
S N E B E N C H M A R K N O T E

 SNE 22(1) – 4/2012 53

An Actor-oriented Approach to ARGESIM Benchmark C05
'Two State Model' using Berkeley Ptolemy II

Patrick Einzinger
dwh Simulation Services, Neustiftgasse 57-59, 1070 Vienna, Austria; patrick.einzinger@drahtwarenhandlung,at

Simulator. The Ptolemy II project (from the Center for
Hybrid and Embedded Software Systems in the De-
partment of Electrical Engineering and Computer Sci-
ences of the University of California in Berkeley) stud-
ies modelling and simulation of concurrent, real-time,
embedded systems which combine the continuous dy-
namics of physical systems with discrete mode changes
(for example from a digital controller). Models in Ptol-
emy II consist of so-called actors - visually represented
in block diagrams - which are able to communicate with
each other by sending messages over ports and channels.

Actors and their connections describe an abstract
syntax of the model; additionally one has to specify a
‘model of computation’ (like continuous time or dis-
crete event) which gives operational rules for the execu-
tion of the model. Ptolemy II supports heterogeneous
and hierarchical mixtures of different models of compu-
tation. It is constructed in Java and the source code is
freely available (http://ptolemy.eecs.berkeley.edu/).

Modelling. The top-level of the model (Figure 1) con-
sists of one ‘Modal Model’ actor called ‘TwoStateMod-
el’ with output ports for y1, y2 and state changes (the
icon for the modal model hides the port for y2). A mod-
al model implements a finite state machine whose states
(or modes) can have refinements, i.e. submodels that
execute when the state machine is in the corresponding
state. Therefore this actor type is clearly well suited for
the Two State Model.

The modal model actor has connections to various
sinks: a timed plotter for plotting the output signal y1, a
periodic sampler (period 5) with a display to show the
final value for y1 on screen and an expression writer
with a clock (triggered by the output port for state
changes) for writing the time values of the state events
to a file. With these sinks all necessary information for
accomplishment of the tasks is available.

A ‘director’ block defines the model of computation.
In the top-level a continuous director governs the execu-
tion. It implements a differential equation solver, how-
ever as there is no differential equation at the top-level

just the continuous directors in the refinements of the
states control its step size.

Figure 1. Three hierarchical levels of the model: The top level
with the modal model actor ‘TwoStateModel’ inside of which
there is a finite state machine with ‘init’ state for initialization
and the two states of the system. Each state has a refinement.
The refinement for state 2 is shown here. Note the ‘LevelCross-

ingDetector’ actor which triggers the event of hitting the pin.

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 22(1), 2012, 53-54 | doi: 10.11128/sne.22.bn05.10117

 P Einzinger Solution Benchmark C05 – Ptolemy II

 54 SNE 22(1) – 4/2012

BN
Inside the modal model actor ‘TwoStateModel’ is a

finite state machine (therefore it implicitly has an FSM
director) with an initial state ‘init’ used for initializing
the model with the corrector initial values for y1 and y2
and the two states ‘state1’ and ‘state2’. The port
‘stateChange’ triggers the transitions between the states,
as it receives an output token each time y1 crosses the
specific thresholds. At the time of a state change the
output ports for y1 and y2 give the new initial values of
the state the model transits to.

The refinements of both state1 and state2 implement
the differential equations. The block structure is similar
to well-known block diagrams (as for example in Sim-
ulink) and has two integrator actors, one for y1 and one
for y2. Both are connected to the corresponding output
ports. A ‘LevelCrossingDetector’ actor detects the cros-
sing of the threshold (in rising direction in the case of
state1 and in falling direction in state2). At a crossing it
sends a token to the output port ‘stateChange’, activat-
ing the guard of the state transition. Both refinements
have a continuous director and get the values of c2 and c4
from the corresponding parameters defined at top-level.

A-Task: Simulation Time Domain. The version of Ptol-
emy II used does not include a solver appropriate for
stiff systems. The available solvers are explicit RK23
and explicit RK45. The simulation with RK45 was
inefficient: Even with an error tolerance (for the solver
and for the level crossing detectors) of 10-6 it took sev-
eral hours (on a laptop with Intel Core 2 Duo T8300,
2GB of Ram and Windows Vista), because the solver
had to choose very small step sizes. Figure 2 shows the
plot for y1 with error tolerance set to 10-10.

Figure 2. Plot of y1 over time, all error tolerances set to 10-10

B & C-Tasks: Event Times and Final Values. Table 1
shows the time values of the state transitions for all
error tolerances set to 10-6, 10-10 and 10-14. With error
tolerance 10-6 an additional sixth event takes place and
the final value of y1 is completely wrong. With more
stringent error tolerances all events and the final value
are detected nearly exactly.

tol 1.E-06 1.E-10 1.E-14
t1 1.1082628547607 1.1083061678763 1.1083061677712

t2 2.091871335981 2.1296853555014 2.1296853551551

t3 2.7319550555404 3.0541529075528 3.0541529069963

t4 3.2977498326525 4.0755320954016 4.0755320943802

t5 4.1092310397903 4.9999996474117 4.9999996462213

t6 4.9718927771635

yf 3.5041594536956 5.3701798572355 5.3693128433754

Table 1. Time values of the state events with error tolerances
set to 1.E-6, 1.E-10 and 1.E-14, final values yf .

D-Task: Frequent Events. With new parameter values,
the system exhibits high frequent oscillatory behaviour
after the first state transition from state1 to state2.

Figure 3. Plot of y1 over time for the parameter values of task

d (error tolerances set to 10-11).

t1 =1.1083061677768 t61 = 4.9230401079777
t2 = 1.1217299678991 t62 = 4.9364639081008
t60 = 4.8093061100968 yf = 5.7804025201735

Table 1. First two and last three time values of the state
events and final state, error tolerances; Task d.

Altogether there are 62 state events. Figure 3 shows the
time plot of y1, and Table 2 gives the time values of the
first and last discontinuities as well as the final value for
an error tolerance of 10-11.

Resume. The philosophy of the Ptolemy Project is ap-
pealing, as it does not express heterogeneous models in
terms of one general model of computation. Instead of
that it uses an abstract semantics which every actor has
to fulfil, and a director block in each actor implements
the concrete rules of execution. This allows a rigorous
coupling in hybrid models.
Furthermore Ptolemy II is an open source software and
freely available. Therefore it is possible to study the
internals of the simulator and to do research on hybrid
systems without expensive software. Still missing are
advanced ODE or DAE solvers (2011).

Submitted: August 2011
Revised: October 2011
Accepted: February 1, 2012

