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Abstract.  We introduce AC-SAMMM (The AaChen plat-
form for Structured Automatic Manipulation of Mathe-
matical  Models), a new software infrastructure  for effi-
cient transformation  and evaluation of expressions and 
their higher-order derivatives. We describe the way this 
software can be used to perform automatically  the trans-
lation  of a model written  in an equation-oriented lan-
guage like Modelica into a subset of C/C++ and the gener-
ation of the model’s higher-order derivative code by algo-
rithmic differentiation  (AD) techniques. The derivatives 
are generated, using the derivative code compiler (dcc), an 
AD tool which provides source code transformation  for a 
restricted but  numerically relevant subset of C/C++. dcc 
can be applied repeatedly to its own output,  to generate 
derivative codes of arbitrary  order. 

Introduction 
Many engineering applications exhibit the need of mod-
eling and simulating increasingly complex problems. 
Therefore, many high-level equation-based modeling 
languages like Modelica (www.modelica.org), gPROMS 
(www.psenterprise.com/gproms) and SBML (sb ml. org)  

have been developed to formulate mathematical mod- 
els in an intuitive,  equation-based representation that 
enhance model development and maintenance. The 
usage of these models in different kinds of optimization 
problems be- comes increasingly important.  

These problems include model parameter estimation, 
op- timal design of experiments for parameter estima-
tion or model structure discrimination, design optimiza-
tion, model-predictive control and real-time optimiza-
tion. The solution of each of these problems typically 
requires the evaluation of symbolic expressions involv-
ing different type and order of derivatives [6], that are in 
general not provided by the modeling tools. 

To bridge this gap, the software package AC-
SAMMM (The AaChen platform for Struc-tured Auto-
matic Manipulation of Mathematical Models) has been 
jointly developed by AVT.PT (Process Systems Engi-
neering ) and STCE (Software and Tools for Computa- 
tional Engineering ) at RWTH Aachen University.  

The aim of this project is to provide a software plat-
form that generates robust, well-documented, and highly 
optimized model and derivative code by automatic ma-
nipulation of mathematical models independently of the 
model representation language used. 

1 AC-SAMMM Introduction 
Applying the AC-SAMMMis platform, by means of 
algorithmic differentiation [5, 9], the user is able to 
generate higher-order derivatives of parametric semi-
explicit index-1 differential-algebraic equations, 

 
(1)

in an automatic manner. Here, t denotes the independent 
(time) variable, x(t)  Rnx  the differential or state varia-
bles, y(t)  Rny   the algebraic variables and u(t, p)  Rnu  

the inputs which are parameterized by some parameters 
p  Rnp  for convenience and without loss of generality. 

Additional drivers are provided that support the effi-
cient evaluation of the generated derivatives and the 
original mathematical model. The generated code is 
compiled into a dynamic link library or a shared object 
that can be accessed by third- party software (e.g. opti-
mization and simulation software) via an C++ interface. 

As illustration of the importance of fast and accurate 
higher-order derivatives, we consider optimal control 
problems and their solution by means of control vector 
parameterization (cf. Brusch [2]).  
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In optimal control, the user has to control a dynamic 

process such that an objective function is minimized or 
maximized and usually some process constraints have to 
be satisfied. We consider the following class of Mayer-
type optimal control problems (OCP), already discre-
tized by means of control vector parameterization, re-
sulting in the finite-dimensional nonlinear program 
(NLP). 

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 
This NLP is typically solved by gradient-based optimi-
zation methods such as SQP or interior point solvers. In 
general, these solvers need at least first-order deriva-
tives of the objective function and the constraints and 
sometimes also second-order derivatives to form the 
corresponding Hessian of the Lagrangian. Therefore, an 
efficient and accurate calculation of these derivatives is 
fundamental when it comes to fast and accurate numeri-
cal calculations. 

The paper is organized as follows. First, the typical 
workflow of AC-SAMMM is presented. Then, we ex-
plain the design of the dcc-generated derivative codes 
and show how they are called in an efficient way. In 
Section 4, details about the workflow and the func-
tionality of the ESO are presented. Section 5 discusses 
an application of AC-SAMMM to a small OCP. Sec-
tion 6 concludes the paper and gives directions for fu-
ture development. 

2 Typical Workflow in AC-SAMMM 
Today, AC-SAMMM is able to translate mathemati-

cal models written in flat Modelica code into C- code 
using Mof2C- (a parser developed at AVT.PT) and to 
generate derivative code of arbitrary order by applying 
the AD-tool dcc [12] (developed at STCE) to the gen-
erated code.  

 

Flat Modelica prescribes code where all object-
oriented and hierarchical  features of Modelica are elim-
inated (‘flattened’). Though not really standardized in 
the language specification, the flattening process is 
considered to be part of all executable Modelica simula-
tion environments (see [8, Chapter5]). C- is a small 
subset of the programming language C/C++. Additional 
algebraic manipulations will be applied and a highly 
optimized dynamic library will be obtained.  

After the application of AC-SAMMM the original 
model information and additional derivative information 
(restricted to second- order derivatives today) are stored 
in the dynamic library. The access to this information is 
managed by a so-called Equation Set Object (ESO) 
which is an instance of a standardized C++ class.  

The AC-SAMMM ESO is slightly modified variant 
of the ESO specified by the CAPE-OPEN organization 
in [11]. This ESO encapsulates all calls to the model 
residuals and related derivative functions and can be 
interfaced to different applications. The typical work-
flow of generating such an ESO is shown in Figure 1. 

 

 
Figure 1. Workflow of AC-SAMMM. The flat Modelica code is 

translated to C- by Mof2C-. The C- files contain the residual function 
and some utility functions providing amongst others the variable and 

parameter names and the initial  values for the variables  
(if algebraic variables are existent, their initial  values are not 

necessarily consistent with the algebraic equations). In a second step, 
the residual function is differentiated by dcc. Finally all generated 

functions are compiled into a dynamic library defining the ESO- 
functions. The ESO defines the interface to third-party applications. 

3 The Derivative Code Compiler dcc 
For the reasons stated in Section 1, most optimization 
tools need higher-order derivatives of the dynamic 
model. AD source code transformation provides deriva-
tive code of arbitrary order. The derivative values com-
puted by this code are accurate up to machine accuracy 
as opposed to the approximated values computed by 
finite differences.  
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Derivatives can be generated in the tangent-linear or 

in the adjoint mode. We define z = (x, y) and consider 

 

The software package AC-SAMMM uses the derivative 
code compiler dcc to generate the derivative code of an 
input code in tangent-linear or in adjoint mode. The 
input code is given in a subset of the programming 
language C/C++ called C-. dcc is able to use its own 
output again as input what allows the generation of 
derivative code of arbitrary order. The first-order tan-
gent-linear model is defined as 

 (8)

where   

Given the implementation of F  in C- dcc generates 
code that  takes (z(1), z (1), u(1))T as  input  and computes 
F (1)   with computational costs of about twice as high as  
the computational costs of F. The corresponding C++ 
implementation that is part of the ESO (see Section 4) 
has the following signature, given in Listing 1, where 
the prefix t_1 stands for first-order tangent-linear and 
has the same meaning as the superscript (1).  

 void eval_t_1 residuals ( double∗ t1_z, 
    double∗ t1_der_z, double∗ t1_der_u,  
    double∗ t1_residuals ) 

Listing 1. ESO-function calling first-order  
tangent-linear model. 

The output of the function representing  F(1) is 
t1_residuals . All other arguments are the user’s input. 
The actual values of the states and the parameters are 
members of the class providing this implementation and 
are known implicitly by the method.  

The first-order adjoint model’s output 
   is defined as 

 (9)

where the vector  has to be given as 
input and will be overwritten by the new output value. 
Note that we use parenthesized  superscripts to denote 
tangent- linear projections and parenthesized subscripts 
to mark adjoint projections. The ESO- implementation 
is analogous to that of the tangent-linear model with 
prefix a_1 corresponding to subscript (1). 

The computational costs of the adjoint model are 
about six times higher than the costs for evaluating F 

(for an estimation of the computational costs, see [5]).  
Nevertheless, in case of a matrix vector product 

where the matrix is the transposed Jacobian, the adjoint 
model is the best choice. The only alternative to com-
pute this matrix vector product would be the accumulation 
of the whole Jacobian to be able to transpose it afterward. 

The second-order tangent over adjoint model's out-
put  is defined as 

 

 
where the second term is the projection of the ((nx  + ny ) 
× (2(nx + ny ) + nu) × (2(nx + ny ) + nu)) Hessian tensor 

 in directions  and where 

. The ESO-method 
that accesses the dcc-generated second-order model is 
shown in Listing 2. To exploit structural facts of the 
Jacobian and Hessian we use coloring algorithms to find 
possibilities to compress the Jacobian and Hessian [14, 15]. 

void eval_t_2_a1 residuals ( double∗ t2_z, 
    double∗ a1_z, …., double∗ a1_f,  
    double∗ t2_a1_f ) 

Listing 2. ESO-function calling second-order  
tangent over adjoint model. 

4 AC-SAMMM in Practice 
The above mentioned Jacobian compression techniques 
are used in the AC-SAMMM Jacobian and Hessian 
driver routines and are automatically executed if the 
user calls one of the ESO-methods to access derivatives. 
For example, the ESO-method 
  void  get_jacobian_values ( long len ,  
      long  indices, double  jacobian) ; 

calls the first-order tangent-linear code (see assign-
ment 8) with optimal seeding vectors to 
get the specified Jacobian entries with minimal compu-
tational effort. The argument len defines the length of 
the output array jacobian.  

The entries in indices define the relative indices of 
the wanted non-zero elements in the jacobian matrix 

arranged in row-major format . 
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The ESO defines the C++ interface to all client-

applications using AC-SAMMM. The AC-SAMMM-
ESO definition is based on the CAPE-OPEN ESO inter-
face and contains some additional functions. The ESO is 
intended to cover at least the required functions to solve 
a differential-algebraic system and additional functions 
to handle higher-order derivatives. 

So far AC-SAMMM can only be used on Microsoft 
Windows platforms, but AC-SAMMM will be adapted 
to deal with multiple platforms such as Microsoft Win-
dows, Linux/Unix and Mac OS, soon. In order accom-
plish this, AC-SAMMM is developed using CMake [7]. 
The way starting from a dynamic model coded in Mod-
elica to the dynamic library including the higher-order 
derivatives and the original model information is com-
pletely automated (see Figure 1). The user calls a script 
that takes as argument the name of the flat-Modelica 
model. The flat-Modelica parser Mof2C- creates the C- 
code of the model. Beside the residual function, that is 
presented in detail in Section 5, other important files are 
generated, amongst others the block residual function. 

The block residual function provides a signature 
with an index-set to define the indices of the residuals to 
evaluate. This offers an important gain in computational 
time if only a small subset of the residual vector should 
be evaluated. This is the case if, for example, a block-
decomposition routine for the determination of con-
sistent initial values is used. Additionaly, dcc uses 
operator overloading techniques in combination with the 
propagation of bit patterns to determine the sparsity 
pattern of the Jacobian. 

The next fully automated step during the script call 
is the call of dcc. The first- and second-order derivatives 
of the residual-model are generated and will be used 
later on to define the ESO-functions (see Listing 1 and 
Listing 2). AC-SAMMM is restricted to second-order 
derivatives (tangent over adjoint mode) but could be 
easily modified to provide even higher-order deriva-
tives. In the final step, the dynamic library is created 
using a C++ compiler (which has to be installed on the 
user’s PC). The hereby generated model library can then 
be loaded dynamically (see Listing 4) into the AC-
SAMMM-ESO providing amongst others the efficient 
drivers for derivative evaluation up to second order by 
exploiting sparsity. 

Some examples of ESO-methods have been present-
ed so far. For a complete description on all ESO-
methods we refer to the AC-SAMMM manual [13]. 

5 Case Study 
In the introduction we mentioned the problem class 
optimal control problems. In this section we deal with a 
problem belonging to this class that will serve as a first 
proof of concept. 

We consider the illustrative and very simple problem 
of a car that has to travel a fixed distance in minimal 
time. In adddition, the car has to start at rest and its final 
velocity has to be zero. The control parameter is its 
acceleration u(t) and with parameter α. 

 

 
 

 
 

One can easily verify that this problem formulation fits 
the generic form OCP, if an additional state represent-
ing the time is introduced. The corresponding (flat) Mo-
delica code for the dynamic model is given in Listing 3. 

model  car 
parameter Real accel = 2;  
parameter Real alpha = 0.0025;  
Real ttime; Real velo; Real dist; 
equation 
der(dist) = velo; 
der(velo) = accel  alpha pow(velo,2); 
der(ttime) = 1; 
end car; 
Listing 3. Flat Modelica code for case study. 

The Modelica model represents only the dynamic model 
that defines neither an objective function nor additional 
constraints, so the control accel = u(t) is defined as a 
constant parameter. The core-capacity of AC-SAMMM 
is the manipulation of dynamic models of the form (1). 
Hence, we will first explain the treatment of manipulat-
ing the dynamics before dealing with the entire optimi-
zation problem. 

The script call that executes the operations men-
tioned in Section 4 has to be entered in a command-line 
interface being able to interpret BASH-commands (i.e. 
cygwin (www.cygwin.com) for Windows platforms). If 
the model’s name is car.mof, then the script is being 
called by the command acsammm car. The intermedi-
ate C- functions generated by Mof2C- contain all the 
model information provided by the Modelica model. 
The function representing the residual function (shown 
in Listing 4) will be processed by dcc. 
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void res (double  yy, double  der x,  
  double  x, double  , int &n_x, int &n_p) 
// $ad indep x p; ……// $ad dep yy 
{  // …….// scalar equation 1 
acs pow(var_velo, 2, var pow0); 
yy[i_E] = der_var_velo –  
    (par_accel – par_alpha  var_pow0); 
i_E = i_E + 1; / / …… } 

Listing 4. The residual function in C-. 

The comments that appear after the signature are special 
comments for dcc to indicate which variables are de-
pendent (here yy) and should be differentiated with 
respect to the independent ones (here x and p). Further-
more one can recognize that yy corresponds to the re-
sidual-function representing the dynamic model. 

AC-SAMMM overloads the basic mathematical 
functions sqrt(x), xa, (x/y), log(x) and exp(x) in order to 
increase robustness and/or efficiency of their numerical 
evaluation (see acs_pow(x,a,y) in the above code frag-
ment). An example is the mirroring of the square root at 
the origin. This is useful, for instance, when x > 0 pass-
es to x < 0 immediately after a switching point, in case of 
a hybrid system. In order to detect a switching point pre-
cisely, a switching structure detection algorithm has to 
pass this point without switching being accomplished [3]. 

As a result of the script call the dynamic libraries 
called car.dll (in release mode) and car_d.dll (in 
debug mode) are created. The intermediate C++ files are 
still available to the user but not needed to any further 
application of the model library. 

The generated libraries are written in a neutral for-
mat so that they are not application- specific and can 
easily be exploited for a variety of purposes. We illus-
trate the application in the case of OCP, which can be 
resolved by means of direct single shooting, which has 
originally been introduced by Brusch [2]. The basic idea 
is to substitute the control vector by an approximation 
(typically piecewise-constant or -linear), and to relax the 
path constraints on a grid t0 < t1 < ... < tn = tf . This way 
the infinite-dimensional optimal control problem is 
approximated by a finite-dimensional nonlinear pro-
gram (NLP). For this purpose we introduced a new C++ 
class called MetaESO. The aim of the MetaESO class is 
to define the constraints, the controls and the underlying 
time grids as input for the integrator. In addition, the 
user can define the sensitivities to be calculated. In 
summary, the user can define a restricted multistage 
OCP using the AC-SAMMM- generated dynamic li-
brary as dynamic model within this class (at present 
only: explicit switching times, simple box-constraints). 

Using an integrator and an optimizer, the infrastruc-
ture is suited to solve a restricted class of multistage 
optimal control problems. The integrator used is NIXE 
(Hannemann et al. [6]). NIXE implements the extrapo-
lated linearly-implicit Euler discretization for the solu-
tion of parametric differential-algebraic initial value 
problems (given by equations (3) - (5) of formulation 
OCP) and computes higher-order sensitivities by an 
efficient modified higher-order discrete adjoint ap-
proach or by forward sensitivity analysis. We show very 
briefly how to use AC-SAMMM as embedded dynamic 
model server, how to define the OCP and how to call the 
integrator NIXE. We omit details concerning the optimizer 
application and show the basic usage in Listing 5. 

   ACSAMMM_Eso* CarEso = new ACSAMMM_Eso( car ); 
   MetaEso metaEso* = new MetaEso( ); 
   metaEso->AddPhysicalStage( CarEso, 0.0, 1.0); 

Listing 5. Dynamic loading of the model-library car in  
AC-SAMMM  and usage of MetaEso class. 

The second and third argument of AddPhysicalStage() 
represent the start and final time for the integration. As 
problem (10) has free final time, we had to reformulate: 

 

 
where t = tf  t0 is a parameter that can be controlled. 

The constraints are defined using the MetaESO func-
tion AddConstraint(stage Index, name, time, lB, uB, 
lagrMult)  as shown in Listing 6. The input lagrMult  
represents the value of the Lagrange multiplier corre-
sponding to the constraint. This input could be delivered 
by an optimizer. 

  MetaEso->AddConstraint(0,velo,1.0,0,0,lagrMult); 
  MetaEso->AddControl (0,accel,piecewiseLinear, 
                grid, parameters , -1.0 , 1.0 ); 

Listing 6. MetaESO : Constraints and Controls 

In the same way the control parametrization of the 
acceleration could be the output of an optimizer. So the 
fifth argument of AddControl(stageIndex, name, type-
Control, grid, parameters, lB, uB) is defined by the 
optimizer. The constraints define the states where sensi-
tivities should be calculated. They are calculated with 
respect to the control-parametrization. The second-order 
sensitivities are calculated with respect to the La-
grangian function. Finally, as shown in Listing 7, the 
MetaESO object can be transferred to the integrator 
calculating the specified sensitivity information. More 
details about definition of related OCP see [13]. 
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   SecondOrderReverseHandler  sorHandler = 

  new SecondOrderReverseHandler ( MetaEso ); 
   sorHandler > solve( ); 

Listing 7. MetaESO handler for second-order derivatives. 

An interesting case study serving as a benchmark is a 
large-scale nonlinear system of about 2000 stiff DAEs 
[4]. It models the load change of an polymerization 
process. For real-time optimization (cf. Würth et al. 
[16]), about 40 second-order parameters and 160 first-
order parameters of the model have to be computed.  
We measured the generation- time of the higher-order 
derivatives as well as the compile- and evaluation-times. 
All computations were performed on a Core2-Quad PC 
running Windows 7 on a 2.66 GHz CPU. The size of the 
dynamic library in release mode is about 6 MB. 
 

Code  
generation 

time 

Size of  
generated  

code 

Compile time Computation 
time 

 of Hessian  
of Lagrange. 

with  
opt. 

without  
opt. 

15 min 20 MB hours seconds  3 min.

Table 1. Computation effort for case study  
with 2000 stiff DAEs. 

6 Summary and Outlook 
We presented a platform for automatic algorithmic 
differentiation of mathematical models, which exhibits 
an object-oriented (extensible) interface that suits the 
needs to solve a differential-algebraic system. Included 
are Mof2C-, a Modelica to C code parser and dcc, the 
derivative code compiler for automatic differentiation. 

A prototype-driver for multistage OCP exists serv-
ing as an interface between AC-SAMMM and NIXE. 
This interface will be developed further in future ver-
sions of AC-SAMMM. Also, further reductions of com-
pile- and run-times can be expected. A major concern of 
the future development of AC-SAMMM is the proper 
treatment of hybrid systems [1], especially enabling 
discontinuity-locking and the handling of arbitrary 
complex switching conditions. 
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