
S N E T E C H N I C A L N O T E

 SNE 22(3-4) – 12/2012 163

Software for Higher-order Sensitivity Analysis of
Parametric DAEs

Moritz Schmitz1*, Ralf Hannemann-Tams1, Boris Gendler2, Michael Förster2,
Wolfgang Marquardt1, Uwe Naumann2

1 Aachener Verfahrenstechnik, Process Systems Engineering, RWTH Aachen University,

Templergraben 56, 52056 Aachen, Germany; *moritz.schmitz@avt.rwth-aachen.de
2 LuFG Informatik 12: Software and Tools for Computational Engineering , RWTH Aachen University, Germany

Abstract. We introduce AC-SAMMM (The AaChen plat-
form for Structured Automatic Manipulation of Mathe-
matical Models), a new software infrastructure for effi-
cient transformation and evaluation of expressions and
their higher-order derivatives. We describe the way this
software can be used to perform automatically the trans-
lation of a model written in an equation-oriented lan-
guage like Modelica into a subset of C/C++ and the gener-
ation of the model’s higher-order derivative code by algo-
rithmic differentiation (AD) techniques. The derivatives
are generated, using the derivative code compiler (dcc), an
AD tool which provides source code transformation for a
restricted but numerically relevant subset of C/C++. dcc
can be applied repeatedly to its own output, to generate
derivative codes of arbitrary order.

Introduction
Many engineering applications exhibit the need of mod-
eling and simulating increasingly complex problems.
Therefore, many high-level equation-based modeling
languages like Modelica (www.modelica.org), gPROMS
(www.psenterprise.com/gproms) and SBML (sb ml. org)

have been developed to formulate mathematical mod-
els in an intuitive, equation-based representation that
enhance model development and maintenance. The
usage of these models in different kinds of optimization
problems be- comes increasingly important.

These problems include model parameter estimation,
op- timal design of experiments for parameter estima-
tion or model structure discrimination, design optimiza-
tion, model-predictive control and real-time optimiza-
tion. The solution of each of these problems typically
requires the evaluation of symbolic expressions involv-
ing different type and order of derivatives [6], that are in
general not provided by the modeling tools.

To bridge this gap, the software package AC-
SAMMM (The AaChen platform for Struc-tured Auto-
matic Manipulation of Mathematical Models) has been
jointly developed by AVT.PT (Process Systems Engi-
neering) and STCE (Software and Tools for Computa-
tional Engineering) at RWTH Aachen University.

The aim of this project is to provide a software plat-
form that generates robust, well-documented, and highly
optimized model and derivative code by automatic ma-
nipulation of mathematical models independently of the
model representation language used.

1 AC-SAMMM Introduction
Applying the AC-SAMMMis platform, by means of
algorithmic differentiation [5, 9], the user is able to
generate higher-order derivatives of parametric semi-
explicit index-1 differential-algebraic equations,

(1)

in an automatic manner. Here, t denotes the independent
(time) variable, x(t) Rnx the differential or state varia-
bles, y(t) Rny the algebraic variables and u(t, p) Rnu

the inputs which are parameterized by some parameters
p Rnp for convenience and without loss of generality.

Additional drivers are provided that support the effi-
cient evaluation of the generated derivatives and the
original mathematical model. The generated code is
compiled into a dynamic link library or a shared object
that can be accessed by third- party software (e.g. opti-
mization and simulation software) via an C++ interface.

As illustration of the importance of fast and accurate
higher-order derivatives, we consider optimal control
problems and their solution by means of control vector
parameterization (cf. Brusch [2]).

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 22(3-4), 2012, 163-163 | doi: 10.11128/sne.22.tn.10151

 M Schmitz et al. Higher-order Sensitivity Analysis of Parametric DAEs

 164 SNE 22(3-4) – 12/2012

TN
In optimal control, the user has to control a dynamic

process such that an objective function is minimized or
maximized and usually some process constraints have to
be satisfied. We consider the following class of Mayer-
type optimal control problems (OCP), already discre-
tized by means of control vector parameterization, re-
sulting in the finite-dimensional nonlinear program
(NLP).

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

This NLP is typically solved by gradient-based optimi-
zation methods such as SQP or interior point solvers. In
general, these solvers need at least first-order deriva-
tives of the objective function and the constraints and
sometimes also second-order derivatives to form the
corresponding Hessian of the Lagrangian. Therefore, an
efficient and accurate calculation of these derivatives is
fundamental when it comes to fast and accurate numeri-
cal calculations.

The paper is organized as follows. First, the typical
workflow of AC-SAMMM is presented. Then, we ex-
plain the design of the dcc-generated derivative codes
and show how they are called in an efficient way. In
Section 4, details about the workflow and the func-
tionality of the ESO are presented. Section 5 discusses
an application of AC-SAMMM to a small OCP. Sec-
tion 6 concludes the paper and gives directions for fu-
ture development.

2 Typical Workflow in AC-SAMMM
Today, AC-SAMMM is able to translate mathemati-

cal models written in flat Modelica code into C- code
using Mof2C- (a parser developed at AVT.PT) and to
generate derivative code of arbitrary order by applying
the AD-tool dcc [12] (developed at STCE) to the gen-
erated code.

Flat Modelica prescribes code where all object-
oriented and hierarchical features of Modelica are elim-
inated (‘flattened’). Though not really standardized in
the language specification, the flattening process is
considered to be part of all executable Modelica simula-
tion environments (see [8, Chapter5]). C- is a small
subset of the programming language C/C++. Additional
algebraic manipulations will be applied and a highly
optimized dynamic library will be obtained.

After the application of AC-SAMMM the original
model information and additional derivative information
(restricted to second- order derivatives today) are stored
in the dynamic library. The access to this information is
managed by a so-called Equation Set Object (ESO)
which is an instance of a standardized C++ class.

The AC-SAMMM ESO is slightly modified variant
of the ESO specified by the CAPE-OPEN organization
in [11]. This ESO encapsulates all calls to the model
residuals and related derivative functions and can be
interfaced to different applications. The typical work-
flow of generating such an ESO is shown in Figure 1.

Figure 1. Workflow of AC-SAMMM. The flat Modelica code is

translated to C- by Mof2C-. The C- files contain the residual function
and some utility functions providing amongst others the variable and

parameter names and the initial values for the variables
(if algebraic variables are existent, their initial values are not

necessarily consistent with the algebraic equations). In a second step,
the residual function is differentiated by dcc. Finally all generated

functions are compiled into a dynamic library defining the ESO-
functions. The ESO defines the interface to third-party applications.

3 The Derivative Code Compiler dcc
For the reasons stated in Section 1, most optimization
tools need higher-order derivatives of the dynamic
model. AD source code transformation provides deriva-
tive code of arbitrary order. The derivative values com-
puted by this code are accurate up to machine accuracy
as opposed to the approximated values computed by
finite differences.

 M Schmitz et al. Higher-order Sensitivity Analysis of Parametric DAEs

 SNE 22(3-4) – 12/2012 165

T N
Derivatives can be generated in the tangent-linear or

in the adjoint mode. We define z = (x, y) and consider

The software package AC-SAMMM uses the derivative
code compiler dcc to generate the derivative code of an
input code in tangent-linear or in adjoint mode. The
input code is given in a subset of the programming
language C/C++ called C-. dcc is able to use its own
output again as input what allows the generation of
derivative code of arbitrary order. The first-order tan-
gent-linear model is defined as

 (8)

where

Given the implementation of F in C- dcc generates
code that takes (z(1), z (1), u(1))T as input and computes
F (1) with computational costs of about twice as high as
the computational costs of F. The corresponding C++
implementation that is part of the ESO (see Section 4)
has the following signature, given in Listing 1, where
the prefix t_1 stands for first-order tangent-linear and
has the same meaning as the superscript (1).

 void eval_t_1 residuals (double∗ t1_z,
 double∗ t1_der_z, double∗ t1_der_u,
 double∗ t1_residuals)

Listing 1. ESO-function calling first-order
tangent-linear model.

The output of the function representing F(1) is
t1_residuals . All other arguments are the user’s input.
The actual values of the states and the parameters are
members of the class providing this implementation and
are known implicitly by the method.

The first-order adjoint model’s output
 is defined as

 (9)

where the vector has to be given as
input and will be overwritten by the new output value.
Note that we use parenthesized superscripts to denote
tangent- linear projections and parenthesized subscripts
to mark adjoint projections. The ESO- implementation
is analogous to that of the tangent-linear model with
prefix a_1 corresponding to subscript (1).

The computational costs of the adjoint model are
about six times higher than the costs for evaluating F

(for an estimation of the computational costs, see [5]).
Nevertheless, in case of a matrix vector product

where the matrix is the transposed Jacobian, the adjoint
model is the best choice. The only alternative to com-
pute this matrix vector product would be the accumulation
of the whole Jacobian to be able to transpose it afterward.

The second-order tangent over adjoint model's out-
put is defined as

where the second term is the projection of the ((nx + ny)
× (2(nx + ny) + nu) × (2(nx + ny) + nu)) Hessian tensor

 in directions and where

. The ESO-method
that accesses the dcc-generated second-order model is
shown in Listing 2. To exploit structural facts of the
Jacobian and Hessian we use coloring algorithms to find
possibilities to compress the Jacobian and Hessian [14, 15].

void eval_t_2_a1 residuals (double∗ t2_z,
 double∗ a1_z, …., double∗ a1_f,
 double∗ t2_a1_f)

Listing 2. ESO-function calling second-order
tangent over adjoint model.

4 AC-SAMMM in Practice
The above mentioned Jacobian compression techniques
are used in the AC-SAMMM Jacobian and Hessian
driver routines and are automatically executed if the
user calls one of the ESO-methods to access derivatives.
For example, the ESO-method
 void get_jacobian_values (long len ,
 long indices, double jacobian) ;

calls the first-order tangent-linear code (see assign-
ment 8) with optimal seeding vectors to
get the specified Jacobian entries with minimal compu-
tational effort. The argument len defines the length of
the output array jacobian.

The entries in indices define the relative indices of
the wanted non-zero elements in the jacobian matrix

arranged in row-major format .

 M Schmitz et al. Higher-order Sensitivity Analysis of Parametric DAEs

 166 SNE 22(3-4) – 12/2012

TN
The ESO defines the C++ interface to all client-

applications using AC-SAMMM. The AC-SAMMM-
ESO definition is based on the CAPE-OPEN ESO inter-
face and contains some additional functions. The ESO is
intended to cover at least the required functions to solve
a differential-algebraic system and additional functions
to handle higher-order derivatives.

So far AC-SAMMM can only be used on Microsoft
Windows platforms, but AC-SAMMM will be adapted
to deal with multiple platforms such as Microsoft Win-
dows, Linux/Unix and Mac OS, soon. In order accom-
plish this, AC-SAMMM is developed using CMake [7].
The way starting from a dynamic model coded in Mod-
elica to the dynamic library including the higher-order
derivatives and the original model information is com-
pletely automated (see Figure 1). The user calls a script
that takes as argument the name of the flat-Modelica
model. The flat-Modelica parser Mof2C- creates the C-
code of the model. Beside the residual function, that is
presented in detail in Section 5, other important files are
generated, amongst others the block residual function.

The block residual function provides a signature
with an index-set to define the indices of the residuals to
evaluate. This offers an important gain in computational
time if only a small subset of the residual vector should
be evaluated. This is the case if, for example, a block-
decomposition routine for the determination of con-
sistent initial values is used. Additionaly, dcc uses
operator overloading techniques in combination with the
propagation of bit patterns to determine the sparsity
pattern of the Jacobian.

The next fully automated step during the script call
is the call of dcc. The first- and second-order derivatives
of the residual-model are generated and will be used
later on to define the ESO-functions (see Listing 1 and
Listing 2). AC-SAMMM is restricted to second-order
derivatives (tangent over adjoint mode) but could be
easily modified to provide even higher-order deriva-
tives. In the final step, the dynamic library is created
using a C++ compiler (which has to be installed on the
user’s PC). The hereby generated model library can then
be loaded dynamically (see Listing 4) into the AC-
SAMMM-ESO providing amongst others the efficient
drivers for derivative evaluation up to second order by
exploiting sparsity.

Some examples of ESO-methods have been present-
ed so far. For a complete description on all ESO-
methods we refer to the AC-SAMMM manual [13].

5 Case Study
In the introduction we mentioned the problem class
optimal control problems. In this section we deal with a
problem belonging to this class that will serve as a first
proof of concept.

We consider the illustrative and very simple problem
of a car that has to travel a fixed distance in minimal
time. In adddition, the car has to start at rest and its final
velocity has to be zero. The control parameter is its
acceleration u(t) and with parameter α.

One can easily verify that this problem formulation fits
the generic form OCP, if an additional state represent-
ing the time is introduced. The corresponding (flat) Mo-
delica code for the dynamic model is given in Listing 3.

model car
parameter Real accel = 2;
parameter Real alpha = 0.0025;
Real ttime; Real velo; Real dist;
equation
der(dist) = velo;
der(velo) = accel alpha pow(velo,2);
der(ttime) = 1;
end car;
Listing 3. Flat Modelica code for case study.

The Modelica model represents only the dynamic model
that defines neither an objective function nor additional
constraints, so the control accel = u(t) is defined as a
constant parameter. The core-capacity of AC-SAMMM
is the manipulation of dynamic models of the form (1).
Hence, we will first explain the treatment of manipulat-
ing the dynamics before dealing with the entire optimi-
zation problem.

The script call that executes the operations men-
tioned in Section 4 has to be entered in a command-line
interface being able to interpret BASH-commands (i.e.
cygwin (www.cygwin.com) for Windows platforms). If
the model’s name is car.mof, then the script is being
called by the command acsammm car. The intermedi-
ate C- functions generated by Mof2C- contain all the
model information provided by the Modelica model.
The function representing the residual function (shown
in Listing 4) will be processed by dcc.

 M Schmitz et al. Higher-order Sensitivity Analysis of Parametric DAEs

 SNE 22(3-4) – 12/2012 167

T N
void res (double yy, double der x,
 double x, double , int &n_x, int &n_p)
// $ad indep x p; ……// $ad dep yy
{ // …….// scalar equation 1
acs pow(var_velo, 2, var pow0);
yy[i_E] = der_var_velo –
 (par_accel – par_alpha var_pow0);
i_E = i_E + 1; / / …… }

Listing 4. The residual function in C-.

The comments that appear after the signature are special
comments for dcc to indicate which variables are de-
pendent (here yy) and should be differentiated with
respect to the independent ones (here x and p). Further-
more one can recognize that yy corresponds to the re-
sidual-function representing the dynamic model.

AC-SAMMM overloads the basic mathematical
functions sqrt(x), xa, (x/y), log(x) and exp(x) in order to
increase robustness and/or efficiency of their numerical
evaluation (see acs_pow(x,a,y) in the above code frag-
ment). An example is the mirroring of the square root at
the origin. This is useful, for instance, when x > 0 pass-
es to x < 0 immediately after a switching point, in case of
a hybrid system. In order to detect a switching point pre-
cisely, a switching structure detection algorithm has to
pass this point without switching being accomplished [3].

As a result of the script call the dynamic libraries
called car.dll (in release mode) and car_d.dll (in
debug mode) are created. The intermediate C++ files are
still available to the user but not needed to any further
application of the model library.

The generated libraries are written in a neutral for-
mat so that they are not application- specific and can
easily be exploited for a variety of purposes. We illus-
trate the application in the case of OCP, which can be
resolved by means of direct single shooting, which has
originally been introduced by Brusch [2]. The basic idea
is to substitute the control vector by an approximation
(typically piecewise-constant or -linear), and to relax the
path constraints on a grid t0 < t1 < ... < tn = tf . This way
the infinite-dimensional optimal control problem is
approximated by a finite-dimensional nonlinear pro-
gram (NLP). For this purpose we introduced a new C++
class called MetaESO. The aim of the MetaESO class is
to define the constraints, the controls and the underlying
time grids as input for the integrator. In addition, the
user can define the sensitivities to be calculated. In
summary, the user can define a restricted multistage
OCP using the AC-SAMMM- generated dynamic li-
brary as dynamic model within this class (at present
only: explicit switching times, simple box-constraints).

Using an integrator and an optimizer, the infrastruc-
ture is suited to solve a restricted class of multistage
optimal control problems. The integrator used is NIXE
(Hannemann et al. [6]). NIXE implements the extrapo-
lated linearly-implicit Euler discretization for the solu-
tion of parametric differential-algebraic initial value
problems (given by equations (3) - (5) of formulation
OCP) and computes higher-order sensitivities by an
efficient modified higher-order discrete adjoint ap-
proach or by forward sensitivity analysis. We show very
briefly how to use AC-SAMMM as embedded dynamic
model server, how to define the OCP and how to call the
integrator NIXE. We omit details concerning the optimizer
application and show the basic usage in Listing 5.

 ACSAMMM_Eso* CarEso = new ACSAMMM_Eso(car);
 MetaEso metaEso* = new MetaEso();
 metaEso->AddPhysicalStage(CarEso, 0.0, 1.0);

Listing 5. Dynamic loading of the model-library car in
AC-SAMMM and usage of MetaEso class.

The second and third argument of AddPhysicalStage()
represent the start and final time for the integration. As
problem (10) has free final time, we had to reformulate:

where t = tf t0 is a parameter that can be controlled.

The constraints are defined using the MetaESO func-
tion AddConstraint(stage Index, name, time, lB, uB,
lagrMult) as shown in Listing 6. The input lagrMult
represents the value of the Lagrange multiplier corre-
sponding to the constraint. This input could be delivered
by an optimizer.

 MetaEso->AddConstraint(0,velo,1.0,0,0,lagrMult);
 MetaEso->AddControl (0,accel,piecewiseLinear,
 grid, parameters , -1.0 , 1.0);

Listing 6. MetaESO : Constraints and Controls

In the same way the control parametrization of the
acceleration could be the output of an optimizer. So the
fifth argument of AddControl(stageIndex, name, type-
Control, grid, parameters, lB, uB) is defined by the
optimizer. The constraints define the states where sensi-
tivities should be calculated. They are calculated with
respect to the control-parametrization. The second-order
sensitivities are calculated with respect to the La-
grangian function. Finally, as shown in Listing 7, the
MetaESO object can be transferred to the integrator
calculating the specified sensitivity information. More
details about definition of related OCP see [13].

 M Schmitz et al. Higher-order Sensitivity Analysis of Parametric DAEs

 168 SNE 22(3-4) – 12/2012

TN
 SecondOrderReverseHandler sorHandler =

 new SecondOrderReverseHandler (MetaEso);
 sorHandler > solve();

Listing 7. MetaESO handler for second-order derivatives.

An interesting case study serving as a benchmark is a
large-scale nonlinear system of about 2000 stiff DAEs
[4]. It models the load change of an polymerization
process. For real-time optimization (cf. Würth et al.
[16]), about 40 second-order parameters and 160 first-
order parameters of the model have to be computed.
We measured the generation- time of the higher-order
derivatives as well as the compile- and evaluation-times.
All computations were performed on a Core2-Quad PC
running Windows 7 on a 2.66 GHz CPU. The size of the
dynamic library in release mode is about 6 MB.

Code
generation

time

Size of
generated

code

Compile time Computation
time

 of Hessian
of Lagrange.

with
opt.

without
opt.

15 min 20 MB hours seconds 3 min.

Table 1. Computation effort for case study
with 2000 stiff DAEs.

6 Summary and Outlook
We presented a platform for automatic algorithmic
differentiation of mathematical models, which exhibits
an object-oriented (extensible) interface that suits the
needs to solve a differential-algebraic system. Included
are Mof2C-, a Modelica to C code parser and dcc, the
derivative code compiler for automatic differentiation.

A prototype-driver for multistage OCP exists serv-
ing as an interface between AC-SAMMM and NIXE.
This interface will be developed further in future ver-
sions of AC-SAMMM. Also, further reductions of com-
pile- and run-times can be expected. A major concern of
the future development of AC-SAMMM is the proper
treatment of hybrid systems [1], especially enabling
discontinuity-locking and the handling of arbitrary
complex switching conditions.

References
[1] Barton, P. I., and Lee, C. K. (2002). Modeling, simula-

tion, sensitivity analysis, and optimization of hybrid sys-
tems. ACM Trans. Model. Comput. Simul., 12, 256–289.

[2] Brusch, R. G. (1974). A nonlinear programming approach
to space shuttle trajectory optimization. Journal of Opti-
mization Theory and Applications, 13(1), 94–118.

[3] Cellier, F. E., and Kofman, E. (2006). Continuous Sys-
tem Simulation. Springer, New York.

[4] Dünnebier, G., van Hessem, D., Kadam, J., Klatt, K.-U.,
and Schlegel, M. (2005). Optimization and control of
polymerization processes. Chemical Engineering Tech-
nology, 28(5), 575–580.

[5] Griewank, A., and Walther, A. (2008). Evaluating deriv-
atives: principles and techniques of algorithmic differen-
tiation. Soc. for Industrial and Applied Math. (SIAM).

[6] Hannemann, R., Marquardt, W., Gendler, B., and
Naumann, U. (2010). Discrete first- and second-order
adjoints and automatic differentiation for the sensitivity
analysis of dynamic models. In Procedia Computer Sci-
ence, volume 1, pages 297–305.

[7] Martin, K., and Hoffman, B.(2003). Mastering CMake:
A Cross-Platform Build System. Kitware Inc..

[8] Modelica Association, Linköping, Sweden. (2010).
Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling. Language Specification.
Version 3.2, March 2010.

[9] Naumann, U. (2011). The Art of Differentiating Comput-
er Programs. SIAM, 2011. To appear.

[10] Naumann, U., Schenk, O., Simon, H., and Toledo, S., ed-
itors. (2009). Combinatorial Scientific Computing. num-
ber 09061 in Dagstuhl Seminar Proceedings, Wadern,
Germany. Leibnitz-Zentrum für Informatik.

[11] Pantelides, C., Keeping, B., Bernier, J., and Gautreau, C.
(1999). Open interface specification numerical solvers.
Technical Report CO-NUMR-EL-03 Version 1.08,
CAPE-OPEN, 1999.

[12] Schanen, M., Förster, M., Gendler, B., and Naumann, U.
(2011). Compiler-based Differentiation of Numerical
Simulation Codes. In ICCGI 2011, The Sixth Interna-
tional Multi-Conference on Computing in the Global In-
formation Technology, pages 105–110. IARIA.

[13] Schmitz, M., Gendler, B., and Hannemann, R. Introduc-
tion to AC-SAMMM: A tutorial installing, and using AC-
SAMMM. RWTH Aachen, AVT.PT Process Systems
Engineering, Aachener Verfahrenstechnik, Turmstraße
46, 52062 Aachen, to be made accessible.

[14] Varnik, E. (2011). Exploitation of Structural Sparsity in
Algorithmic Differentiation. PhD thesis, RWTH Aachen
University, Aachen, Germany, submitted.

[15] Varnik, E., and Naumann, U. (2009). What Color is the
Non-Constant Part of Your Jacobian? In [10], 2009, Ex-
tended Abstract.

[16] Würth, L., Hannemann, R., and Marquardt, W. (2011). A
two-layer architecture for economically optimal process
control and operation. Journal of Process Control, 21(3),
311–321.

Submitted: July 2011 (ASIM STS Winterthur)
Accepted SNE: July 20, 2012

