
17

S N E T E C H N I C A L N O T E

A Python Package for Simulating
Variable-Structure Models with Dymola

Alexandra Mehlhase

Department of Software Engineering and Theoretical Computer Science, TU Berlin, Ernst-Reuter-Platz 7,
10587 Berlin, Germany; a.mehlhase@tu-berlin.de

SNE Simulation Notes Europe SNE 23(1), 2013, 17-24

DOI: 10.11128/sne.23.tn.10165

Received: Jan. 20, 2013; (Selected MATHMOD 2012 Postconf.

Publ.); Revised Accepted: March 20, 2013;

Abstract. It becomes increasingly important to create
more accurate models that can be simulated fast. To ac-
complish this we need models which can change their
set of equations during runtime. Thesemodels are called
variable-structure models. These models enable a user
to specify a model with more than onemode and change
between these modes during runtime. This can make
a simulation faster and in some cases even more accu-
rate. In this paper we present a Python package that en-
ables the user to specify such models in an easy and in-
tuitive manner. The introduced package provides means
to use existing Dymola models as modes and simulate
the variable-structure model with the Dymola simulation
engine. Different examples are presented which were
simulated with the new package and the advantages of
variable-structure modeling with the Python package is
discussed. Furthermore, requirements a model needs
to fulfill to be used in a variable-structure model are ex-
plained.

Introduction

To study the behavior of a technical system early in

the design phase (simulation-) models are often used.

Such a model consists of variables and equations which

specify the behavior of the model over time. The mod-

els are usually described through differential-algebraic

equations (DAE). The models are then simulated with

a numerical solver. The results of such a simulation

can be used to analyze the behavior of a technical sys-

tem without having to build the real system. Through

the ever growing complexity of the real technical sys-

tems, the complexity of the models also needs to rise.

This leads to the problem that the simulation of a model

might become too slow or that some systems cannot be

modeled at all. We regard variable-structure models as

a solution for this problem. These models consist of

different modes between which they can switch. This

means that a model can run through different ’modes’,

where each mode effectively is a model with its own set

of equations which describe the physical behavior of

this particular mode. When switching from one mode

to the next one, the new mode needs to be initialized

through the end values of the old mode.

For instance variable-structure models enable the

user to model systems that change their behavior. An

example for such a model is an airplane which is first

a rolling vehicle then a cross between a rolling vehicle

and a flying object and then becomes a flying object.

In this paper we call models that change their equations

in order to model different behavior ‘variable-behavior

models’.

Another example for variable-structure models is a

model which changes its level of detail. With such a

model the simulation can be as detailed as necessary

and as easy as possible throughout the simulation. For

instance if a model can reach critical regions and in

these a complex model is needed but otherwise an eas-

ier model is sufficient, it would be feasible to use the

less detailed model and only switch to the more com-

plex model if needed. We call such models ‘variable-

detail models’ and will show in the evaluation section

that such models can save simulation time without sig-

nificant accuracy losses. Of course there are models

that are hard to place in only one category but usually

the goals for these two are different. For variable-detail

models the goal is to save simulation time or enhance

the accuracy through the mode switch. For the variable-

behavior models the simulation time is not the main

goal but that a system can be simulated at all through

the variable-structure approach.

SNE 23(1) - 4/2013

18

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

A variable-structure model has always exactly one

current mode and switches from mode to mode through

defined transition. These transitions hold the informa-

tion on how the simulation data of the old mode should

be used to initialize the new model.

Common simulation tools like Simulink from [1]

and Dymola from [2] do not support the change of

the variables and the set of equations during simula-

tion. There do exist simulation environments which

enable a user to simulate variable-structure models. A

brief overview of these environments and approaches

are given here.

MOSILAB is a simulation environment based on

Modelica which can be used to model and simulate

variable-structure models. This tool enhances the Mod-

elica language and uses a Statecharts view to specify

the mode switches, see [3]. There is no index reduction

implemented in the tool and thus only index-0 models

are allowed.

The language SOL was developed by [4] and is an

experimental Modelica like language. This language

supports modeling variable-structure models, interpret-

ing them and simulating them. An advantage of SOL

is that when a mode switch occurs and the causalisa-

tion of the model changes only the necessary causal-

isations are done. This makes the mode switch quite

elegant. SOL is an experimental language and thus far

not available for large models, hopefully the results will

sometime lead to a modeling language which supports

variable-structure models. For now a user cannot work

with SOL and reuse models from other tools all models

would have to be specified in the new language. An-

other possibility for variable-structure models is Hydra

which is described in [5]. Hydra is a language under de-

velopment which supports variable-structure modeling.

It is based on functional programming languages and is

therefore not as easy to learn for modelers.

All these possibilities have great ideas and do dif-

ferent things better than our approach but to model

and simulation variable-structure models the user has

to learn a new language and remodel existing models.

With the approach we present a common modeling tool

can be used and existing models can be reused. Python

as a free language is used for the package, so the pack-

age is accessible to anyone interested.

[6] describe an algorithm which transforms a

variable-structure model to a normal model by refor-

mulating the modes into one mode. This approach does

work but makes the resulting model quite large and

will therefore extend the simulation time. This does

not seem to be feasible for variable-detail models be-

cause simulation time will most likely not be saved. In

Simulink enable blocks can be used to model differ-

ent modes, but the definition of the transitions becomes

rather complicated and the blocks that are disabled still

take up simulation time, see [7] for more information.

In Dymola a mode switch is possible, as long as the

variables do not change and the causality of the equa-

tions does not change. If either needs to change, both

equation systems need to be implemented in the model

and through if-statements the switching needs to be de-

fined. [8] describe a possibility for variable-structure

models with if-statements in Modelica. Here the equa-

tions are reformulated, so depending on the mode the

model is in, a multiplication with zero or one takes

place. The equations therefore change during simula-

tion. This approach does work but for large models

with many mode switches it will become complicated.

The equation system is also rather large and might slow

down the simulation compared to a real mode switch.

In this paper we will present an easy to use approach to

define variable-structure models in Python and use the

simulation tool Dymola for the simulation. This pack-

age enables the user to reuse existing Dymola models

and still work with variable-structure models .

Section 2 introduces the Python package with its

design and usability. In Section 3 different examples

of variable-structure models which were modeled with

the new Python package are presented. The last section

provides the conclusion and future work.

1 A New Python Package
This section first gives an overview of how a variable-

structure model can be modeled with its different modes

and transitions. The design of the package and how the

package can be used is afterwards explained.

1.1 A variable-structure model

As was already said in the introduction a variable-

structure model is a model which consists of an arbi-

trary number of modes between which the model can

switch. A model can switch from one mode to another

mode via one transition. To model such a behavior

an object-oriented approach seems feasible. Figure 1

shows how a variable-structure model can be modeled

through objects. The ModelObject consists of different

modes and each mode can have transitions.

SNE 23(1) - 4/2013

19

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

Figure 1: Class structure of a variable-structure model for
different modeling environments.

This ModelObject holds all the necessary information

about the variable-structure model. It defines the global

stop time of the model, a default solver and the modes

of the variable-structure model . To be able to integrate

different simulation environments into the package an

interface which is tool independent was defined. The

most important attributes of a mode are:

• a unique mode number to identify the mode

• a model name with path to the original model

• observer variables which will be stored in a data

matrix

• a specific solver which overwrites the default

solver

Necessary methods in a mode class:

• start simulation (startSim) which starts the simula-

tion in a specific simulation environment

• set initial values (setInit) which sets the initial val-

ues in the tool specific init file

• read end values (readEnd) which reads the neces-

sary end values of the tool specific result data file

• translate model (translate) which compiles the

model, if necessary

When a specific simulation environment needs to be

added new class which implements the mode-interfaces

has to be created. The other parts of the model do not

have to be changes, as long as the given interface is not

changed. For now Dymola is implemented and integrat-

ing OpenModelica and Simulink is planned. Each mode

can have an arbitrary number of transitions which lead

to the next modes. A transition is another class which

defines the mode switch and is independent of the used

simulation environment. In each transition an attribute

exists which holds the identification number of the next

mode. Furthermore the information on how the data of

the old mode is used to initialize the new mode is stored

in the transition.

1.2 Design of the package

In the previous section the object-oriented design of a

variable-structure model was explained. This design

is used in the Python package which makes it possi-

ble to integrate different simulation environments. For

a modeler who is used to modeling in simulation en-

vironments it might be difficult to define this modeling

structure in Python. Therefore the package provides a

template to specify the variable-structure model. The

user does not need any programming knowledge to be

able to use this template.

The package uses the user given information to

generate the necessary ModelObject. The basic idea of

our approach is to use common simulation environment

to simulate a variable-structure model and therefore

use their capabilities. It is not the idea to create a new

language as was done by [4] with SOL or by [5] with

Hydra or with the tool [9, 10]. Our idea is to create

a new modeling layer which can manage different

modeling environments and which handles the switch

from one mode to another during a simulation run.

To accomplish this each mode of a variable-structure

model needs to be an independent model which consists

of variables and equations. Each of these modes has

a stop condition which stops the simulation of this

particular mode and defines the next mode. Figure

2 shows a schematic view of a breaking pendulum

variable-structure model with two modes. One mode

which is the normal pendulum and one mode which is

a falling mass.

Figure 2: Schematic view of a breaking pendulum
variable-behavior model.

To get from one mode to the next a Python script is

used, this approach was already presented in [7] where

it was tested with different scripting languages. The

workflow of the script which handles the simulation of

SNE 23(1) - 4/2013

20

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

the variable-structure model is shown in Figure 3. In

our package the modeled ModelObject is used as input

for the variable-structure simulation method.

Figure 3: Program flow of the switch.pymethod.

At the beginning of this method the modes are com-

piled, which results in having an executable called

’dymosim.exe’ and an initialization file called ’dsin.txt’.

The dymosim.exe can be used to start the simulation of

the model. Each created init file is loaded and results

in having an initialisation matrix. An identical matrix

can be loaded after a simulation of a Dymola model

whereas this matrix then holds the end data of the

simulation. To make the mode switches faster, the

mapping for setting initial values in the init matrix

through the end values of the end matrix, is saved in

each transition. For now only a one to one mapping

is allowed (oldMode.x = newMode.z is allowed,

oldMode.z = f(oldMode.x,oldMode.y,. . .)
is planned) which makes the mapping simple. This of

course means that all values necessary to fully initialize

the new mode need to be available in the old mode. In

case a value is not available the modeler can set values

himself in the package. The initialization routine of the

specific simulation environment of the mode is then

used to initialize the whole model. The modeler is

therefore responsible to specify the initialization within

the package to get a stable and continuous solution.

The method then enters a while-loop which only stops

when the user defined stop time is reached. The loop

starts with the user defined start mode with given

initial values. When the simulation stops because of a

specific stop condition the transition to the next mode is

known through the ModelObject. The end values of the

simulation (dsfinal.txt) are then loaded which gives the

end value matrix. The simulation data of the variables

to observe are saved in a result matrix. The new mode

is then used as current mode and the while-loop is

entered again. The mapping which was saved in the

transition is then used to set the initial values of the

current mode.

If the stop time of the simulation is reached the

while-loop is not entered again. After the simulation is

done the observed values are saved in a data-file which

can later on be used to post-process the simulation data.

1.3 Creating variable-structure models

As an example on how the package can be used, we

look again at the pendulum model. First lets consider

the Modelica models needed for the variable-structure

model. The package approach was chosen because we

wanted to be able to use existing models and to reuse the

models afterwards again. The package allows us to use

our old models on its own because they are valid mod-

els, but each model needs a stop condition to be used

as a mode in a variable-structure model so the model

needs to be altered. Modelica with its object-oriented

approach Modelica2010 helps us to keep our old mod-

els as they are and extend our needed modes from the

old models. Figure 4 shows the pendulum model.

Figure 4: Using inheritance for variable-structure modeling.

The two models ‘Pendulum’ and ‘Falling mass’ rep-

resent the original models. The other models are ex-

tended models of the two and have the stop condition

SNE 23(1) - 4/2013

21

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

(here called terminate) added and a variable ‘switch_to’

which specifies the mode that needs to be entered next.

Here it can be seen, that the original models have

not changed and can be used as before only the ex-

tended models now represent the modes in the variable-

structure model .

After the models for the modes are defined the tem-

plate provided in the package is used to define the mode

switches for the variable-structure model .

stop = 10 # stoptime

model = [’Pendelum.mo’] # filename

mode1=’pendel_struc’ #first mode
mode2=’falling_mass_struc’ #second mode
modes=[mode1, mode2] #list of modes
sol=EULER # global solver

SWITCH MODE 1 - > MODE 2
out1=[’x’,’y’,’der(x)’,’der(y)’]
in2=[’x’,’y’,’vx’,’vy’]
transition.append([1,2,out1,in2])

SWITCH MODE 2 - > MODE 1
out2=[’x’,’der(phi)’]
in1=[’x’,’dphi’]
transition.append([2,1,out2,in1])

obs([’x’,’y’],[’x’,’y’])

switch(stop,sol,model,modes,transition,obs)

For each model the name of the modelfile (or files) and

the name of the modes have to be specified. These

modes will later be compiled with Dymola. Afterwards

the transitions have to be defined. A user defines a tran-

sition with the mode numbers of the two modes between

which the transition is. Furthermore, the variables to

read from the old mode (out1 and out2) and the vari-

ables that will be set in the new mode (in2 and in1) have

to be specified. The variable ‘observer’ defines which

variables should be saved in a data matrix at the end of

the simulation. The data of each mode is mapped and

saved in one data matrix (for instance: mode1.x and

mode2.x will be written in one column of the data ma-

trix). The data matrix is per default saved as MAT-File

but the user can specify other output filetypes as well.

All the information is then given to the switch method

which creates the ModelObject and all the mode ob-

jects with their transitions. This template can be used

to specify an arbitrary number of modes and switches

between these modes.

2 Evaluation

In this section we present different variable-structure

models. With these models it is shows how useful

variable-structure models are. We then use an easy

variable-behavior model to analyze the scalability of

the Python package. At the end of this section require-

ments a model needs to fulfill to be used as a mode in a

variable-structure model are discussed.

2.1 Variable-detail models

To show that variable-detail models can save simula-

tion time we look at a diesel combustion engine model,

see Figure 5. In this model the environment pressure

changes every five seconds and thus the pressure of the

manifold changes. When the pressure of the manifold

and environment are almost the same the throttle and

manifold are not necessary anymore and can be taken

out. When the pressure changes again the model has

to become more detailed again to simulate the dynamic

pressure change in the manifold.

Figure 5: Schematic view of a diesel combustion engine
variable-detail model.

The measured simulation times can be seen in table 1.

Here the simulation times of the model with only one

level of detail and with two levels of detail are pre-

sented. The model is always simulated for 20 sec-

onds and has 7 mode switches. The Compilationtime
is the time needed to compile the Dymola models and

the Residualtime is the time the script needs for start-

ing the simulation, setting initial values and so on. The

variable-detail model takes less time than the one level

of detail model even though two compilations are nec-

essary and the residual time is larger. This leads to the

SNE 23(1) - 4/2013

22

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

conclusion that variable-detail models can make a sim-

ulation faster. We also compared the results of the cylin-

der pressure and temperature and the difference was less

than half a percent which shows that we were able to

make the simulation faster without significant loss of

accuracy.

Stop time One detail Variable detail
20sec /7 switches Dymola Dymola/Python
Simulation time 17 7.3

Compilation time 1*1.2 = 1.2 2*1.2 = 2.4

Residual time 1 2.3

Total time 19.2 12

Table 1: Simulation time for the diesel combustion engine in
seconds.

2.2 Variable-behavior models

As an easy variable-behavior model we present a

bouncing ball model. Here the bouncing ball does not

just change its velocity when it hits the floor but be-

comes a spring and damper system which means the

ball is elastic and bounces differently depending on the

damping constant. Figure 6 shows the bouncing ball

results with different damping constants. Interesting is

that the ball can never fall below the surface as hap-

pens if only a ‘when’ statement n which the velocity is

negated and multiplied by a factor (without extra pre-

cautions) is used in Modelica.

Furthermore, the deformation of the ball can now be

modeled dependent on the current velocity of the ball,

which makes the model more realistic. As a model with

more than two transitions we present a breaking pendu-

lum model where the rope can get stuck on a nail. The

model is simplified to make it easier to understand:

• The pendulums suspension point is (0,0)

• The nail position is x ≤ 0 and y < 0 (‘nailPoint’)

• The falling mass model is valid left of the nail

The simplified model is shown in Figure 7 (only a few

important variables are shown in this view).

We still have two modes but when the rope passes the

angle where the nail is located the rope length changes

and therefore the suspension point of the pendulum. We

make a mode switch into the same model but change the

model parameters. If the centrifugal force goes below

Figure 6: Simulation result of the center point of the
bouncing ball variable-structure model .

Figure 7: Constrained and breaking pendulum
variable-structure model .

zero the pendulum becomes a falling mass otherwise

it either turns around the nail or becomes the normal

pendulum again. Figure 8 shows different movements

of the pendulum for different start values of the angular

velocity (dphi (rad/sec)) and the damping constant (D

(N sec/m)). The normal suspension point and the nail

are markedy as dots.

2.3 Scalability of the simulations

The scalability is always an issue with programs as pre-

sented here especially if one goal is to save simulation

time. To test if the scripting approach with Python

scales with the number of switches and the number

of variables for initialization two different tests were

made. For both test a bouncing ball model is used which

has a transition to itself as soon as the ball touches the

ground. The velocity is then negated and we have a ball

that never stops bouncing.

SNE 23(1) - 4/2013

23

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

Figure 8: Simulation results of the breaking pendulum
model with nail.

This model has only 2 statevariables (height,velocity)

and these have to be initialized for each mode switch.

As first test this model is simulated with 10, 100, 1000,

10000 mode switches, see table 2. It can be seen that

the simulation time scales with the number of switches

and it can also be seen where most of the time is lost.

Switch overall mapp while-loop
time time CPU dymosim read init

10 0,64 0,046 0,02 0,33 0,22 0,02

100 5,21 0,039 0,10 2,90 1,98 0,17

1000 55,34 0,049 0,68 30,38 22,35 1,79

10000 544 0,039 6,20 298,00 220,22 18,33

Table 2: Simulation time for many switches in seconds.

The start of the dymosim.exe takes up a long time, but

we do not have any means to change anything on the dy-

mosim.exe routine (each time the executable is started

the license is checked, which also takes up time). The

other part that takes a long time is the reading of the

end values of the old mode. In the implementation the

dsinfinal.txt (which holds the end values of the simua-

tion) is changed into a Matlab file, because it is easier to

load. This process does take up a long time and we are

currently trying to find a better solution. The other mea-

sured times are the CPU time which is the time the sim-

ulation runs, the init time is the time it takes to set the

initial values in the initial file. This of course is a rather

drastic example because the idea of variable-structure

models is to use larger models with a long CPU time

and a few switches and not a model with almost no CPU

time and many switches.

As second example we use the same bouncing ball

but this time we create an array with many of these

balls. We always simulate for 10 switches but with

10, 100, 1000, and 10000 bouncing balls. This leads to

many statevariables which have to be initialized. Now

we see in table 3 that the CPU time takes up most of the

time, which was to be expected from larger models. We

see that finding the mapping at the beginning of the sim-

ulation takes up a long time. There it can be seen that it

is feasible to search the mapping once at the beginning

and not for each switch because the needed time would

be even greater. All other measured times are rather in-

significant compared to the large CPU time.

We see here that there is still some improvement nec-

essary for the index search but otherwise the approach

seems good for large models.

Balls overall mapp while- loop
time time CPU dymosim read init

10 5,00 0,06 0,4 4,3 0,17 0,02

100 6,75 0,07 0,23 5,5 0,24 0,45

1000 14,93 2,4 7,4 4,03 0,21 0,61

10000 322,27 62,15 252,2 5,47 0,77 0,85

Table 3: Simulation time for large models in seconds.

2.4 Model requirements

After introducing the Python package, its design, and

presenting examples of variable-structure models we

are now discussing the most important requirements for

variable-structure models with our Python package.

Looking at the scalability test it is clear that it is not

feasible to create variable-structure models with lots of

mode switches especially if the models them self are re-

ally small. Many switches lead to an overhead in simu-

lation time through the scripting. For variable-behavior

models this might still be reasonable because one might

otherwise not be able to simulate the system at all.

Another problem with many mode switches is the

initialization of the new mode. Each time a switch oc-

curs an initialization problem has to be solved. If the

values are chosen incorrectly or cannot be calculated

from the old mode the numerical solution might be-

come wrong or even instable. The initialization is there-

fore a great issue for variable-structure models and it is

only possible to switch from one mode to the next if the

new modes statevariables can be calculated through the

SNE 23(1) - 4/2013

24

A Mehlhase A Python Package for Simulating Variable-Structure Models with Dymola

variables of the old mode. This means not all models

are fit to be used as modes in variable-structure models.

For variable-detail models it is important that the

models have a CPU time which is greater than the time

the script consumes and also that the less detailed model

at least compensates the scripting time otherwise no

simulation time can be saved.

3 Conclusion and Future Work
Our approach is not able to re-causalize only the needed

equations or to have a just-in-time compiler as some

other language and tools for variable-structure mod-

els have but we are able to use a common simulation

environment for our simulation and therefore use the

strength of this tool.

We can use a tool like Dymola and give modelers

the opportunity to test if variable-structure models are

feasible for them.

Our approach helps to easily create variable-

structure models from existing models and use easy

means to describe the models. We therefore hope

that with our Python package knowledge of variable-

structure models can be gained.

In the future the package will be enhanced to a

framework which will support different simulation tools

and a graphical user interface. The framework should

enable the user to use models from different tools as

modes.

With the planned framework researches are planned

on what a tool needs to be usable for variable-structure

modeling and when variable-structure models should be

used to be feasible.

References
[1] MATLAB/Simulink Release 2010b, The MathWorks,

Inc., Natick, Massachusetts, United States.

[2] dynasim: Dymola [Internet]. Dassault Systèmes

c2002-2014 [cited 2014 Dec]. Available from:

www.dynasim.se

[3] Nytsch-Geusen C., Ernst T., Nordwig A. et al. Mosilab:

Development of a modelica based generic simulation

tool supporting model structural dynamics. In G.

Schmitz, editor. Proceedings of the 4th International
Modelica Conference; 2005 Mar, TU Hamburg,

527–535.

[4] Zimmer, D. Equation-Based Modeling of
Variable-Structure Systems [dissertation]. [Swiss

Federal Institute of Technology (CH)]. ETH Zürich;

2010.

[5] Nilsson H, Giorgidze G. Exploiting structural

dynamism in Functional Hybrid Modelling for

simulation of ideal diodes. Proceedings of the 7th
EUROSIM Congress on Modelling and Simulation;

2010; Prague: Czech Technical University Publishing

House.

[6] Urquia A., Dormido, S. Object-oriented description of

hybrid dynamic systems of variable structure.

Simulation. 2003; 79(9): 485–493.

[7] Mehlhase, A. Varying the level of detail during

simulation. ASIM 2011, Symposium
Simulationstechnik; 2011.

[8] Elmqvist H, Cellier F.E., Otter, M. Object-oriented

modeling of hybrid systems. Proc. 1993 European
Simulation Symposium; 1993; Delft.

[9] MOSILAB [Internet]. 2011 [cited 2014 Dec]. Available

from:

http://mosim.swt.tu-berlin.de/wiki/
doku.php?id=projects:mosilab:home

[10] Nordwig, A. Integration von Sichten für die
objektorientierte Modellierung hybrider Systeme
[dissertation]. [Institut für Softwaretechnik und

Theoretische Informatik (DE)]. Technische Universität

Berlin; 2003.

SNE 23(1) - 4/2013

