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Abstract.  Mathematical models become more and more 
indispensable tools for engine manu- facturers. As nonlin-
ear dynamic models based on first-principles are preferred 
by practitioners, model calibration or parameter estima-
tion is often a time consuming task. The use of optimally 
designed dynamic inputs can reduce the experimental 
burden and increase the accuracy of the estimated pa-
rameters. The current paper presents the calibration and 
validation of a Diesel engine airpath model. Optimal  in-
puts have been designed based on random phase multi-
sine inputs. These multisines can be  adapted to excite 
exclusively a specific frequency band of interest. Moreo-
ver, they allow (i) to concentrate the input around an 
operating point, and (ii) to include fast variations in the 
input profile without introducing a large number of dis-
cretization parameters. The resulting model has been 
found to provide an acceptable predictive power in both 
identification and validation. 

Introduction 
Mathematical models and simulations are more and 
more exploited for the analysis, design, operation and 
optimiza- tion of engines (Stewart et al., 2011). Howev-
er, the accurate modelling of engine processes is often a 
non-trivial task. There are several reasons or this. First, 
many of these processes are intrinsically dynamic in 
nature, i.e., properties and variables vary over time,  
giving rise to dynamic models. As often fast and slowly 
varying variables are present, different time  scales have  
to be accounted for. Moreover, mechanistic models, 
which start from the physical principles and conserva-
tion laws underlying the process, are preferred in prac-
tice because of their generic prediction capabilities. 

However, the underlying mechanisms often require 
highly nonlinear model descriptions. Mathematically, 

this kind of description results in non-linear ordinary  
differential equation (ODE) models. In addition, before 
the models can be employed in practice for the above 
mentioned purposes, model calibration or parameter 
estimation (PE) is required, i.e., estimating the unknown 
parameters based on experimental data. As experiments 
can be time consuming and expensive, Optimal Experi-
ment Design (OED) techniques are attractive to reduce 
the experimental burden (Walter  and Pronzato, 1997). 
Here, optimal inputs are designed such that outputs are 
as informative as possible with respect to the target 
parameter(s). 

In the current paper dynamic parameters of an air-
path model for a Diesel engine have to be estimated. 
The airpath model used is similar to the one described in 
Puchner et al. (2009) and the dynamic parameters have 
to be estimated based on measurement from an engine 
test bench. 

In the current case, two specific requirements are 
present. Fast variations in the designed inputs have to be 
combined with  long time horizons and (too) large devi-
ations from specified setpoints have to be avoided. This 
combination prohibits the use of polynomial discretiza-
tions which are typically employed (Franceschini and 
Macchietto, 2008). Hence, procedures based on multi-
sine input representations have been developed and 
successfully been applied. 

The paper is organized as follows. Section 1 details 
the Engine test bench and the airpath  model under 
study. In Section 2 the Optimal Experiment Design 
strategy is outlined whereas in Section 3 the overall 
approach is pointed out. Section 4 discusses the ob-
tained results. Finally, the conclusions are summarized 
in Section 5. 
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1 Engine Test Bench and Airpath 

Model 

1.1 Engine Test Bench 
The device under investigation is a 2 liter  EU5 common 
rail Diesel engine with external exhaust gas recircula-
tion and a variable geometry turbine turbocharger. This 
new engine replaces the BMW  M47T-OL  Diesel en-
gine used in Alberer (2009); Ferreau et al. (2007); 
Puchner et al. (2009)). 

Figure 1 presents a schematic view of the engine’s 
air path. It consists of the intake and exhaust manifold, a 
path for the Engine Gas Recirculation (EGR) (i.e., 
EGR-valve and EGR-cooler), the Variable Geometry 
Turbocharger (VGT) with the intercooler and the cylin-
der block with the swirl flaps. Five variables can be 
manipulated, i.e., position of EGR and VGT valve, 
injected fuel mass, engine speed and swirl state, while 
measured variables involve the intake pressure (MAP),  
fresh air flow (MAF),  the oxygen concentration in the 
exhaust, the oxygen concentration in the intake mani-
fold and the crankshaft torque. 

1.2 Airpath model 
 
The model is characterized by the combination of phys-
ical equations with static maps. The maps mainly cap-
ture the static behavior of the engine, while physical 
equations (e.g., the ideal gas equation and equations for 
conservation of mass and energy) account  for the dy-
namic behavior. These maps are derived based on 
steady-state test-bench measurements and are used for 
polynomial interpolation- extrapolation between process 
variables (Alberer, 2009). 
 

 
Figure 1. Schematic diagram of the Diesel airpath 

 System (Ferreau et al., 2007). 

The airpath model is provided as a Simulink file 
which can be run from Matlab. It has as inputs u the 
five manip- ulated variables, i.e., EGR valve position 
Xegr , the VGT activation signal Xvgt , the engine speed n, 
the injected fuel mass Wf  and the swirl valve position. 
The outputs are the five mentioned measured variables, 
i.e., the intake pressure (MAP), fresh air flow (MAF), 
the oxygen concentration in the  exhaust, the oxygen 
concentration in the intake manifold and the crankshaft 
torque. However, for practical reasons not all inputs and 
outputs have been incorporated in the Optimal Experi-
ment Design. For instance, the swirl valve which can 
only be either entirely open or closed, has been assumed 
to be constantly open. In addition, only the in practice 
more easily measurable intake manifold pressure and 
flow have been considered to be available. 

The model contains five parameters describing the 
dynamic behavior, which have to be estimated (i.e., 
Parameter Estimation task (PE)). These parameters are 
the volume of the intake and exhaust manifold Vi   

and Vx, the turbocharger efficiency n  and the time 
constants of the turbocharger and the exhaust gas recir-
culation cooler vgt and egr . Hence, the four model in-
puts Xegr , Xvgt , n and Wf  have to be designed in order to 
yield as informative outputs for MAF and MAP  as 
possible (i.e.,  Optimal Experiment Design task (OED)). 
These two outputs mentioned above will be used for 
model calibration. 

2 Optimal Experiment Design for Non-
linear Dynamic Systems 

2.1 Optimal Control Problem 
Optimal Experiment Design for nonlinear dynamic sys- 
tems described by Ordinary Differential Equations gives 
rise to a particular class of optimal control problems. 

 (1)

subject to 

 (2)

 (3)

 (4)

Here, x are the state variables, u the time-varying con- 
trol inputs and p the model parameters.  
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The vector f represents the dynamic system equa-

tions (on the interval t ∈ [0, tf ] ) with initial conditions 
given by the vector bc .The vector cp indicates path ine-
quality constraints on states and controls. y are the 
measured outputs, which are typically a subset of the 
state variables x. 

2.2 Objective Function 
In OED, the objective function J is typically a scalar 
function  of the Fisher information matrix 

 

 (5)

 

with nt the number of measurement times ti. F combines 
information on (i ) the error on the output measurements 
(Q is typically defined as the inverse of the measure- 
ment  error variance matrix), and (ii ) the sensitivities of 
the  model output (y(p, ti )) to small variations  in  the 
model parameters p  (expressed in the sensitivity matrix 

 ). To this end several scalar criteria have been de-

scribed in literature, e.g.: 
A-criterion min[trace(F 1 )]. A-optimal designs min- 
imize the arithmetic  mean of the parameter estimation 
errors. This corresponds to the minimization of the sum 
of the squared axes of the asymptotic joint confidence 
region, i.e, minimizing the frame enclosing this confi-
dence region. 
D-criterion max[det(F)]. The D-criterion minimizes the 
geometric mean of the parameter estimation errors. D- 
optimal design aims at the minimization of the parame-
ter estimation variance-covariance,  i.e., minimization  
of the joint confidence region on p via the maximization 
of the determinant of F. 
E-criterion max[ min (F)]. E-optimality focuses on the 
minimization  of the largest parameter error (i.e., max- 
imization  of the smallest eigenvalue),  and as such, ne- 
glects uncertainty on the remaining parameters. This 
corresponds to minimizing the longest axis of the joint 
confidence region 

2.3 Input Discretization and Degrees of Freedom 
Nowadays optimal control problems are most often 
solved by direct approaches which convert the infinite 
dimen- sional optimal control problem into a finite 
dimensional nonlinear program by discretizing the con-
trol  resulting in a finite number of degrees to be opti-
mized.  

Typically, piecewise polynomial discretizations are 
used (Biegler, 2007; Diehl et al., 2002). As in mecha-
tronic systems fast variations have to be combined with 
long time horizons, piecewise constant control discreti-
zations yield a too high number of control parameters to 
be optimized. To tackle this issue, in  the  current  paper 
three strategies  based on random phase multisines are 
proposed (Pintelon and Schoukens, 2001) 

 

 (6)

 

where u0  is the operating point to be chosen, fk are the 
frequencies and Ak are the cosine amplitudes, F  is the 
number of frequency domain data samples and k  is a 
random phase. This kind of signals has the advantage 
that (i) energy can be concentrated in the dominant 
frequency ranges of the system and that (ii) they are 
most interesting when designed inputs are preferred 
around pre-specified operating points . 

2.4 Optimization Strategies 
In general, multisines exhibit  three classes of degrees of 
freedom that can be optimized. The root mean square 
value (RMS) of the signal belongs to the first class. For 
a signal u(t) with nt  points, the RMS is defined as: 

 

 (7)

 

The RMS value is calculated based on the signal after 
subtraction of the operating point. The frequency bands 
compose the second class of degrees of freedom, while 
the last class of degrees of freedom involves the ampli-
tudes Ak of the cosines. Depending on the selected class 
of degrees of freedom, different strategies are obtained. 
For a schematic representation see Figure 2. 

In the first strategy (S1 or RMS optimized ) only the 
RMS value of the multisine is optimized. This means 
that both the frequency band of the signal as well as the 
amplitudes of the different  frequency contributions  
remain at  pre- specified values. 

Optimizing the frequency bands is the second strate-
gy (S2 or frequency optimized ). The advantage is that a 
frequency band can be selected that excites the outputs 
the most. Consequently, more information can be ob-
tained by exciting a specific frequency band. During 
this optimization the RMS value is kept constant and the 
amplitude remains the same in the whole band. 
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The third strategy (S3 or amplitude optimized ) requires 
to vary the amplitudes of the different frequencies. For 
every frequency band, the band is divided in four differ-
ent parts which are allowed to have a different ampli-
tude.  

Four different subbands for each signal are chosen in 
order not to increase the number of decision variables 
too much and by doing so to limit the increase in the 
computation time. The amplitudes are optimized togeth-
er with the RMS value. 

 
 

Figure3. Schematic diagram of the modeling cycle. 

3 Procedure 
This section outlines the global approach that  
has been used. Under the assumption that a 
correct model struc-ture is selected for the 
underlying dynamic process, the model pa-
rameters need to be estimated.  

This can be done according to the general 
modeling procedure or so-called modeling 
cycle (Balsa-Canto et al., 2010; Franceschini 
and Macchietto, 2008; Ljung, 1999; Walter 
and Pronzato, 1997). 

The preliminary step in the modeling cycle 
involves a verification of the model’s structur-
al and practical identifiability. A sensitivity 
analysis of the outputs with respect to the 
inputs will in this respect often reveal quite 
some information. If this step succeeds, then a 
sequential  approach follows for choosing the 
appropriate parameters as can be seen in Fig-
ure 3. This sequential part includes the loop: 

Experiment, Parameter Estimation, Confidence Interval 
Computation and Design of Experiments according to 
the results of the Confidence Interval. This sequential 
procedure will be applied in the current study. 

3.1 Sensitivity analysis 
An important  background step for experiment  design is 
sensitivity analysis. An analysis of the sensitivity func-
tions can provide insight in (i) which parameters have 
the largest influence and, hence, have to be estimated 
preferably and (ii) which experimental conditions en-
close the most information for the accurate estimation of 
specific parameters. 

3.2 Design of Experiments 
The Design of Experiments provides new inputs for the 
Parameter Estimation. As Design of Experiments in-
volves an optimization  problem, first  the  criterion  has 
to be selected among the available ones (Section 2.2). 
As a next step the type of input signal as well as the 
parameters characterizing the signal have to be selected. 
In the current work the E-criterion: max[ min(F)] is se-
lected with input structures according to the above three 
strategies. 

3.3 Parameter Estimation 
Given a designed input, an experiment can be per-
formed and a parameter estimate can be  obtained.  
 

 

Figure 2. Schematic diagram of the different input structures. 
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Parameter Estimation involves the selection of parame-
ter values such that the model predictions y(p, ti ) fit the 
measurements yexp (ti ) as accurately as possible despite 
the presence of measurement errors. The most common 
assumption about the probability distribution of the 
measurement errors is that they are additive, independ-
ent and identically distributed according to a Gaussian 
distribution. These assumptions typically lead to a sum 
of squares objective (Walter and Pronzato, 1997): 

 

(8)

with np the number of parameters and nt  the number of 
measurements. The weighting matrix Q is typically 
selected as the inverse of the measurement error vari-
ance- covariance matrix. 

3.4 Confidence Intervals Computation 
The quality of a parameter estimate, or vice versa, its 
uncertainty, is quantified by its variance or standard 
deviation, which is a measure for the spread of the pa-
rameter distribution. Parameter variances can be extract-
ed from the parameter variance-covariance matrix P: 

 

 (9)

with p  and pˆ  the true and estimated parameter vector, 
respectively. The variance-covariance matrix P can be 
approximated by the inverse of the Fisher information 
matrix (for more details see Walter and Pronzato 
(1997)). The variances si  on the main diagonal of P can 
be used to determine the (1- )100% confidence interval 
for each parameter estimate 

 

 (10)

 
with t the Student-t value for nt  np  degrees of free-
dom, (1- ) the confidence level, nt  the number of exper-
imental data points and np  the number of estimated 
parameters. 

3.5 Implementation 
The airpath model is provided as a Simulink file that 
can be called from Matlab. Due to model specifications 
the sensitivity functions have to be approximated using 
a finite difference approach in the current work.  

For the PE the lsqnonlin Matlab function is used. 
It is a gradient based method but the gradients are com-
puted using first-order finite difference perturbations. 
For the Confidence Intervals the Student-t value from 
Matlab is used, and the variance-covariance matrix is 
calculated with outputs of the PE procedure. Finally for 
the OED the fmincon Matlab function is used for the 
optimization whereas the sensitivities are calculated 
with finite differences as well. 

4 Results 
In this section the results for the airpath model will be 
presented. First, it has been seen from  the sensitivity 
analysis that all parameters have an influence on at least 
one of the outputs. Hence, this strengthens the believe 
that  all parameters can be estimated (when appropriate 
inputs are applied).  

However, in view of conciseness, plots of the sensi-
tivities have been omitted. Second, inputs have been 
optimized based on each of the three strategies. Every 
strategy was applied on four different  operating points 
(O.P.) as defined in Table 1. Also a comparison to white 
noise has been made. Third, the designed inputs have 
applied to the testbench and parameters have been esti-
mated. Finally, a validation of the calibrated model has 
been performed. 

 

O.P. Xegr [%]  Xvgt [%]    n[rpm]   Wf [mg/cyc]

1. 
2. 
3. 
4. 

40 85   1500    15 
40 75   2000    15 
55 80   1800     7 
20 70   2200    25 

Table 1. Operating points. 

4.1 Optimization Strategy Comparison 
During the entire procedure the sampling time is 0.01 s 
and the duration of the cycle is 20 s. The frequency 
resolution is 0.05 Hz. Due to the practical implementa-
tion issues the upper bound on the frequency bands are 
constrained to Xegr   10 Hz, Xvgt   5 Hz,n  2 Hz and 
Wf    4 Hz. 

The random phases are chosen to be random values 
in the interval [0, 2 ). The given measurement variance 
for MAP is  σ2

MAP=1002 and for MAF is σ2
MAF=102. 
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S1 Strategy. In a first optimization  approach only the 
RMS value of the four multisines added to the operating 
points is optimized. This means that both the frequency 
band of the four signals as well as the amplitudes of the 
different frequency contributions remained the same in 
the entire frequency range.  

The resulting minimal eigenvalues are summarized 
in Table 2. Operating points 2 and 4 are of higher in-
formation. 

 
 RMS value 

O.P. min Xegr Xvgt n Wf 

1. 
2. 
3. 
4. 

3.79e03 
2.92e06 
2.46e03 
1.99e07 

12.75 
12.24 
12.16 
5.10 

4.78 
0.03 
7.88 
8.00 

184.42 
300.00 
259.66 
194.34 

4.04 
2.52 
1.99 
1.50 

 

Table 2. RMS optimization results. 
 

S2 Strategy. The effect of optimizing the frequency 
bands is exploited in the second strategy. The idea is 
that  the system can be  excited in a certain band. As a 
result, more information can be obtained by exciting a 
specific frequency band.  

The RMS value and the amplitudes are kept constant 
in this approach. The RMS values are tuned at the val-
ues obtained in the previous strategy. In Table 3 there is 
an overview of the obtained frequencies as well as the 
used RMS values. For operating points 1 and 3 a higher 

min than S1 is obtained whereas for operating point 2 
and operating pint 4 the same. 

 

S3 Strategy. The last approach includes the optimization 
of the RMS value with varying amplitudes in  different 
frequency bands. Four different sub-bands for each 
signal are chosen in order not to increase the number of 
decision variables too much and by doing so to limit the 
increase in the computation time.  

 

In total for the current application there are 20 opti-
mization variables, as there are four sub-bands for every 
operating point and four RMS values. The resulting 
values can be found in Table 4. Operating points 2 and 4 
have been improved whereas for operating points 1 and 
3 the amplitude optimization does not improve the result 
of the frequency optimization.  

In S3 strategy the frequency region is divided in 4 
subbands, which can either fully selected or not whereas 
in S2 strategy the frequency is a degree of freedom and 
can vary and thus improving the result (see Figure 2). 

By studying the tables for the different strategies it 
can be seen that the frequency optimized strategy gives 
results in average of high quality in a reasonable com-
putation time. 

4.2 Comparison to White Noise Inputs 
For consolidating the above results a comparison with 
white noise inputs has been carried out. The white noise 
has been chosen in order to have the same RMS value 
as the original signal and it is added to the operating 
points. 
 

 
Figure 4. Comparison of Xegr   input in multisine  

and white noise form. 

 Frequency band values 

O.P. min Xegr Xvgt n Wf 
1. 
2. 
3. 
4. 

1.39e04 
2.92e06 
7.34e03 
1.99e07 

[0.20-1.00] 
[0.05-2.00] 
[0.43-1.00] 
[0.06-2.00] 

[0.30-1.06] 
[0.05-5.00] 
[0.05-1.90] 
[0.06-5.00] 

[0.05-1.39] 
[0.05-2.00]  
0.05-1.58] 
[0.06-2.00] 

[0.13-1.00] 
[0.05-4.00] 
[0.14-1.00]  
[0.06-4.00] 

 

Table 3. Frequency optimization results. 
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Table 5 summarizes a complete comparison. The 
minimum eigenvalue for the white noise shown in the 
table is the mean value of ten different trials in order to 
ensure an adequate comparison. Figure 4 displays the 
Xegr  input for the S1 and the  white noise case. The min 

of the white noise is between 200-600 whereas with the 
multisines 103  - 106 higher values are achieved. 

 

 min 

O.P. RMS  
optimized 

frequency  
optimized white noise

1. 
2. 
3. 
4. 

3.7855e03 
2.9155e06 
2.4572e03 
1.9915e07 

1.3893e04 
1.4303e04 
7.3435e03 
1.9915e07 

228.05 
366.23 
237.59 
662.76 

 

Table 5. Comparison for optimization  of the RMS,  
frequency and white noise. 

4.3 Identification 
The designed inputs are applied to a  real engine. A pro-
duction 2 liter EU5 common rail Diesel engine mounted 
on a dynamical engine test-bench was used in the cur-
rent work. The generated outputs are used for identify-
ing the model’s parameters. 

The designed inputs were applied on a real system, 
the measured outputs where used for PE. The resulting 
pa- rameters were used to simulate outputs. Figure 6 
illus- trates the engine outputs (measurements) together 
with the simulated outputs  from the designed  inputs of 
the third operating point. The designed input is applied 
from 5 to 25 seconds. It can be seen that the calibrated 
model accurately describes the measurements. The 
resulting pa- rameters together with their confidence  
bounds can be found in Table 6. The confidence bounds 
indicate that the estimation is accurate. Which are typi-
cally at least the order of magnitude smaller than the 
parameter values. 

4.4 Validation 
In the above subsection parameters were obtained 
through identification for OP 4. In the current subsec-
tion designed inputs for OP 2 were applied to the real 
engine, while the simulator used the previously obtained 
parameters from OP 4 to predict the outputs. 

The simulated outputs are following the engine out-
puts  as seen in Figure 6. The SSE value for this estima-
tion is SSE = 1.45e+03. This validation corroborates the 
proposed method. 

 

 
Figure 5. Output comparison. 

5 Conclusion 
In this work the dynamic parameters of an airpath mod-
el for a 2 liter EU5 common rail Diesel engine with 
external exhaust gas recirculation and a variable geome-
try turbine turbocharger have been accurately estimated. 
To ensure parameter accuracy, optimal random multi-
sine inputs have been designed based on Optimal Exper-
iment Design techniques.  

O.P. min Xegr Xvgt n Wf 

  RMS Ak RMS Ak RMS Ak RMS Ak 

1. 
2. 
3. 
4. 

1.21e04 
3.38e06 
2.84e03 
2.30e07 

12.80 
12.7803

12.19 
5.0967 

0.68/0.98/0.18/0.00 
0.00/ 1.00/ 0.00/ 0.95 
0.97/ 0.99/ 0.98/ 0.80 
0.50/ 0.50/ 0.50/ 0.50 

4.98 
0.44 
8.00 
8.00 

1.00/ 0.405/ 0.12/ 0.00
0.92/ 0.97/ 0.93/ 0.93

1.008/ 0.99/ 0.98/ 0.10
0.50/ 0.50/ 0.50/ 0.50

190.00
299.99
270.00
194.34

0.85/ 0.00/ 0.48/ 0.12 
0.98/ 0.93/ 0.98/ 0.96 
0.98/ 0.99/ 0.95/ 0.96 
0.50/ 0.50/ 0.50/ 0.50 

4.78 
2.66 
1.99 
1.50 

0.65/ 0.00/ 0.00/ 0.00
0.95/ 0.96/ 0.92/ 0.97
0.97/ 0.99/ 0.96/ 0.96
0.50/ 0.50/ 0.50/ 0.50

 
Table 4. Results of RMS optimization with different amplitudes for different frequency bands. 
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Parameter Estimation with  real engine measurements

for operating point 4 

parameter found value 95% conf.bound 

Vi 
Vx 
 n  
egr  
vgt 

0.0183 
0.0100 
0.7098 
0.2161 
0.5620 

± 6.59e-04 
± 7.78e-04 
± 1.48e-03 
± 9.28e-03 
± 9.56e-03 

SSE 
MSE 

1.222e+03 
0.4078 

 

 
Table 6. Test-bench measurements results. 

 

 
Figure 6. Output comparison validation. 

 
Three input optimization profiles have been presented. 
The use of multisines allows exclusive excitation of a 
specific frequency band of interest. Moreover, fast dy-
namics are included without  increasing the number of 
discretization variables. The results have provided an 
ac- ceptable prediction both in identification as in vali-
dation. 
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