
S N E T E C H N I C A L N O T E

 SNE 22(3-4) – 12/2011 169

Construction and Implementation of a Simple Agent-
Based System on GPU-Architectures

Günter Schneckenreither1,2 *, Stefan Hepp2, Daniel Prokesch2
1 dwh Simulation Services, Neustiftgasse 57-59, 1070, Vienna, Austria; *guenther.schneckenreither@dwh.at
2 Mathematical Modelling and Simulation Group, Inst. f. Analysis and Scientific Computing, Vienna University of

Technology, Vienna, Austria40 Vienna, Austria

Abstract. Agent-based modelling and simulation is still an
upcoming approach for microsimulation. But a large num-
ber of agents with advanced dynamics and interactions
requires sophisticated algorithms and lots of computa-
tional effort. We try to implement a rather simple but spe-
cial agent-based model model on GPU-architectures
(graphics processing unit). This contribution presents the
GPU implementations and and investigates its practicabil-
ity. Results show that implementation of agent-based sys-
tems on a GPU-architecture can deliver enormous speed-
ups. Depending on the detailed structure of the system
highly advanced algorithms deliver another great perfor-
mance-boost. The combination of both approaches can
deliver up to 1.000 times faster execution of the same
simulation.

Introduction
Agent-based models are usually applied when global
behaviour of a system is best described by the micro- or
macroscopic dynamics of a large set of similar but indi-
vidual objects. These unique objects are called agents
since their properties change individually and depend on
the agents specific field of vision of the global system.
A typical area of application is for example socio-
economics. Every individual of a population can be rep-
resented by an agent with distinct features based on sta-
tistical data.

A large number of agents with advanced dynamics
and interactions requires sophisticated algorithms and
lots of computational effort. We try to implement a ra-
ther simple but special model on GPU-architectures
(graphics processing unit), which are optimized for
highly data-parallel operations. Our goal is to investi-
gate the practicability and finally use such advanced
programming techniques in order to increase the capaci-
ty of agent-based models.

1 Definition of the Test Model
The test model is a rather simple spatial system of mov-
ing agents. On a two-dimensional domain two sets of
agents interact with each other depending on their dis-
tance. The first set are so-called ‘signposts’, whose posi-
tions are arranged at initialization and do not change
over the course of simulation. Besides a fixed position
the signposts hold a second static vector, which collec-
tively defines a flow field on the domain. The second
type of agents are referred to as moving agents since
they hold two vectors which define their position and
velocity.

In a simple scenario the evolution of the system is
purely explicit and consist of two operations which are
applied on the moving agents. The first operation
changes the position of the agents according to their ve-
locity:

The second operation recalculates the velocity depend-
ing on the current velocity and the flow-field-vectors of
‘neighbouring’ signposts. The term ‘neighbourhood’
originates from cellular automata and defines a
weighted set of interacting signposts for each moving
agent. The neighbourhood-function can be for example
a two-dimensional bell-shaped curve (normal distribu-
tion) or any other function, which describes a decaying
likelihood of interaction.

Due to performance issues the neighbourhood-
function may have a maximal radius for non-zero
weights (compare search algorithms below). Once all
weight factors ij, j ∈ {1, …,k} for a moving agent ai
are calculated, the velocity changes according to an up-
date function:

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 22(3-4), 2012, 169-176 | doi: 10.11128/sne.22.tn.10153

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 170 SNE 22(3-4) – 12/2012

TN
For agent-based systems the dynamics of different

agents are usually mutually dependent. In this case the
signposts would additionally change their properties ac-
cording to a set of neighbouring moving agents. This
type of coupled relation would for example occur if the
motion of agents should obey or at least approximate
physical flow of particles or a fluid etc., but is not focus
of this investigations. To highlight the lack of such ad-
vanced properties we arrange a circular flow-field
(flow-field vectors are tangential to the circular flow)
and show that the moving agents drift from the centre to
the boundary of the domain.

2 GPU-Architecture and Hardware
In the past decade a variety of new parallel computing
architectures have been developed. Besides parallelisa-
tion on multiple CPUs (central processing unit), CPU
cores or even physical machines it is possible to use
graphics devices for performing calculations in parallel.
This strategy is known as GPGPU (general-purpose
computing on graphics processing units). Some of the
most common architectures are CUDA (compute uni-
fied device architecture) for NVIDIA graphics devices
[1], AMD FireStream for ATI devices [2] and OpenCL
(open computing language), an abstraction layer for ac-
cessing the calculating capacity of multiple hardware
devices [3]. The advantage of GPUs is the high
throughput on data-parallel operations. On the other
hand implementation is more complicated since the
physical structure of the device is crucial for construct-
ing the algorithm.

We use C++ and CUDA on a machine with the fol-
lowing specifications: ‘AMD Athlon Phenom II 920’
processor at 2.8Ghz, 3 GB of working memory and the
consumer graphics device ‘NVIDA GeForce GTX 260’
with 896 MB GDDR3 on-board memory using a 448-bit
memory interface at 2.2Ghz, and a GT200b core with
24 streaming multiprocessors (SM), running at a core
clock of 633Mhz with a shader clock of 1.4Ghz, provid-
ing Compute Capability 1.3 with CUDA Toolkit 2.3 and
NVIDIA driver version 196.21.

A single SM executes one or more threadblocks
consisting of maximally 512 threads [4, Sect. A.1.1].
Threads in a thread block are executed in groups of 32
parallel threads (thread warps) and execute the same in-
struction path. Executing different control flows within
a warp (by predicated execution) reduces performance.

Major performance gain can be achieved through re-
ducing and optimizing memory operations [5]. Several
memory spaces are available within the CUDA pro-
gramming architecture:

• Host memory: This is the RAM (random-access
memory) used by the CPU only. Transfer of data to
the GPU memory is rather expensive and happens
through a PCIe bus with about 5 GB/s.

• Global device memory: This type of memory is at-
tached to the GPU and provides a bandwidth of 50 to
80 GB/s. Copying from and to the (pinned) host
memory can happen simultaneously to execution of
code. Access to global memory is not cached and has
a high latency, but this can be be hidden efficiently
by using a large number of threads.

• Constants and texture memory: This type of memory
is cached by the SM and provides fast read access.
We use textures for the signpost data and the acceler-
ation structures since they are modified infrequently.
The maximum size of a texture is limited to 216 by
215 texels for 2D textures, however this is enough to
store up to 231 signposts.

• Shared memory: Every thread can use up to 16 KB of
shared memory, which has a very low latency and al-
lows communication between threads in a thread
block but not different kernels.

• Registers: Every multiprocessor provides 8192 or
16384 32-bit registers in total which are shared be-
tween all threads of all thread blocks.

The number of available registers as well as the absolute
maximum numbers for active warps, threads and blocks
per SM depend on the ‘Compute Capability’ of the
GPU.

The number of threads per thread block is further
limited by the number of registers required for a thread
block, which is determined by the number of registers
used by the kernel multiplied by the number of threads
per block and must not exceed the number of registers
available on a SM.

The number of active blocks per SM is also limited
by the sum of register and shared memory requirements
of the blocks. [4, Sect. 4, 5.2, App. A].

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 SNE 22(3-4) – 12/2011 171

T N
3 Implementation on the GPU-

Architecture
Additionally to the statements in Section 1 on coupled
relations, exchange between the host system and the
GPU are neglected. A simulation might require to store
intermediate results on the hard-drive or to exchange da-
ta with another sub-model, which is not executed on the
GPU. Such structures depend on the model and require
balancing of computing time and accuracy [6]. The
simulation is executed and visualized exclusively on the
graphics device since we are interested in the basic per-
formance of a GPU simulation.

There are two basic strategies for implementing the
neighbourhood approach:
1. For each signpost, find all agents within the neigh-

bourhood.
2. For each agent, find all signposts within the neigh-

bourhood.
In the first case it is possible that multiple signposts try
to update the velocity vector of the same moving agent,
which would require performance decreasing synchro-
nization mechanisms. Additionally, the second approach
makes it more comfortable to implement optimized data
structures for finding neighbouring signposts because
their position does not change during simulation. Such
data structures can be pre-calculated before the actual
simulation and are discussed later on.

The following initialization steps are required:
1. Load or generate initial positions and velocities.
2. Generate the acceleration data structures for the

neighbourhood search depending on the algorithms
described below.

3. Copy all signpost and agent data to the GPU and ini-
tialize any constants and textures used by the kernels.

During simulating the kernel applies two operations per
agent and time-step:
1. Find all signposts b1,…,bk which influence the agent

ai at position xi(t).
2. Calculate the new velocity vector vi(t+1) and the new

position xi(t+1) for agent ai.
Performance of the second operation is determined by
the number of memory reads required to collect the ve-
locity vectors of all neighbouring signposts. This num-
ber (k·C) is not constant but bounded by the total num-
ber of signposts.

The time-critical operation is finding all signposts
that influence a given moving agent. For this task sever-
al algorithms were implemented and compared.

3.1 Linear Search
The simplest method for finding all signposts within a
certain radius of an agent is to walk through the list of
all signposts and compare the distance. Velocity vectors
of appropriate signposts are added to the velocity vector
of the current agent and then divided by k+1, where k is
the number of neighbouring signposts (linear non-
weighted influence).

The advantage of this approach is that all threads
perform equal memory reads from the signpost array
and thus can be cached very efficiently using texture
memory. Furthermore, only a few instructions are need-
ed to perform the lookup and there is almost no diver-
gent control flow.

The only difference in control flow between threads
arises when the influence of a signpost which is not
within the neighbourhood region of a moving agent is
ignored. On the other hand every agent needs to read
and process each signpost in every step. The perfor-
mance is therefore (n·m) for n agents and m signposts.
Even for small m this method is slower than using a uni-
form grid.

3.2 Uniform Grid Search
In order to speed things up the domain is divided into a
regular grid. The cell index of an agent or a signpost can
quickly be determined without any memory lookups
(except for the constants specifying the grids structure).
Prior to the simulation the list of all signposts is sorted
by cell index so that signposts of the same cell are
stored consecutively. An additional index array stores the
index of the first and the last signpost of each grid cell.

If the cell size is greater or equal to the neighbour-
hood radius only signposts in the same cell as the agent
and in at most three adjacent cells can affect the motion
of the agent. The adjacent cells which need to be
checked can be determined by comparing the distance
of the agent to the borders of its cell with the neigh-
bourhood radius (no lookups into global memory except
for cached constants).

To calculate the new velocity of an agent (from its
cell index) the index of the first and the last signpost in
each of the four ‘neighbouring’ cells is taken from the
index array.

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 172 SNE 22(3-4) – 12/2012

TN
The signposts which actually influence the agent are

then searched in the four resulting lists of signposts us-
ing a linear search as described above.

If there are at most k signposts in each cell, at most
4·k signposts are checked for every agent in every step,
therefore the performance of this algorithm is of order
O(4n·k)for n agents.

This method works best if all signposts feature the
same neighbourhood structure (as it is the case in this
simulation) and if they are distributed uniformly without
areas of strong aggregation. Generally a dense distribu-
tion leads to a larger value for k, whereas a sparse dis-
tribution can lead to empty cells and memory consump-
tion in the index array.

If the grid diameter is smaller than the neighbour-
hood radius, more cells have to be checked for neigh-
bouring signposts but fewer signposts must be neglect-
ed. However, since every agent still needs to find and
process all signposts within its radius, a very small cell
size cannot reduce the number of memory reads below
the number of signposts affecting the agent but intro-
duces a larger overhead for index array reads.

Assuming that the influence of the signposts does
not depend on the distance between the agent and the
signpost, a smaller grid size could still improve the per-
formance for dense distributions. For every cell the ve-
locity vectors of all signposts which completely overlap
the cell can be accumulated and stored in advance, thus
reducing the number of individual signposts needed to
be checked during simulation.

The algorithm to sort the signposts and create the in-
dex array can also be implemented efficiently with
CUDA using the following algorithm (compare [7]):

1. Allocate a memory array for the index array.

2. For every signpost, calculate its grid cell index based
on its position. Clearly this can be done by starting a
kernel for every signpost.

3. Sort the signposts regarding to their cell index. This
can be done on the GPU e.g. by using the radix-sort
implementation of the CUDA Thrust library.

4. For every grid cell, find the index of the first and the
last signpost in the sorted signpost array. This can be
done by starting a thread for every signpost.

Since the index calculation can be done entirely on the
GPU, this algorithm can also be used to handle moving
signposts or to let the agents interact with each other.

3.3 Balanced Tree Search
To tackle the memory overhead for non-uniform sign-
post distributions, a third search method was imple-
mented using cells with variable size.

Instead of a uniform grid a kD-tree is constructed so
that each leaf has the same depth and each subdivision
of an area is done so that the two new areas contain
roughly the same number of signposts while keeping the
cell size larger than the signpost diameter.

The algorithm is similar to the uniform grid search
method, except that finding an agents cell requires
log2(m) memory read operations to descent the kD-tree,
where m is the overall number of cells. Again adjacent
cells need to be checked if the distance of an agent to
the cell border is smaller than the neighbourhood radius.
This search is more complex but can be pre-calculated
for every cell.

Early tests have shown that even if the signposts in
adjacent cells are not checked, the cell search algorithm
leads to a decreased performance compared to the uni-
form grid approach. The only benefit could be that in a
non-uniform or sparse distribution fewer cells are need-
ed to get the same maximum number of signposts per
cell. But even a 2048 by 2048 cell uniform grid, which
is more than enough for our purposes, requires only
about 33Mb of additional memory for the index array.
Therefore the implementation of this search method was
not completed in favour of the uniform grid search.

3.4 Caching and Other Search Algorithms
A cache could be used to reduce the number of sign-
post-checks. The only memory space where a persistent
cache between two kernel executions can be imple-
mented is global memory. The cache must have a fixed
size because resizing allocated memory is not possible
during kernel execution and allocating memory is a
costly operation.

Consequently implementing a cache is beneficial on-
ly if accumulated influences can be calculated for mul-
tiple time steps and the resulting information does not
require too much memory space. Since signpost influ-
ences can vary frequently it is difficult to calculate and
store useful cache data without much overhead. In
sparse distributions only few signposts need to be
checked. Thus even a cache hit can result in more
memory operations compared to an implementation
without cache.

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 SNE 22(3-4) – 12/2011 173

T N
Other alternatives to search for signposts are a k-

Nearest-Neighbour (k-NN) search or a range search
combined with storing the signposts as nodes of a kD-
tree. However this has similar advantages and draw-
backs as the balanced tree search; additional index ar-
rays are not required but an additional log2(m) overhead
in memory reads and a stack for the tree lookups is re-
quired.

This could be implemented using bit-arrays which
can be stored in registers or shared memory to avoid
costly global memory access if the traversed tree is a bi-
nary tree and the maximum tree depth is fixed at com-
pile-time.

The control flow and the memory access pattern can
diverge greatly between consecutive threads, which has
a negative performance impact for CUDA kernels.
Therefore the benefit of such more complex algorithms
compared to the uniform grid search is a lower memory
requirement for large and sparse datasets and the ability
to search for arbitrary ranges at the cost of more com-
plex algorithms which require more control flow, arith-
metic and memory operations. Arbitrarily deep trees
cannot be handled due to the lack of dynamic data struc-
tures in the CUDA architecture.

As already mentioned before, both signposts and
agents can be sorted by a grid cell index on the GPU. If
this is done for every simulation step, this can be used
for several things. If the signposts are sorted, they can
be moved around while keeping the acceleration data
structures up-to-date. If the agent array is sorted, agents
can interact with each other efficiently.

An additional benefit of sorting the agents is that
consecutive agents will usually fall into the same grid
cell and therefore threads calculating the next step of
consecutive agents will have a similar control flow and
perform similar memory reads which the hardware is
able to coalesce into a single read or at least increase the
likelihood for a cache hit for texture memory reads.

As an additional optimization data required by all
threads for agents in the same cell like the list of sign-
posts in this cell can be cached in shared memory, thus
speeding up random reads of the same data by multiple
threads. However the performance impact of this opti-
mization has not been tested.

4 Further Technical Details and
Visualization

For debugging and comparison purposes, two simula-
tion kernels have been implemented. The first imple-
mentation uses the CPU exclusively, the second kernel
transfers all data to the GPU memory at initialization
and performs the simulation including visualization en-
tirely on the GPU. If the CUDA simulation results
should be written to disk, the agent array needs to be
written back to the host memory for every frame which
should be stored.

During development and for analysing results of a
simulation – especially in the case of a spatial model – it
can be very useful to have a decent front-end for visual-
izing the dynamics of the system. Such a front-end was
build using OpenGL. Several features of the system can
be displayed or masked during simulation. The sign-
posts and optionally the grid are pre-rendered once into
a texture using an OpenGL frame-buffer. For the agents,
three different modi have been implemented.

Moving agents are either rendered as soft points
with three pixel radius using OpenGL and supplying the
coordinates and colour of the agents as a vertex array, as
simple triangles, again using OpenGL and vertex-arrays,
or by drawing the agents as single pixels into a texture
buffer and displaying the texture. In all three modi, the
data is written either by the CPU to a memory-mapped
OpenGL buffer, or – if CUDA is used – directly from
graphics card memory to an OpenGL buffer in the
graphics card memory using a CUDA kernel and the
CUDA OpenGL interoperability methods.

In the render-to-texture mode a simple scatter algo-
rithm is used, i.e. for every agent a kernel is started
which writes the pixel at the agents position. This can
result in multiple writes to the same pixel, where the or-
der of the writes is random for the CUDA implementa-
tion, which can lead to rapid colour changes between
frames (on the CPU, all agents are processed in serial,
so there are no conflicts due to concurrency).

A better approach for the CUDA implementation
would be a gather algorithm, similar to the algorithm
used to create the index array of the uniform grid
search. However, since the performance of the OpenGL
implementation using vertex-buffers is as fast as the
current render-to-texture implementation, the more
complicated gather algorithm was not implemented.

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 174 SNE 22(3-4) – 12/2012

TN

The speed of the agents is visualized using the col-
our of the points or triangles, ranging from red for slow
agents to green for fast agents (Figure 1).

 CPU GPU

Agents Points Trian-
gles

Tex-
ture Points Trian-

gles
Tex-
ture

10,000 1.5 2.0 3.5 2.1 2.2 2.3

1,000,000 90.0 220.0 70.0 8.0 18.0 7.0

Table 1: Additional overhead needed for rendering.

5 Results
To measure the performance of the implementation, the
average computation time per step was measured. For
all measurements, the same setup was used: The sign-
posts are placed randomly in a rectangular field direct-
ing the agents into circular motion, the agents are placed
randomly on the domain and boundary conditions are
reflective. Visualization has been disabled for these
benchmarks.

Using a uniform grid data structure with 100 cells
increases the performance even for a relatively low
number of signposts (Figure 2). Between the CPU and
the GPU implementation, speed-ups between 70 times
to 100 times can be observed for the linear search ap-
proach. If a uniform grid is used, the GPU is about 50 to
70 times faster than the CPU implementation. As ex-
pected the simulation time is linear in the number of
agents. For CUDA, a small constant overhead can be
observed for less than 100,000 agents.

Figure 2. Calculation time depending on the number
of agents.

Figure 1. Few agents represented as triangles (left) and 1,000,000 agents
drawn as pixels (right).

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 SNE 22(3-4) – 12/2011 175

T N

Observing the average time per simulation step over the
number of signposts exhibits the same linear behaviour.

For the linear search again a speed-up of about 100

times can be achieved by CUDA. For the grid search the
speed-up is again lower between a factor 10 and 20.

For the linear search approach all kernels perform
the same memory reads in the same order and therefore
can be coalesced and cached more effectively than for
the grid search approach which issues memory reads in
a more random fashion (this could be tackled by sorting
the agents by their grid cell index).

Figure 3. Calculation time depending on the neighbourhood
radius for a large number of agents.

When a grid is used with k cells to speed up the signpost
search for m signposts, only signposts will be
checked on the average per step by every agent instead
of all m signposts.

This leads to a speed-up of the simulation (except
for a higher memory access penalty due to more random
memory reads).

If the grid cells are made as small as possible, i.e.
the diameter of the neighbourhood, the simulation time
increases quadratically with the signpost diameter and
linearly with the number of signposts, as shown in Table
2 and Figure 3.

Development (familiarizing with CUDA and imple-
mentation) took about 6 man-weeks for advanced pro-
grammers. The additional CPU-only implementation
imposed nearly no additional overhead since the code
for the CPU implementation and the CUDA kernels is
quite similar, and simplified debugging the algorithms.

6 Conclusions
Results show that implementation of agent-based sys-
tems on a GPU-architecture can deliver enormous
speed-ups. Depending on the detailed structure of the
system highly advanced algorithms as discussed in Sec-
tion 4 deliver another great performance-boost. The
combination of both approaches can deliver up to 1,000
times faster execution of the same simulation.

Of course the applicability of both GPGPU and ad-
vanced search algorithms depends on the model itself.
In general every model requires distinct implementation
techniques, which are often more complex than a
straight-forward implementation. However, depending
on the structure of a model higher implementation effort
can be very profitable.

Agents Signposts Radius CPU (ms) GPU (ms) Signposts/Cell Speed-up

 0.001 33.8 0.5 0.025 68

 0.0032 37.0 0.7 0.250 53

10 10 0.01 93.6 3.8 2.500 25

 0.032 603.7 30.1 25.000 20

 0.1 5224.0 213.1 250.000 25

10 10 0.001 652.5 10.3 0.250 63

10 10 0.001 4966.8 187.0 0.250 26

Table 2. Performance depending on number of agents and neighbourhood radius.

 G Schneckenreither et al. Agent-Based System on GPU-Architectures

 176 SNE 22(3-4) – 12/2012

TN
The test model inhibits a unidirectional structure,

which is predestined for applying highly parallel tech-
niques. But also large spatial agent-based models with
coupled relations can be improved using a (uniform)
grid approach or search trees.

Depending on the interaction of agents static accel-
eration data structures can be used, but also dynamic
look-up tables can be more efficient than a linear search
approach.

The crucial performance gain for all approaches can
be achieved by optimizing memory access.

References
[1] www.nvidia.com/object/cuda_home.html
[2] ati.amd.com/technology/streamcomputing
[3] www.khronos.org/opencl
[4] ‘NVIDIA CUDA Programming Guide 2.3.’

NVIDIA Corporation, October 2009.
[5] ‘NVIDIA CUDA Best Practices Guide 2.3.’

NVIDIA Corporation, July 2009.
[6] Stam, J. (2009). Maximizing GPU Efficiency in Extreme

Throughput Applications. Video Presentation presented
at the NVIDIA GTC09, October 2009.

[7] Tonge, R. (2009). . Spatial Data Structures for Massively
Parallel Computing.Video Presentation presented at the
NVIDIA GTC09, October 2009.

Submitted: March, 2011
Revised: July 15, 2012
Accepted: October 10, 2012

