
different ways, typically by following the flow-pressure,
pressure-pressure or flow-flow prescriptions. The first
two options are more popular in fluid dynamic models
and pressure conditions at the outlets reflect the pres-
ence of a recipient medium. Even flow-flow conditions
have found some applicability, as they can accommo-
date some type of metabolic autoregulation as encoded
by Murray's law [28]. It is worth mentioning that flow-
flow conditions can give rise to numerical instabilities
in simple pipe flows, as long-living transients can de-
velop. The absence of a peripheral system can be com-
pensated by using an equivalent RCL circuit at each
system outlet, where the auxiliary circuitry introduces
an external viscous dissipation (R), vessel compliance
(C) and fluid inertia (L) and compensates for the miss-
ing components (lumped parameter model).

In the framework of the LB method, boundary con-
ditions at the inlet and multiple outlets can be imposed
as follows. A constant velocity (with plug or parabolic
profile) is enforced at the entrance of the main artery, as
a way to control the amplitude of the flow. Even if the
inlet profiles are not the real ones for irregular geome-
tries, they fulfill the purpose of imposing the total flow
rate in the chosen region. The fluid flow spontaneously
and rapidly develops the consistent profile already at a
short distance downstream. A constant pressure is im-
posed on the several outlets of the main artery, as well
as on the outlet of all secondary branches (of the order
of 10 in typical coronary systems). This leaves the simu-
lation with the freedom of creating an appropriate veloc-
ity profile in the outlet regions, and building up a pres-
sure drop between the inlet and the several outlets. The
Zou-He method [29] is used to implement both the
velocity inlet and the pressure outlets. This method
exploits information streamed from fluid bulk nodes
onto boundary cells, and imposes a completion scheme
for particle populations which are unknown because
their neighboring nodes are not part of the fluid domain.
The boundary cells are treated as normal fluid cells
where the conventional LB scheme holds. Thanks to
this natural integration of the boundary scheme, the
method is second-order accurate in space, compatible
with the overall accuracy of the LB method [30]. The
method handles in a natural way time-dependent inflow
conditions for pulsatile flows.

The algorithm requires that all nodes of a given inlet
or outlet are aligned on a plane which is perpendicular
to one of the three main axes, al-though the injected
flow profile and direction can be arbitrary. However,
since the inlet section is typically a critical region of
simulation in terms of numerical stability due to the
high fluid velocities, it is preferable to have an incoming
flow direction aligned with one the cartesian axis. This
requirement can be fulfilled by rotating the artery in
such a way as to align the inlet axis with one of the
cartesian axis, which guarantees an exact control on the
flow imposed at the inlet. Conversely, the outlet planes
are not in general normal to the orientation of the blood
vessels. However, this does not lead to noticeable prob-
lems, because the pressure drop along typical arterial
systems is mild, and the error due to imposing a con-
stant pressure along an inclined plane is negligible.

2 Blood as a Suspension

Blood is a complex fluid made of many corpuscular
elements suspended in the plasma. Red blood cells
(RBC's) or erytrocytes constitute an important compo-
nent in blood because of their large number density and
their crucial role in oxygen transport. Typically, a hu-
man RBC has a biconcave shape of ~ 8 um in diameter
and ~ 2 um in thickness. The interior fluid has a viscosi-
ty of 6 cP, which is about 5 times of that of the suspend-
ing plasma. The cell membrane is highly deformable so
the RBC's can pass through capillaries of as small as 4
pm inner diameter with large deformation: they exhibit
both rotational and orientational responses that effect
and modulate blood rheology [1]. While blood flow is
quasi-Newtonian away from the endothelial region, the
presence of RBCs strongly affects flow in the proximity
of the endothelium, where the interplay of RBC crowd-
ing for hematocrit levels up to 50% depletion due to
hydrodynamic forces, and RBC's arrangement in rou-
leaux take place.

In order to consider these different factors, we have
recently proposed a model that focuses on three inde-
pendent components: the far-field hydrodynamic inter-
action of a RBC in a plasma solvent, the raise of vis-
cosity of the suspension with the hematocrit level and
the many-body collisional contributions to viscosity
[31]. These three critical components conspire to pro-
duce large-scale hemorheology and the local structuring
of RBCs.
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The underlying idea is to represent the different re-
sponses of the suspended bodies, emerging from the
rigid-body as much as the vesicular nature of the glob-
ule, by distinct coupling mechanisms. These mecha-
nisms are entirely handled at kinetic level, that is, the
dynamics of plasma and RBC's is governed by appro-
priate collisional terms that avoid to compute hydrody-
namic forces and torques via the Green's function meth-
od, as employed in Stokesian dynamics [32]. The fun-
damental advantage of hydrokinetic modeling is to
avoid such an expensive route and, at the same time,
enabling to handle finite Reynolds conditions and com-
plex or irregular boundaries within the simple collision-
al approach. At the macroscopic scale, the non-trivial
rheological response emerges spontaneously as a result
of the underlying microdynamics.

The presence of suspended RBCs is included via the
following forcing term (see eqn. (2)):

. . . —2G-
G 2cp_l_(G cp)(u :4p) c;G-u ™
S

F,=w
p Pl ¢z

where G(x,t) is a local force-torque. This equation
produces first-order accurate body forces within the LB
scheme. Higher order methods, such that in [33], could
be adopted. However, given the non-trivial dependence
of the forces and torques on the fluid velocity and vorti-
city, Guo's method would require an implicit numerical
scheme whereas it is preferable to employ an explicit,
first-order accurate numerical scheme.

The fluid-body hydrodynamic interaction is con-
structed according to the transfer function &§(r;) cen-
tered on the i-th particle position r; and having ellipsoi-
dal symmetry and compact support. The shape of the
suspended body can be smaller than the mesh spacing,
allowing to simulate a ratio of order 1:1 between sus-
pended bodies and mesh nodes. In addition, the body is
scale-adaptive, since it is possible to reproduce from the
near-field to the far-field hydrodynamic response with
desired accuracy [34]. The fluid-particle coupling re-
quires the computation of the following convolutions
over the mesh points and for each configuration of the
N suspended bodies:

W = ) ue0sx—r)
ﬁi = Z Q(X)S(X — ri) (8)

T, = Z () X (X — 1)E(X - 17)

X

where {2 is the fluid vorticity and t is the fluid trac-
tion vector, quantities that are directly obtained from
the LB computational core. The three convolutions
allow to compute the drag force and drag torque,
inclusive of tank trading components. On the fluid
side, the body-induced forces are encoded by the

term
N

G(x) = —Z [Di(g‘(x -+ %Ti X d6(x — ;)
i=1

where D; and T; are the drag forces and torques acting on
the particles, constructed from the quantities in eqs (8).

Besides hydrodynamic interactions, mechanical
forces regulate the direct interactions and the packing
attitude of suspended bodies. The interactions are mod-
eled as pairwise by means of the Gay-Berne (GB) po-
tential [35], the pairwise GB energy being a function of
the relative distance between pairs of RBCs and their
mutual orientation. In addition, their interaction depends
on the eccentricity of each particle, so that, as for the
hydrodynamic coupling, mixtures of particles of differ-
ent shapes can be handled within a unified framework.
Once the forces and torques standing from both hydro-
dynamics and direct mechanical forces are computed,
the rigid body dynamics is propagated via a time sec-
ond-order accurate algorithm [36, 37].

Figure 2: Snapshot of a multi-branched artery in presence of
RBC's for 50% hematocrit.

Numerical results have shown that the particulate nature
of blood cannot be omitted when studying the rheology
of this biofluid and the shear stress distribution in com-
plex geometries. Regions of low shear stress can appear
as the hematocrit reaches physiological levels as a result
of the non-trivial organization of RBC's and the irregu-
lar morphology of vessels, with far reaching conse-
quences in real-life cardiovascular applications, where
the organization of RBC's impacts both the local flow
patterns and the large-scale flow distribution in vascular
networks. A crucial advantage of the hydrokinetic mod-
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el with the presence of realistic hematocrit is its reduced
computational cost, thus enabling the investigation of
systems of physiological relevance (Fig. 2).

3 The Corrugated Wall Surface

At a lower scale, new intriguing aspects come to light in
hemodynamics. For example, the vessel wall surface is
covered by endothelial cells (EC), that give a wavy
structure, so far neglected (Fig. 3): this does not imply a
significant variation in the flow field, but it can be rele-
vant in computing WSS, which is constant in a flat-
walled artery. Indeed, the EC's (a single EC has been
estimated to be about 15 um long by 0.5 pm high, see
[38]) form a continuous, undulated wall layer above
which blood is flowing. At such mesoscopic scale, the
wall may be considered as a wavy surface constituted
by a regular array of equal, repeated EC's. We consider
a two-dimensional channel flow between two boundary
surfaces located at y = th(x), with the x-axis in the
direction of the mean flow. The shape of each internal
wall appears as a smoothly corrugated surface: the
channel semi-width is obtained as a perturbation around
a reference constant value H: h(x) = H + £(x) where
&(x) is given by repeating the profile of a single EC
several times and subsequently smoothing it. The quan-
tity max &/H represents the corrugation degree.

Figure 3: The rough surface of the endothelium as
imaged using scanning force microscopy (from
[38]). Arrows point t granular structures on EC's

surfaces, white line marks scanning line for
height profile evaluation, scale bar
corresponds to 5 um.

For such complex geometries, the original LB meth-
od, designed to be used over a uniform Cartesian grid,
would represent a severe limitation for high resolutions
near the walls. Recent advances in LB have led to a
substantial enhancement for handling irregular shapes,
and a particularly interesting option is represented by
finite-volume formulations on fully unstructured grids
(ULBE) [39]. The pressure-driven axi-symmetric flow
of a continuum fluid through a plane channel having a
corrugated surface where the grid is locally refined (Fig.
4) has been recently modeled with ULBE by [8].
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Figure 4: A 2D arterial segment having a corrugated
wall, covered by a near-wall refined triangular
unstructured mesh.

At small Reynolds number and with moderate cor-
rugation degree, the velocity profiles preserve the para-
bolic shape (Fig. 5). However, the wall corrugation
causes a local change of the velocity derivative and
hence a variation on the WSS values which match the
undulation of the wall: in particular, the minimum and
maximum of WSS correspond to the wall throat and
peak, respectively. Their values depend on the vessel
diameter and on the flow rate, but their ratio remains
almost constant. As Fig. 5 shows, the shear stress rises
linearly in the transverse direction, except near the wall.
Here, the variation in cross-sectional width generates a
substantial local difference in the shear rates and stress-
es, and the consequence is a local variation of these
quantities in a boundary layer close to the wall and an
oscillation of the shear rates and WSS along the endo-
thelium.

We have further investigated the dependence and the
sensitivity on the corrugation degree, and quantified the
WSS differences with the variation of vessel diameter
and flow rates. It was shown a significant WSS varia-
tions between the EC's wall peaks and throats, especial-
ly in small-sized arteries [8].
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Figure 5: Parabolic velocity profiles along the wavy
channel: its wall is constituted by a uniform
sequence of peaks and throats (top).

Cross-stream variation of shear stress in
half-channel: continuous line - peak of EC;
dashed line - valley of EC (LB units) (bottom).

4 The Endothelial Surface Layer

The endothelial surface is not only wavy in its geome-
try, but, at a smaller scale, it is covered by fibrous fila-
ments and long protein chains forming a thin layer
called the endothelial surface layer (ESL) or glycocalyx
[9]. From a fluid dynamics point of view, the ESL can
be modelled as a porous layer of constant thickness (50—
100 nm) which suits the wall undulation, through which
the flow of the continuous phase (plasma) is possible.
This would alter the boundary condition of the problem,
specifically the classical no-slip condition at the vessel
wall may have to be replaced to allow for plasma pene-
tration through the ESL. The LB method readily ac-
commodates a model of the glycocalyx itself, as it is
particularly well suited to address what would now
become a multiscale model. Furthermore, and different-
ly than in sect. 2, the mesoscopic particulate nature of
the blood is now addressed in the context of a bi-
component fluid model: RBC are here deformable,
neutrally buoyant liquid drops constrained by a uniform
interfacial tension and suspended in the plasma.

Conceptually, the idea is to solve a two-domain
problem, whereby the bulk flow (in the lumen) is gov-
erned by the multicomponent Navier-Stokes equations
and the near-wall region by a porous-medium Brink-
mann flow formulation. At the mesoscale, the gly-
cocalyx is not modelled in a detailed form, but its effect
on the flow is still properly addressed, using methods
which are amenable to coupling other, more detailed,
simulations with experiments. We develophere a two-
way coupled model where the drop interface is forced
by compression of the ESL, and the effect of perturbed
or compressed glycocalyx is then communicated to the
flow [40]. We assume here that the filaments are strong-
ly anchored in the endothelium, where they are most
resistant to deformation and that they deform preferably
at their tip, i.e. towards the vessel lumen.

The mesoscale LB method is still used to solve the
governing hydrodynamic equations, that involves multi-
component fluid flow, off-lattice, or sub-grid, boundary
surfaces and a porous-layer representative of the ESL.
The governing hydrodynamic equations for flow in a
porous media, with constant or variable porosity €, are
an extension of eqn. (4) as in [41]:

V-u=0

Jdu u 1 )
E+(u-V)E——EV(€P)+VV u+F )
Here F is the total body force due to the presence of
both the porous material (drag) and other external forc-
es:

Feue L ulu+ e (20)
=—u——==uju €
K VK

where H is the extra body force that will be used to
incorporate further details of the ESL and particulate
effects, such as the RBC interface force density (pres-
sure step) defined below. To solve governing equations
(9)—(10) we combine the LB methods of [41], with the
model of [42], that allows for the introduction of two
immiscible fluid components and the formation of inter-
faces embedding surface tension laws.

To complete the algorithm, we must mention that,
for multiple fluid LB, the propagation step is augmented
by a fluid segregation process that ensures the correct
kinematics and dynamics and good integrity for an
interface between completely immiscible fluid compo-
nents, representing RBC and plasma, as discussed above
[42]. The propagation step is expressed as:

R RB
Rp(x+cpAt,t+At) =;fp +Wpﬁ7-cp-n
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B A A — B + RB . .
(X + €At ¢ + At) _;fp —wpﬁ7 L
where the density of each fluid component is given by
R=3%,R,(x,t) and B =}, B,(x,t), the combined
particle distribution function is f, = R, + B, and f,*
accounts for the propagated combined distribution. In
eqn. (11) B represents an interfacial segregation pa-
rameter and n the interfacial unit normal vector. We
also note that, if only one fluid component exists, egs.
(11) reduce to the standard LB propagation step eqn.
(2). Returning to the definition of the extra body force
term, H in eqn. (10), this incorporates both particulate
and glycocalyx forces and is defined as

c
H= Z—anpN +E (32)

The left hand side term imposes an interfacial tension o
on multicomponent particles. Here m = V - n is the local
curvature and py = (R — B)/(R + B) is a phase field
indicator. The right hand term E is a glycocalyx force
that acts upon the particles as described below.

In the proposed model of the ESL as a porous layer,
the porosity is reduced by a compressive encounter with
an erythrocyte. As a consequence, the ESL is squashed
locally transporting the same mass into a smaller vol-
ume and consequently decreasing the porosity in that
region. Even in the simplest situation, the ESL-lumen
boundary should not be regarded as sharp and there is
an uncertainty region between bulk, lumen and gly-
cocalyx material [40]. Let us define a variable porosity
€(x,y) that tends to 1 in the lumen region and gradually
reduces, as it enters the glycocalyx region, where it
approaches a minimum value, €.

This porosity transition is modelled through the in-
creasing smooth function:
- tanh@s - )] (13)
where [ is the mean ESL thickness and the parameter
1/¢ determines the distribution of (i.e. the effective
standard deviation of) protein chain lengths, while s(x)
denotes distance measured normally to the endothelial
surface. Note that €; < €(x) < 1 and that for e > 1 we
have F —» H (see eqn. (10)) and the equations (9)—(10)
reduce to the multi-component Navier-Stokes equations
for free multi-component fluid flows, and the described
procedure reduces to the standard LB method for a two-
component, incompressible fluid.

e(x) =¢g +

On the other hand, an additional, fictitious, repulsive
body force density acts on the drop interface which
enters the ESL region, impinging on the lumen. This
force distribution is so designed that its accumulation
produces an effective Hookean force acting at the centre
of the local volume. Specifically, the erythrocyte is sub-
jected to a surface force distribution, effective in the ESL
only, which is directed everywhere in the drop-surface
normal direction.

This force device effectively models the glycocalyx
as a continuum of elastic springs, with modulus E, grad-
ually decaying from a maximum value, E; (in the ESL)
to 0 (towards the bulk):

E(x) = % [1 — tanh(E(s — )] (44)

where all notations are given in correspondence to eqn.
(13). It is important to note that the above force acts
solely on the drop and not upon the plasma. Hence, the
relative density of the material which comprises the
drop may be modelled by appropriate choice of the
spring constant E; in the above equation. A number of
simulations have been carried out in the case of an axi-
symmetric channel having the same corrugation repeat-
ed along the length. Its size (of order of um) is slightly
larger than a single RBC flowing through it, driven by a
constant pressure gradient with periodic conditions. At
such fine scale, for accuracy purposes, the off lattice
non-slip endothelial surface uses continuous bounce
back conditions [25]. The ESL structure has been mod-
elled as a porous layer of constant thickness over the
undulated wall. As one may expect, the average velocity
of the drop is slower in the presence of the glycocalyx,
which constitutes a hindrance for the lumen flow. Also,
the mean deformation of the drop is more pronounced
with the glycocalyx force (Fig. 7). Hence, when the
drop is in the ESL inuence region, it is subjected to the
elastic force, which squeezes and lifts it, away from the
boundary, whilst making its shape more elongated.
Considering the action of the glycocalyx as a sensor of
mechanical forces, it is worth computing the shear stress
at the glycocalyx / lumen boundary (GSS). Fig. 8 shows
the differences for WSS in the cases without and with
glycocalyx: it evidences, in the latter case, a reduction
of the shearing stress either at the wall (WSS, due to the
plasma only) and at the ESL top (GSS, due to the par-
ticulate fluid).
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Figure 6: The porosity function ¢ (continuous line) as a

function of the distance s: the latter increases
form a minimum value ¢; (in the ESL or GL) to
the bulk fluid (¢ = 1). Similarly the elasticity
modulus E (dashed line) varies from a maxi-
mum value E; in GL to 0 (no elastic force) out
of it. Note the smooth transition region (due to
the uncertainty ESL thickness) controlled by the
parameter ¢.
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Figure 7: The velocity field for the particulate fluid in the

region of the endothelium. The extent of the
ESL is indicated by the broken line. An
enhanced recirculation region is induced by
the porous media (bottom), with respect to an
experiment without glycocalyx (top). The single
deformable drop has been acted on by
encountering the glycocalyx body force field.
The flow appears to be deected up which
would tend to protect the endothelial surface
from increased WSS.

It is possible that cilia, which deform preferentially
at their tip, would be more likely to protect the endothe-
lial cell from WSS fluctuations associated with RBC's
transits [8].

4
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Figure 8: The WSS and GSS along the channel at the same
time without (top) and with glycocalyx (bottom).

As a comprehensive computational tool to account the
different aspects in blood flow simulation in a unified
LB framework, we developed the software MUPHY
that involves five basic steps: (1) Acquisition of MDCT
data; (2) Data segmentation into a stack of slices; (3)
Mesh generation from the segmented slices; (4) Flow
simulation; (5) Data analysis and visualization. The
MUPHY simulation package is designed to handle ge-
neric geometries, such as those provided by the MDCT
acquisitions, and to run large scale simulations on
commodity or high-performance hardware resources.
The major advantage of MUPHY is the possibility of
concurrently simulating fluid-dynamics together with
suspended bodies at cellular and molecular scales. This
multi-scale methodology arises from the combined use
of LB and molecular dynamics techniques [19].

5 Conclusions

Studying the cardiovascular system and capturing the
essence of blood circulation requires to cope with the
complexity of such biological fluid, as much as the
details of the vessel's anatomy. From the computational
standpoint, taming such complexity is a hard work, as it
requires to handle several concurrent actors. Choosing
the right computational tool, therefore, is a delicate task
that has been addressed in the present paper.
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It was shown that the LB method is an extremely
powerful framework to deal simultaneously with blood
plasma, red blood cells and the glycocalyx in a unified
and consistent form. The versatility of this framework is
such to be a good candidate to study fluids of different
types and at different scales without major differences.

When dealing specifically with blood and the devel-
opment of cardiovascular disease, it is key to address
the detailed structure and dynamics of blood in the sur-
roundings of the endothelium, as recent work has re-
vealed a correlation between the flow-induced mecha-
no-transduction in the glycocalyx and the development
of atherosclerosis. The presence of the glycocalyx is
supposed necessary for the endothelial cells to react to
fluid shear, and its role is characterized by studying its
response to shear stress. A coarse-grained model and a
preliminary numerical simulation of the blood flow over
the exact, microscale, corrugated EC shape covered by a
prototype ESL has been proposed. Another direction we
are undertaking is to enhance our current, simplistic,
interfacial tension model with additional stresses and
bending properties associated with elastic structures.
Our current effort is to modify and extend the behaviour
our fluid-fluid interface so as to enrich and adapt its
existing mechanical properties, in a manner which mim-
ics the thin membrane of erythrocytes.

If, at one hand, the microscopic blood-wall interac-
tion has a noticeable importance for pathological states,
on the other hand, the simulation of large-scale circula-
tory systems relies on sophisticated imaging techniques
and powerful computational tools. Owing to the basic
assets of hydrokinetic modeling, the unifying LB meth-
odology provides a reliable and robust approach to the
understanding of cardiovascular disease in multiple-
scale arterial systems, with great potential for impact on
physiological and biomedical applications. The inclu-
sion of red blood cells allows to reproduce realistic
blood processes and represents a step forward for clini-
cal purposes, as much as for the fundamental aspects in
hemodynamics and hemorheology.
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