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Abstract. This work shows how the problem of mod-
elling fluids motion can be addressed in Modelica. This
innovative approach makes possible to face such a prob-
lem in a multi-physic modelling language as Modelica is.
In this way it is possible to simulate together the fluid and
the system that interacts with it, without any additional
effort and taking advantage of the Modelica libraries rep-
resenting buildings, power plants, water treatment sys-
tems, HVAC and so forth.

Introduction
Modelling fluid flows is extremely important in simu-

lating many engineering processes. When the fluid is

constrained to move in ducts or pipes strong assump-

tions/simplifications can be taken into account with-

out affecting the description of the fluid properties (e.g.

temperatures, pressures, densities,...) and their distri-

butions. The mentioned simplification for such cases

where a spatial coordinate prevails the others leads to

zero or one dimensional models where the spatial de-

pendence is respectively disregarded or limited to just

one coordinate (e.g. pipes). However there are ele-

ments like tanks (in the context of hydraulic systems)

or rooms (in the context of HVAC systems) where zero

or one dimensional models are not appropriate. The

standard practice when simulating such more compli-

cated scenery, is to employ CFD codes. Despite this

approach is capable of representing in a very detailed

way the fluid thermal dynamics, it has some drawback.

The main one is in its modularity. CFD cannot be eas-

ily integrated with other models in order to represent the

entire system, the only way for doing such a task is to

employ the so called co-simulation techniques, that in-

troduce a communication overhead and some non trivial

convergence problem as shown by Trčka et al. [8].

The aim of this work is to provide a general method-

ology for modelling 2D or 3D fluid flows with Model-

ica. Modelica is a multi-physic Object-Oriented mod-

elling language [?]. In Modelica several modelling li-

braries, representing a variety of systems are already

available [6], and new ones can be developed. Thanks

to the modularity of the language and the deffinition of

standard interfaces, models belonging to different phys-

ical domains can be coupled together. Providing a way

for modelling fluid flows in such an environment is a

step ahead in the direction of a real integrated multi-

domain simulation tool, thus avoiding co-simulation

and its drawbacks [8], [10]. The proposed modelling

approach aims at representing simple scenery in cases

where the powerful capabilities of CFD software are not

needed. More precisely, complex geometries and high

velocities are not taken into account , however a wide

range of application like rooms, portion of buildings,

storage tanks can be modelled. As consequence, de-

spite the apparent simplicity of the proposed approach

a widespread set of relevant cases can be investigated.

The structure of the paper is the following: an in-

troductory section where the governing equations are

shown is followed by a section in which the discretisa-

tion approach is presented. Then, the implementation

in the Modelica language of the discretised equation

is discussed. The last section concerns the validation

of the models, and more in detail, a comparison be-

tween experimental data coming from a natural convec-

tion case is reported. Some conclusions as well future

works complete the paper.

1 The Governing Equations

The motion of fluid is described by the equations of

mass, energy and momentum balance, and this set of

equations is often referred to as the Navier Stokes equa-

tions (NS). In the case of the Newtonian fluid they can

be written as:
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∂ρ
∂ t

+∇ · (ρv) = 0 (mass)

(1a)

∂ (ρe)
∂ t

+∇ · (ρvh) = ∇ · (k∇T ) (energy)

(1b)

∂ (ρv)
∂ t

+∇ · (ρvvT )+∇p = ∇ · (μ∇v)+ f (momentum)

(1c)

where the scalars p, T , e, h, ρ , k and μ are respec-

tively the fluid pressure, temperature, specific energy,

specific enthalpy, density, thermal conductivity and dy-

namic viscosity; the vectors v and f are the fluid veloc-

ity and the external forces only, such as gravity, acting

on the fluid.

With the scalar projection brought in, and for sim-

plicity analysing only 2D case, the momentum equation

(1c) is decomposed into two scalar equations:

∂ρvx
∂ t + ∂ρvxvx

∂x +
∂ρvxvy

∂y =

fx − ∂ p
∂x +

∂
∂x

(
μ ∂vx

∂x

)
+ ∂

∂y

(
μ ∂vx

∂y

) (2a)

∂ρvy
∂ t +

∂ρvyvx
∂x +

∂ρvyvy
∂y =

fy − ∂ p
∂y +

∂
∂x

(
μ ∂vy

∂x

)
+ ∂

∂y

(
μ ∂vy

∂y

) (2b)

where the subscripts x, y denote the components of the

2D Cartesian coordinate system. In the case of natural

convection having as vertical axis the y one, clearly fx =
0 and fy = −ρg, with g being the gravity acceleration.

In order to solve numerically the momentum equation

(as well the continuity and the energy ones), each term

appearing has to be properly represented.

2 The Discretised Model

The conservation equation for mass (refeqn:mass), en-

ergy (refeqn:energy) and momentum (1c) can be repre-

sented in the standard Convection-Diffusion (CD) form,

which (again for simplicity) in the 2D case reads:

∂ρΦ
∂ t︸ ︷︷ ︸

local

+
∂ρvxΦ

∂x
+

∂ρvyΦ
∂y︸ ︷︷ ︸

convective

=

∂
∂x

(
ΓΦ

∂Φ
∂x

)
+

∂
∂y

(
ΓΦ

∂Φ
∂y

)
︸ ︷︷ ︸

diffusive

+ SΦ︸︷︷︸
source

(3)

where the generic quantity Φ is the scalar quantity

transported by the fluid moving with velocity v =
(vx,vy), and ΓΦ is the diffusivity coefficient. The time

dependent variable Φ can be either one velocity compo-

nent, the internal energy or the mass fraction of a chem-

ical species. The source term SΦ is the generation rate

of the scalar quantity Φ per unit volume.

The generic CD equations (3) states that the (un-

steady) local change of the scalar quantity Φ is equal to

the sum of the convective change, the diffusive change,

and the generation from a source. For example, replac-

ing Φ with vy, ΓΦ with the viscosity μ and collecting in

the source term SΦ both the gravity −ρg and the pres-

sure gradient dp/dy, the y-momentum equation (2b) is

obtained. Following the numerical procedure for solv-

ing CD, described in [7], the general CD equation (3)

is integrated over a grid of Control Volumes (CV) as

shown in Figure 1.

Figure 1: Grid employed for the spatial discretisation of the
CD equation.

Applying the Gauss’ theorem, the volume integrals are

replaced with surface ones:

∫
V

∂ρΦ
∂ t dV +

∫
S(∂ρvxΦ)i ·ndA+

∫
S(∂ρvyΦ)j ·ndA =∫

S

(
ΓΦ

∂Φ
∂x

)
i ·ndA+

∫
S

(
ΓΦ

∂Φ
∂y

)
j ·ndA+

∫
V SΦdV

(4)

where i and j are respectively the x and y components

of the unit vector, while n is the outgoing unit normal

vector from the surface element dA. The surface inte-

grals that appear in (4) can be approximated via sums

over the faces of the considered control volume.
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The unsteady term and the sources that represent re-

spectively the variation of the scalar quantity Φ over the

time, and the rate of generation into the CV, are replaced

as follows: ∫
V

∂ (ρΦ)

∂ t
dV �V

d(ρΦ)

dt
(5a)∫

V
SΦdV �V SΦ (5b)

where V is the volume of the CV. In particular, imple-

menting the Final solution in Modelica, there is no need

for explicitly implement a time discretisation method.

Indeed, using the capabilities of the Modelica solvers

(e.g. [?]) several adaptive time step solvers can be em-

ployed without any additional effort required.

When the CD equation aim at representing the NS

equations, the pressure gradients appearing in (2) are

included into the source terms. Once integrated over

the CV and converted into surface integrals they read∫
S

Pi ·ndS � Ax(Pe −Pw) (6a)∫
S

Pj ·ndS � Ax(Pn −Ps) (6b)

where Ax,y are the surfaces of the CV normal to the x
and y direction respectively, and Pe,w,n,s are the pres-

sures on the boundaries of the CV. The diffusive term

of the equation (4) can be approximated as:

∫
S

(
ΓΦ

∂Φ
∂x

)
i ·ndA �

DΦe(ΦE −ΦP)−DΦw(ΦP −ΦW )
(7a)

∫
S

(
ΓΦ

∂Φ
∂y

)
j ·ndA �

DΦn(ΦN −ΦP)−DΦs(ΦP −ΦS)
(7b)

where DΦe,w,n,s are the diffusivity coefficients evaluated

at the CV faces. For the east face (omitting the others

for brevity) it is computed as:

DΦe = ΓΦe

Ax

dxE
(8)

where dxE is the distance between the center of the CV

and the neighbour close to the E face. The diffusivity of

the fluid is a property that may vary between adjacent

CVs (e.g. the fluid viscosity or the thermal conductivity

vary in time and space). For such a reason the diffusiv-

ity ΓΦe is computed on the boundaries of the CV as a

weighted mean of the fluid properties in the cell P and

the cell E.

The most influential in a fluid flow is the convective

term. Assuming that the velocities are normal to the

surfaces of the CV, (vx normal to faces E and W , while

vy normal to faces N and S), they can be approximated

as: ∫
S
(ρvxΦ)i ·ndA � FeΦe −FwΦw (9a)∫
S
(ρvyΦ)j ·ndA � FnΦn −FsΦs (9b)

where Fe,w,s,n are the mass fluxes over the faces of the

control volume. Again for brevity, for the e face the

mass flux is computed as

Fe = (ρvx)eAx (10)

where the subscript indicates that the value is computed

on the e boundary of the CV, while Ax is the surface of

the CV normal to x directions. The values Φe,w,n,s in-

troduced in (9) are the values of the scalar variable Φ
on the boundaries of the CV. The way these values are

computed has a strong impact on the numerical solu-

tion. The standard practice is to employ the first order

accurate UPWIND scheme (11), where the scalar value

on the boundary is taken from the one computed in the

cell from where the fluid is flowing (hence the name

upwind). Other methods, extensively described in [7],

have been implemented.

Φe =

{
ΦE if Fe > 0

ΦP if Fe < 0
(11)

3 Implementation in Modelica
Having all the terms appearing in the CD equation (3)

discretised over a given CV, the last step is to transform

such an equation in a compact form that can be written

in Modelica. The standard form, employed in all CFD

tools and carefully explained in [7] has been adapted in

order to be straightforwardly implemented in Modelica.

The equation reads

V ρ
dΦP

dt
+aPΦP = aEΦE +aW ΦW +aNΦN +aSΦS +S

(12)

where the coefficients aE,W,N,S,P are a compact repre-

sentation of both the diffusive and convective terms,

while S are the possible sources (e.g. gravity, heat

sources, external forces . . . depending on the nature

of Φ) or in the case of the momentum equation the

SNE 23(1) - 4/2013



28

M Bonvini, M Popovac Fluid Flow Modelling with Modelica

pressure gradients. Coefficients aE,W,N,S are defined as:

aE = DeA
(∣∣∣∣ Fe

De

∣∣∣∣
)
+‖−Fe,0‖ (13a)

aW = DwA
(∣∣∣∣ Fw

Dw

∣∣∣∣
)
+‖Fw,0‖ (13b)

aN = DnA
(∣∣∣∣ Fn

Dn

∣∣∣∣
)
+‖−Fn,0‖ (13c)

aS = DsA
(∣∣∣∣ Fs

Ds

∣∣∣∣
)
+‖Fs,0‖ (13d)

with aP = aE + aW + aN + aS. In (13), ‖a,b‖ is the

maximum between a and b while A(·) is a function

that represents the convective scheme employed (e.g.

UPWIND or Central Difference) as described in [7].

Such a generalised version of the CD equation can be

used for discretising the mass, the energy and the mo-

mentum balance equations. These equations have been

spatially discretised over a staggered grid as suggested

by Versteeg and Malalasekera ([9]), an example of such

a grid is shown in Figure 2. The basic idea behind the

staggered grid is to integrate the balance equations over

CVs that differs, in order to avoid numerical problems

as evidenced in [7], [9].

Figure 2: Staggered grid – Mass and Energy balance
equations are discretised over P cells, while
x-Momentum and y-Momentum equations are
discretised over V x and V y cells.

For the boundary conditions, either the value (e.g. tem-

peratures, velocities) or the gradients (e.g. heat fluxes)

can be described. The grid of CVs is implemented as

a matrix of nodes. The value of each node represents

one of the scalar variable for which the CD equation is

solved (e.g. the temperature, or velocity components).

Boundary conditions are a given subset of values of

these matrices. Boundary conditions can be extended

by employing connectors, in such a way the values of a

particular quantity (e.g. the temperature) instead of be-

ing defined a priori can be assigned by an other model.

It is important to underline that Connectors are stan-

dard interfaces between the model and its neighbours. If

the behaviour of the model has been properly described,

just by knowing the information provided by its connec-

tors, the model can be linked together with any model

that implements the same connectors. This is a crucial

point in the context of OO modelling, and this is the

key that allows a real and powerful multi-physic simu-

lation. The model is completed with a description of the

fluid (the fluid state equation) that introduce a relation-

ship between the temperature, pressure and density of

the fluid. Such a relationship has been kept intention-

ally simplified, in order to reduce the complexity of the

model. In particular a linearised version of the ideal gas

relationship has been introduced.

Figure 3: Scheme of the tall cavity.

A turbulence model and also a wall function represent-

ing the interaction between the fluid and the domain

boundaries have been introduced. The complexity of

the above mentioned models has been kept as low as

possible, in order to reduce the computational effort.

Therefore, following the idea of Prandtl ([?]), a zero-

equation turbulence model is used, with the wall func-

tion (Launder and Spalding, [4]) used for imposing the

wall boundary conditions for momentum equation.
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Figure 4: Temperature (a - d) and air vertical velocity (e - h) distributions at different heights.
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4 Validation
The validation is performed investigating the case of

natural convection in a tall cavity (see Figure 3) where

the right wall is heated while the left one is cooled. The

sizes of the cavity are 0.076×2.18×0.52[m].
Experimental results for such a cavity are taken from

[2]. The shape of the cavity, as well its symmetry, al-

lows to describe the fluid with a 2D grid, without re-

ducing the accuracy in the description of the tempera-

ture distribution and the air flow field. For such a rea-

son a non-uniform grid of 11× 21 volumes has been

used. The comparisons between simulation data and

experimental results are listed in Figures 4. In partic-

ular, both temperature and vertical velocity profiles at

different heights (y = {0.1,0.4,0.6,0.9}Y , where Y is

the height of the cavity) are shown. More in detail, Fig-

ures 4 (a-d) are the temperature profiles, while 4 (e-h)

are the vertical velocity ones. In each plot experimen-

tal data are compared against simulation data provided

by a standard CFD code ([1]) and simulation data ob-

tained with Modelica models. The agreement between

results provided by Modelica models and both CFD as

well as experimental data is very good as can be seen in

the various Figures.

To stress that the aim of Modelica models is not to

give more accurate results with respect to CFD ones, but

to give comparable ones by using a modelling paradigm

that offers the possibility to integrate not only the fluid

motion but also the interaction with other systems (e.g.

the walls that surround the ambient, the environmen-

tal conditions as well as a suitable representation of the

heat sources acting on the system).

5 Conclusion
A model capable of simulating fluid flows with an ap-

proach which is not the standard CFD has been pro-

posed. Such a model makes possible to face the fluid-

flows problem in a multi-domain modelling language,

such as Modelica.

Despite the simplicity of the numerical scheme em-

ployed as well the geometry description taken into ac-

count, the big advantage is that now it is possible to sim-

ulate together the fluid and the system that interacts with

it, without any additional effort and taking advantage of

the Modelica libraries and avoiding co-simulation.
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