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Abstract.  Various experimental approaches including also 
isotopic tracer information were proposed paving the way 
for quantitative modeling and detailed in vivo studies of 
biological systems. Accordingly, for the underlying model-
ing approaches a diversity of in silico tools have been 
developed. The full exploitation of this potential to ad-
dress metabolic processes is hampered by mainly three 
principal issues.  
First, not all currently realizable experiments are covered 
by these tools. Secondly, an easy switching between exist-
ing tools allowing for a flexible description of different 
experimental states is not possible. The third item ad-
dresses the universality of underlying modeling concepts 
which usually have a restricted focus. 
We propose a general modeling concept which allows 
modeling and simulation of all combinations of metaboli-
cally and isotopically variants in their stationary and dy-
namic states and which is embedded in an unique soft-
ware platform.  
The basic idea is to build up dynamic metabolic networks 
relying on mass balances for intermediate labeling pools. A 
workflow is presented that allows the automatized gener-
ation of models of any size and complexity specially tai-
lored for the experiment of choice. Within the software 
framework, the application of sophisticated methods for 
statistical analysis and interpretation of simulation results 
are realized. 

Introduction 
To reveal underlying kinetic mechanisms of metabolic 
regulation, pulse experiments have been established to 
generate dynamic data of metabolic intermediates [11, 
7]. For the description of these data sets, dynamic meta-
bolic networks are formulated that are based on kinetic 
models describing enzyme catalysis and regulatory 
metabolic interactions [17].  
 

Validation of such models is a challenging task since 
usually a huge amount of parameters have to be identi-
fied with only a limited number of measurements avail-
able. 

In order to attenuate the solution of these usually ill-
posed problems, but nevertheless being able to elucidate 
metabolic stationary phenotypic behavior, metabolic 
flux analysis (MFA) has been introduced [14].  

This approach has been refined by the addition of 
isotopically labeled tracers (usually 13C-labeled glucose) 
[19]. In the last decade 13C-MFA has become one of the 
major tools of metabolic engineering which is success-
fully applied to gain biological insight into different 
organisms of bacteria and plants [10, 13]. However, 
because it operates under metabolic stationary condi-
tions, 13C-MFA is not capable of describing in vivo 
metabolic regulation and control. Therefore its predic-
tive power is limited. 

Ongoing development of experimental and analyti-
cal procedures for measuring metabolic intermediates 
with and without tracer information (e.g. 13C) [12] led to 
the requirement to formulate different model approaches 
describ- ing the measurement data. Similar to the previ-
ous step from MFA to 13C-MFA recently a supplemen-
tation of the dynamic metabolic modeling approach 
with 13C labeling has been suggested in [16].  Taking all 
approaches to- gether a classification can be derived 
between the model’s assumption on metabolic and iso-
topic (non-)stationarity. 

In the following we present a general framework for 
modeling and simulation of all common types of meta-
bolic and isotopic systems.  

In order to clarify our concept and introduce neces-
sary definitions we start with a mathematical overview 
on the established model approaches which are intro-
duced via a consistent example network. 
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1 Modeling Metabolic 

Networks 
1.1 General Model Assumptions 
Our modeling approach relies on the 
following assumptions: 
1. Continuum: All chemical species 

involved in the considered pro-
cesses have such a high copy 
number that a continuous concen-
tration value can be used to de-
scribe it. 

2. Homogeneity: Diffusion process-
es are very fast compared to chem-
ical reactions so that concentra-
tions can be considered to be spa-
tially homogeneous. 

3. No isotope effects: There are no 
significant isotopic mass effects, 
i.e. the reaction rates do not de-
pend on the actual labeling state of 
the reactants. 

 
With these assumptions, which are common for most of 
the currently available averaging biochemical network 
concepts [19], it is possible to describe reaction net-
works with metabolite pools and metabolic fluxes as 
state variables. 

1.2 Mass Balances of Intermediate Pools 
 

In principle, the cell’s fluxome can be devided into two 
different species (cf. Figure 1): 
 
1. Extracellular fluxes, comprising uptake systems 

 (vu pt) for various substrates (S) into the cell and ex-
cretion systems (vexc ) for products (P) out of the cell. 

2. Intracellular fluxes, comprising reactions (vmet )  
between metabolic intermediates (IM) and effluxes 
vbm from intermediate precursors into biomass com-
ponents (BM). 

 
Following this classification a mass balance for the 
molar amount n of each metabolic intermediate in the 
cell can be formulated as: 
 

 (1)

 

 
By introducing (a) the relation    and (b) 
assuming that the intracellular volume is constant 

, Equation 1 can be transformed into a mass 

balance for intermediate concentrations cIM : 
 

 

 

(2,3)

 
For a simple example shown in Figure 2 the time de-
pendent concentration changes of all intracellular me-
tabolites are formulated as: 

 

 

 

 

(4)

 
 
 
 
 

 
 

Figure 1. Scheme of metabolic processes within a cell that are covered by metabolic 
network models. Pools within the cell wall (indicated by the grey line) are mass  

balanced. The cell is fed with substrates and metabolizes intermediates  
towards biomass and excretion products. 
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The system can be written in matrix notation: 
 

 (5)

with vectors for all intermediates c = (cA, cB, …, cF)T 
and fluxes v = (v1, v2, …, vex)T. N is called stoichio-
metric matrix, which consists of m columns representing 
all reactions and n rows representing all balanced IM’s. 

 
Metabolic Stationary States. Metabolic stationary flux 
analysis (MFA) aims at the quantification of intracellu-
lar fluxes in the metabolism of an organism. In order to 
use this approach, the assumption on metabolic station-
ary  dcIM/dt = 0  must hold, i.e. the  concentrations of all 
IM’s do not change over the experimental time. It is 
generally accepted that this condition is fullfilled in 
bioreactors under continuous cultivation conditions 
(chemostat) and in the exponential growth phase of cells 
cultivated in batch/fed-batch mode. 

Assuming a metabolic stationary system state it sim-
plifies as follows according to Equation 5: 

              (6) 

Due to the fact that there are usually 
more reactions than metabolite 
pools, the algebraic equation sys-
tem 6 is underdetermined. Including 
measurements (typically substrate 
uptake and product excretion rates 
determined from extracellular meta-
bolome analysis as well as anabolic 
reactions known from biomass 
formation) is usually not enough to 
recover all flux rates. Thus, only a 
linear combination of all fluxes can 
be calculated. In the running exam-
ple a combination of all intracellular 
fluxes can be determined by con-
straining the influx vfeed and the two 
effluxes vbm  and vex. 
 
Metabolic Non-stationary States. 
Strictly speaking a biochemical 
system under defined cultivation 
conditions can only approximative-
ly be considered as metabolic sta-
tionary, i.e. usually a quasi-statio-
nary state dcIM/dt  0  is attained.  

To be more general, dynamic metabolic networks 
can be formulated (cf. Equation 5): 

 

          (7) 
 

with external (possibly time dependent) concentrations 
cS and the vector of kinetic parameters. Usually, the time 
dependent reaction rates v are modelled mechanistically 
assuming fast equilibrium of intermediate enzyme com-
plexes (validity of Michaelis-Menten Quasi-Steady 
State). For example the reaction rate v1 of the example 
can be modelled by a reversible reaction of Michaelis-
Menten type 

 (8)

where kinetic parameters are the maximal reaction rate 
vmax, the equilibrium constant Keq, and the affinity con-
stants KA and KB. 

 

 
 

Figure 2. Left: Different levels of the example network regarded throughout the text. 
Level 1 (orange boxes): metabolic network model describing the reaction of rates v 
between intracellular metabolite pools.  Level 2 (white cycles):  C- atom transition 

network decribing the carbon atom traces. Level 3 (red interactions): 
regulatory/inhibitory constraints. Right: Two different ways to express the  
isotopic composition of metabolite pools: isotopomers (isotopic isomers)  

and cumomers (cumulative isotopomers). 
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As a result of the mechanistic enzyme descriptions, 

dynamic models contain a high number of model pa-
rameters. Although rapidly sampled measurement data 
of time dependent concentration changes are used for 
parameter fitting, often the adequate information is 
missing for identifying all kinetic parameters [2]. To 
reduce the amount of unknown model parameters, sev-
eral methods for simplifying enzyme kinetics have been 
proposed [5, 4]. Inserting mechanistic or approximative 
kinetic approaches in Equation 4 results in the ordinary 
differential equation (ODE) system for the running 
example under metabolic dynamic conditions. 

1.3 Mass Balance of Labeled Intermediate Pools 
 

The application of cultivation experiments with labeled 
substrates is motivated by the better relation between 
measurement data and model unknowns.  Depending on 
the mathematical formalism for modeling the labeling 
state of a certain metabolic network this results in a com-
binatorial blowup of the number of equations [18, 15, 1].  

Clearly, the most general representation of isotopic 
systems is given by the concepts of isotopomers and, 
equivalently, cumomers (cf. Figure 2).  In both cases 
there is not only one single mass balance for the overall 
concentration of an IM, but rather 2n equations for the 
IM’s isotopomer or cumomer concentrations, respec-
tively, with n the number of IM’s C-atoms. 

Following the well-known isotopomer concept the 
mass balance for intermediate labeling pools  is 
formulated 

 

 

 
(9)

There  denotes an isotopomer fracztion 
of the intermediate IM. 

When modeling systems where isotopic labeling 
plays a role, it is necessary to formulate mass balances 
around single intermediates that are based on a separa-
tion of the net rates   into forward v   
and backward rates v . The reason is simply given by 
the fact that a IM’s labeling is influenced by the labeling 
fraction of all pools contributing to its (isotope) mass 
balance. Consequently, in a reversible reaction step, the 
labeling that arrives the substrate pool through the back-
ward rate depends on the labeling of the product pool 

and is not necessarily consistent with the labeling state of 
the substrate, except high exchange rates can be assumed. 

As an example, consider the isotopomer mass bal-
ance around the labeled pool B of the example (cf. Fig-
ure 2): 

 

 
(10)

Special cases. In analogy to section 1.2, Equation 9 
contains two special cases: 
1. Metabolic and Isotopic Stationary States: Referring 

to Eq. 9 and assuming a metabolic and isotopic sta-
tionary  system state it follows: 

 (11)

2. Metabolic Stationary and Isotopic Non-stationary 
States: Assuming only a metabolic stationary system 
state (dcIM/dt  0 ) Equation 9 leads to: 

 

 

 
(12)

 

In both cases the function f depends in a linear way on 
the fluxes and the substrate isotopomer fractions 

 while it might be nonlinear in the intermediate 
isotopomer fractions  . 

2 A Generalized Modeling Concept 
2.1 Metabolic and Isotopic Non-stationary Systems 
 

Here, we present a general modeling concept, which is 
based on Equation  motivated by [16] in terms of isoto-
pomers. In order to benefit from the increase in perfor-
mance reported for the solution in 13C-MFA, we imple-
mented the cumomer approach (cf. Figure 2): 

 

 
(13)

 

The function f in Equation  13 is linearly dependent on 
the substrate cumomers cCum and nonlinear with respect 
to the reaction rates . The use of cumomers 
instead of isotopomers is motivated by the fact that the 
nonlinear ODE system can be partioned into cascaded 
subsystems of ODE’s [18]. In short, all cumomers with 
equal weight (identical number of labeled C-atoms) 
form one level of system equations.  
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These levels are solved consecutively, starting from 

level 0, which is solely determined by the stoichiometry 
and corresponding kinetics (cf. Equation 7), up to the 
highest level, which is determined by the C-atoms of the 
longest carbon backbone occuring in the network. 

 
To illustrate the concept consider the cumomer bal-

ances around the pool C of the running example (cf. 
Figure 2). For clarity, the elements of the cumomer 
concentration vector of C are denoted as 

 
Corresponding cucomer fractions are introduced by  

 and given in small letters, e.g. b#x1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14)

 
 

The cumomer fractions of level 0 (b#xx = c#xxxx = 
e#xx = 1) are not given explicitly. Considering the lev-
els above 1 the framed cumomer fractions are already 
determined in lower levels. It should be noticed, that the 
information on the C-atom transitions, i.e. which C-
atom of the substrate is transfered to which C-atom of 
the product, is essential for the correct formulation of 
the model equations.  

 
Already, from this simple example it becomes clear, 

that the whole system equations can hardly be formulat-
ed manually. To avoid tedious and error prone typing it 
is desirable to generate systems like Equation 14 in a 
fully automized way. We use the existing software 
toolbox 13CFLUX to take this task [19]. 

 

2.2 Kinetics for Labeling Dynamics 
Basically for every type of mechanistic enzyme kinetics 
the separate formulation of steady-state forward and 
backward rates is possible applying e.g. the King-
Altman method [6]. Although automatable, it is ques-
tionary if a description of one single reaction step by a 
complex mechanistic model like e.g. Bi-Bi Random 
Order comprising 18 rate constants to be fitted, results 
in a overall valid dynamic model.  

 
For that reason we choose the convenience rate law 

[8] as a simplified mechanistic approach, which can be 
specified by a small number of parameters and is easy to 
handle for automatically assign a kinetic model to each 
reactions step of a dynamic network model. The general 
rate law of a convenience kinetic for n substrates and m 
products is given by [8]: 

 

 (15)

 

 
In case of a reaction where only one substrate is 

converted to one product the known Michaelis-Menten 
kinetic is derived (cf. Equation 8). 
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As an example, consider the cumomer mass balance 

around the pool B of the example (cf. Figure 2): 
 

 

 
 

 

 

 

 

 

 

(16)

 

For modeling metabolic regulation, generic terms for 
activation and inhibition can be multiplicatively com-
bined with Equation 15: 

 

 (17)

 
When parameterizing a dynamic model only the right 
combinations of kinetic parameter values and initial 
pool sizes will lead to a certain stationary state of the 
undisturbed system.  

In order to use our modeling concept for the simula-
tion of different experimental states (including metabol-
ic stationarity) the dynamic network is coupled to a 
stationary network representing the initial system state.  

Thereby the maximal reaction rates 
are formulated as functions for initial 

values of fluxes   and intermediate concentrations 
 as well as kinetic parameters (now only compris-

ing affinity constants).  
Hence, the model includes one additional term per 

kinetic rate equation, e.g. for the forward step of reac-
tion v1 the two equations are considered: 

 

 

(18)

 

3 An Universal Framework for 
Simulation and Evaluation of 
Metabolic Networks 

So far we utilized a quite simple example network for 
explaining our modeling concept.  Even for that system 
the number of cumomer mass balances and kinetic 
equations to be generated is quite high. A more realistic 
example network modeling reactions of glycolysis and 
pentose phosphate pathways already contains 682 
ODE’s for cumomer concentrations and a total of 112 
kinetic parameters.  

Clearly, manual generation of such models becomes 
infeasible and automated model code generation is 
strongly recommended. Additionally, the resulting dy-
namic model is a system of highly nonlinear ODE’s and 
therefore demands for a simulation environment that 
can handle this complexity. 

For that reason we developed a software framework, 
which allows the automatic generation of dynamic met-
abolic and isotopic network models of any size and 
complexity and, moreover, offers the perspective to use 
sophisticated methods for statistical analyis and inter-
pretation of simulation results (cf. Figure 3).  

As a core for setting up the model and building exe-
cutable simulation code we use the Modelica language 
in combination with the Dymola environment (Dynasim 
AB, 5.0, www.modelica. org). 

3.1 Setup of Dynamic Model Equations 
Starting from biochemical network descriptions (includ-
ing stoichiometry, C-atom transitions, initial conditions) 
using the software 13CFLUX, consistent algebraic 
equation systems (AE) of mass balances for all 
cumomer pools are generated.  

These AE’s are then transformed into Modelica spe-
cific code consisting of ODE-systems for all cumomers, 
i.e. addition of a left hand side and kinetic equations (cf. 
Equation 13). 
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model dynamicModel 
//Declaration part 

//Model state 
parameter Integer flag= 5; 
//Cumomer concentrations 
Real A_1x(start= 0 . 0 0 5 2 6 7); 

... 
//Reaction rates 
Real v1_fwd; 

... 
//Kinetic parameters 

parameter Real v1_km_A= 1; 
... 

equation 
//Balances 

der(A_x1)=vupt_fwd*S_x1/S_xx+...; 
... 

//Kinetics 
v1_fwd=v1_fwd_vmax*(A_xx/v1_km_A)/...; 

... 
end dynamicModel; 

 

 
 
 
 
 

Figure 3: Workflow of model generation. 
Steps involved can be divided in four 
categories: (1) spezification of model 

equations, (2) conversion to a Modelica 
file, (3) its compilation into an executable 

code which is then used for versatile 
simulation tasks (4). 
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Definition of Model States. Due to the general model 
structure (cf. Equation 13 and Section 2.3) in total five 
types of experimental states can be simulated using one 
model with different scenarios settings: 
 
1. The external substrates  are unlabeled and  

• do not change over time resulting in an AE-system 
) depending only on steady 

state fluxes (v = const ). This also equals the starting 
point, where the system is in a unlabeled metabolic 
stationary state (0 = f(v0 )), 

• change over time resulting in an ODE-system   
) 

depending on dynamic intermediate concentrations 
(cIM). 

2. The external substrates substrates  are based on 
specifically labeled mixtures  and 

• do not change over time leading to an AE-system 
(  ) 
depending on steady state fluxes (v = const) and 
cumomer labeling fractions (  const ), 

• the substrate cumomer fractions ( ) change 
over time leading to an DAE-system  

 
depending on steady state fluxes (v = const), dy-
namic cumomer labeling fractions ( ) and me-
tabolite pool sizes (cIM= const.), 

• change over time resulting in the general ODE-
system of Equation 13. 

 
Manual Adaption of Model Code. The initial para-
metrization of the automatically generated model code 
allows directly starting forward simulations of the dif-
ferent model states. In order to describe a real biochem-
ical system under certain experimental conditions man-
ual adaption of the following items are possible: 

• Kinetic types: As the standard kinetic model for all 
reactions, the convenience rate law is chosen (cf. 
Section 1.2). Nevertheless, if other kinetic types for 
single reaction steps are needed, they can be easily 
substituted. 

 
 

• Substrate labeling mixture: For each external sub-
strate the standard mixture is formed by an amount of 
unlabeled, single labeled (1-13 C) and fully labeled 
(U-13 C) substrate. Different compositions can be 
fixed manually. 

3.2 Model Validation 
After generation, Modelica models can be directly com-
piled into highly efficient executable simulation code 
(cf. Figure 3). Model simulations, parameter fittings as 
well as comprehensive statistical evaluations are per-
formed under MATLAB (Mathworks, R2008b) on a 
high-performance workstation under Linux. 

 
Sensitivity Analysis. As an essential ingredient of model 
based inference, sensitivity analysis for model variables 
and parameters is performed using an automatic differ-
entiation (AD) method developed for Modelica source 
code [3]. In short, ADModelica strives to semantically 
augment Modelica models with Modelica code for 
computing certain sensitivities, with minimal user ef-
forts.  

Aiming at the full-support of Modelica language 
constructs, the current version supports most basic con-
structs of Modelica. Clearly, the number of equations in 
a differentiated model (> 70000 for a realistic model) 
increases proportionally with the number of model pa-
rameters. 

 
Visualization of Simulation Results. For an intuitive 
interpretation of simulation data under dynamic as well 
as steady state conditions a network visualization ap-
proach can be applied.  

Huge amounts of different kinds of simulation data, 
e.g. dynamically changing intermediate concentrations 
and labeling fractions can be analyzed in a quick and 
comprehensive way (Figure 4).  

The visualization of regulatory interactions in a giv-
en metabolic network is based on a concept defining the 
Regulatory Strength of effectors regulating certain reac-
tion steps [9]. 
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4 Conclusions 
The proposed software framework allows automatized 
generation of dynamic network models for simulating 
all currently realizable experiments in the fields of 
Metabolomics and Fluxomics, i.e. metabolic and isotop-
ic (non-)stationary systems.  

 
Due to the universality of the underlying modeling 
concept the different experimental states an be simulat-
ed using one software platform. Since, model setup and 
compilation is performed under the Modelica/Dymola 
environment realistic network models comprising more 
than 1000 ODE’s can be simulated in accept- able time 
and therefore used for experimental validation. 

 

The developed automatic differen-
tiation method for Modelica code 
allows exact calculation of Jacobians 
that can be used for sensitivity analyis 
and gradient based optimization rou-
tines. Finally, the whole framework 
covers a visualization approach where 
the resulting simulation data can be 
easily interpretated in the network 
context. 
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