
S N E T E C H N I C A L N O T E

 SNE 22(1) – 4/2012 45

Evaluation and Adaptation of Techniques for Higher Index
DAE with Respect to Real-Time Simulation

Jörg Frochte

Bochum University of Applied Sciences, Dept. Electrical Engineering and Computer Science,
Höseler Platz 2, 42579 Heiligenhaus, Germany; joerg.frochte@hs-bochum.de

Abstract. In this paper we will evaluate approaches to the
simulation of DAE of higher order under real-time condi-
tions. Some of these approaches are new variants of well-
known methods. For the purpose of evaluation we used,
for example, explicit multistep methods with and without
subsequent inexact projection, and BDF approaches under
real-time termination conditions. The Hardware in the
loop (HIL) Simulation requires plant models which can be
simulated under hard real-time conditions. Thus the com-
bination of DAE and real-time simulation is very interest-
ing for model-based generation of plant models because
the socalled hybrid differential algebraic equations
(HDAE), see e.g. [11] Appendix C, are the mathematical
foundation of modeling languages such as Modelica and
Simscape. So beyond the numerical properties of a tech-
nique we will watch out wherever they are suitable for
model-based code generation.

Introduction
The modeling process takes place on several levels of
abstraction: In a certain way, the top level is the least
abstract because on this level one can still deal with the
real object, which is set by reality. The real object
serves as a model for the ‘physical model’. This process
is based on physical simplification: Geometrical details
and effects, e.g. temperature dependency, need to be ne-
glected. The mathematical representation of this physi-
cal model is now the ‘mathematical model’. This math-
ematical model is taken to construct a numerical model.
The model finally gained is then used in simulation
studies.
Modelica tools or Simscape give the modeler an oppor-
tunity to design the plan model primarily on the physi-
cal level and not on the mathematical one. Latter one is
carried out with the help of modeling tools such as Sim-
ulink or by directly coding the model to C/C++.

If these model based code generation tools were
used in a perfect world, there would be only little need
for the modeler to bother about the mathematical level.

On the numerical level there would be no bother at
all. Unfortunately this is not the case up to now. Model-
ers still need a lot of knowledge about all levels of mod-
eling, including the numerical level. This is particularly
true for real-time simulation.

The purpose of this paper is to improve this type of
simulation by evaluating and adapting established
methods for real-time use case. It is well known that the
numerical simulation of DAE with a high index requires
a high level of effort and care. As part of an automatic
code generation from physical models some approaches
in the literature are hard to apply, if at all. The reason is
that they require more knowledge than a DAE system
without modeling-context can provide to a code genera-
tion software. Even with more data about the context the
skills how to treat the system are hardly capable to be
set in todays software expert systems. Beyond this in
some techniques, e.g. Baumgarte's method, parameters
depend on the discretization and used integration method.

This has already been pointed out by Ascher et al.
[1] and seems to be still state of the art for modern
simulation tools, see [14]. In consequence, we do e.g.
not consider Baumgarte's method in this paper because
it seems impossible up to now to choose an optimal set
of parameters automatically for such a general use case.
Neither do we consider approaches limited to special ap-
plication areas such as mechanical models because we are
looking for general approaches to multi-physical tools.

1 Real-time Requirements - Test Case
Performance must be defined with respect to whether
there are real-time requirements or not. Most numerical
simulations are carried-out without real-time require-
ments.

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 22(1), 2012, 45-52 | doi: 10.11128/sne.22.tn.10115

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 46 SNE 22(1) – 4/2012

TN
In such cases ‘performance’ means that the simula-

tion is completed as quickly as possible. This goal is
frequently followed by means of continually or tempo-
rarily large time steps. The latter are the outcome of
adaptive techniques. On the one hand, a time step of t
=1e-3 seconds is in most simulations considered to be
abnormally small. Hence, it would only be used in an
emergency for a limited number of time steps. On the
other hand, t =1e-3 seconds is the typical time step
size of a HIL simulation with hard real-time require-
ments.

Hence, it is fairly reasonable to explore whether
techniques, generally considered as inefficient in the lit-
erature, may perform well in real-time simulation. In the
context of many approaches this question has not been
answered yet because real-time simulation gains only
little attention in numerical research. Even less attention
is paid to high index DAE in this context. For example,
explicit Runge-Kutta approaches combined with projec-
tion methods are often regarded to be quite efficient
techniques in the field of differential algebraic equations
with a high index (see e.g. Hairer et. al. [7]). But the
used Runge-Kutta style solver DOPRI5 is unsuitable for
real-time simulation, even if it is the basis of the
MATLAB and Simulink solver ode45 and so nearly an
industrial standard because as an adaptive solver it is
designed to achieve accuracy and stability by chosen
variable time steps sizes.

We can therefore summarize that we are looking for
approaches with fixed time step. The CPU costs per
time step must be predictable, and the technique must
meet high requirements with respect to stability and ac-
curacy.

As test case we are going to use the Lagrangian for-
mulation of a mathematical pendulum with a mass and a
line length of one.

We take this set of equations because it is a straightfor-
ward standard example of an index 3 problem, which is,
for instance, discussed in [2], [7], [5]. So there are plen-
ty of data available for. In order to compare the results
with [5] and to obtain an exact period of 2, we choose
g=13.7503716373294544.

The initial conditions are x = 1, y = 0, u = 0 and v =
0. It is well known (e.g. [7] p. 454ff) that this index-3
formulation can be transferred to index-1 or index-0
formulation by repeatedly differentiating the algebraic
constraint and replace it by one of its derivatives.

index = 3

index = 2

index = 1

index = 0

As we can see, it is in the index-1 formulation easy to
express lambda out of the other values:

In other words, no matter if we choose to use an index-1
integrator such as IDA or a standard ODE integrator
like CVODE - both are part of the Sundial software col-
lection [8].

Generally it makes sense to stop at an index-1 for-
mulation, as long as the formulation can be transformed
into a form that is compatible to an ODE. But first we
should explain why the way most Modelica tools deal
with these kinds of equations seems to be unsuitable for
for real-time purposes..

2 Considered and Adapted Techniques

2.1 Simulation using the Pantelides Algorithm and
Dummy Derivatives

Most Modelica tools use a mixture of the dummy deriv-
atives approach [10] with the Pantelides Algorithm [12],
which was designed to initialize DAE. The resulting al-
gorithm is described by Cellier and Kofman (see [2]).
One reason for using it might be that it leads to a
straightforward code generation that can be used with
standard ODE integrators.

The discussion by Cellier and Kofman ([2], chapter
7.8) e.g. shows some problems that occur when this al-
gorithm is applied to the index-3 formulation of the
pendulum.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 SNE 22(1) – 4/2012 47

T N
To cut a long story short: it fails completely, no mat-

ter if it is combined with techniques like inline- or
mixed-mode integration.

One may argue, as Cellier and Kofman do, that a
smart modeler should use the following index-1 formu-
lation to describe the pendulum.

On the one hand, this represents a fairly sensible strate-
gy and on the other hand, this means that we limit our
options in the fields of library and model construction.
Furthermore, we postulate that users are able to identify
the point at which the differential index of a formulation
rises especially in a more complex and connected mod-
el. Relying on the skilled modeler with deep knowledge
in all modeling levels seems to be inappropriate. This is
particularly true when the objective lies in the model-
based generation of a software from a mathematical or
physical modelling level.

However, not all hope is lost because the Pantelides
variant from [2] can handle this, at least for considerable
number of problems, using a technique known from
Dymola as ‘dymanic state selection’. In the context of
real-time simulation this workaround is associated with
a number of drawbacks. In the very instance in which a
state-switch becomes necessary, a multiple of the origi-
nal CPU time is needed per time step. In general, this
causes an overrun in the real-time simulation. Let us re-
capitulate that predictability of CPU-time is critical for
real-time simulation. Otherwise we would always have
to calculate our resources for the biggest possible CPU
resource need during the simulation. Another point to be
made is that this Pantelides variant is not fully theoreti-
cally understood.

For example: For a while a lot of people thought that
the structural index used by the Pantelides algorithm is
+/-1 the same as the differential index of the numerical
theory, but Reissig, Martinson and Barton manage to
demonstrate (see [13]) that in some cases an equation of
a differential index 1 may have an arbitrarily high struc-
tural index.

Now it is proved that the Pantelides algorithm might
transform a totally harmless set of equations into an un-
suitable appearance.

So in fact, the Pantelides algorithm and its variants -
with or without dummy derivatives - are no silver bul-
lets for higher index problems. Thus, it seems that the
real-time simulation of DAE with higher index calls in
for alternatives. We assume that they are already on the
market but have not yet been modified for the use under
real-time conditions. For this reason we will examine
approaches and present slight modifications for real-
time simulation in the following section.

2.2 Integration of the Index-1 Formulation with
Multistep Method

So now we use the Index-1/Index-0 formulation with
standard ODE-Solvers.

A lot of people associate real-time and HIL with the ex-
plicit Euler algorithm. One reason for this might be that
it is easy to generate code with an embedded explicit
Euler from Simulink using the RTW. Unfortunately, the
results for stiff systems are often devastating, as Fig-
ure 1 shows.

As a consequence, ‘.. for physical models, Math-
Works recommends implicit solvers, such as ode14x,
...’, [9], or to switch for a better performance to local
approaches. In this approach the local solver is by de-
fault the implicit Euler, in other words BDF(1). So
maybe the implicit Euler is an approach for our ODE
above? In the numerical community it is quite well
known that it is not.

Figure 1. y-coordinate of the pendulum computed with

 the explicit Euler algorithm t = 0.001.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 48 SNE 22(1) – 4/2012

TN

Figure 2. BDF(1), drift effect in y-coordinate

with t = 6:25e-5.
The implicit Euler is afflicted with the drift effect

(see Figure 2), and unstable for this problem. But there
are numerous alternatives with fixed timestep size.

Adams-Bashforth Methods. The failure experienced
when using the Euler does not mean that all explicit
methods fail. Multi-step methods like the Adams-
Bashforth Methods, see e.g. [6] p. 357f. or [2] p. 122f.
for details, share a number of features that we require:
Firstly CPU costs are low, just one evaluation of the
given right side f, and secondly one can achieve high
accuracy if the solution is smooth enough. In general the
third order is a good compromise between stability and
accuracy. So we try

)),(
12
26

),(
12
26),(

12
23(

22

111

−−

−−+

+

−⋅+=

nn

nnnnnn

ytf

ytfytfhyy

The advantage of multi-step methods lies in the use of
the history of the simulation. A minor drawback might
be the start phase. At the first time step there obviously
is no simulation history to rely on. For this reason we
have two major strategies: We start with an order 1 ap-
proach for the first time step, next perform an order 2
approach and then continue the simulation with the or-
der 3.

Unfortunately, one loses some accuracy in this start-
ing phase because of the two steps with lower order. To
minimize this effect one should split the first step into
three smaller ones. For a real-time simulation this prob-
ably results in an overrun in the first time step, but on
most HIL-Systems one overrun in the first time step is
no problem (see e.g [4]).

The other strategy is to assume that the initial situa-
tion has endured for a longer period of time, hence cre-
ating an artifuiial history. For our example this means
x(-2 t) = x(- t) = x(0) = 1 ; y((-2 t) = y(- t) = y(0) = 0
and u(-2 t) = u(- t) = u(0) = 0 ; v(-2 t) = v(- t) = v(0)
= 0. In other situations, however, its not physical. In
other words, it cannot be generalized. The reason why
we use it is to avoid initialization effects for the numeri-
cal test.

Backward Differentiation Formulas. Backward Differ-
entiation Formulas, for a detailed description see [7] p.
246ff. or [2] p. 128ff., are in contrast to Adams-
Bashforth Methods implicit linear multistep methods.
These methods are particularly suitable for solving stiff
differential equations. Our ODEs generated out of DAE
are very often fairly stiff, so they seem to be a natural
approach.

However, the use of implicit methods is objectiona-
ble because they seem to undermine the predictability of
CPU resources. They would iterate until a given error
boundary is reached. Knowing this, we use a fairly
widespread approach to make the algorithm predictable.
We limit the number of Newton-iterations. The Number
of Newton iterations needed to fulfill a given limit of er-
ror depends, of course, both on the initial value and on
the problem as a given, unchangeable factor. If we take
the value from the last time step as the initial value for
the next time step, it becomes clear that a smaller time
step size leads to better initial values.

In our test case with time step size t =1e-3 the av-
erage number of Newton iterations per time step to
achieve a residual smaller than 1e-10 is 2. Because of its
good mixture of stability and accuracy we choose the
BDF(3) scheme.

0),(
3
1

2
33

6
11

11

211

=⋅−

−−+−

++

−−+

nn

nnnn

ytfh

yyyy

For the initial values back in time we use the same ap-
proach as for the Adams-Bashforth Methods. Higher or-
der BDF methods have good properties concerning
DAE of low order index anyway. That is one reason
why they are the basis of the DAE-Index-1-solver
DASSL. Therefore it makes sense to test them for our
transformed index-1 problem.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 SNE 22(1) – 4/2012 49

T N
The first challenge is: Can we avoid a drift effect us-

ing the typical HIL time step size? As you can see from
the table in section 4 the approach looks very stable.

3 An Inexact Projection Approach
Concerning stability, numerical literature identifies a re-
sidual risk in the restrictive application of high order
BDF or Adams-Bashforth methods to high order DAE.

Maybe the typical small time step sizes in real-time
simulation save our necks but we would like to explore
whether stability can be improved by projection tech-
niques (see e. g. [7], p. 470ff.). Unfortunately, the meth-
ods applied to this problem generally make use of in-
formation that an automatic code generator often does
not have.

The process of embedding these data is quite
diffcult. The successful application of these approaches,
e.g. discussed in the paper [5], to a huge set of equa-
tions, which are not sorted by application domain, de-
rived from a multi-physical tool such as Modelica tools,
seems very unlikely at this moment. It seems easier to
use a technique based on the concept of dealing with
high order DAE by using overdetermined approaches
(see e.g. [7] p. 477ff.). In this case one just assembles all
the equations that arise during the generation of the in-
dex-1- formulation. This leads to a set of equations,
containing more equations than degrees of freedom. In
our test case this will look like this:

This analytical problem is in actual fact not overdeter-
mined because we can find a solution, so that the resid-
ual is zero. The set of equations can be solved exactly.
But we need to discretize these equations to simulate
them. We do that using the BDF approach which leads to

211 3
1

2
33

6
11

−−+ −+−≈ nnnn yyyy
dt
dy

and similar expressions for the other derivatives. The re-
sult is a discrete system which cannot be solved exactly.

However, this is not our goal anyway. We will per-
form only a very limited number of iterations of a kind
of Gauss - Newton algorithm. The result is an inexact
projection approach.

4 Results
We can easily compare the results at t = 100 because we
know that the period of the solution is 2. There we de-
fine

and

.
In Table 1, in the column Newton - Steps the first sum-
mand is the number of steps per time step for the BDF
part and the second for the inexact projection. Beyond
this, we compute a reference solution based on the for-
mulation presented in section 2.1.

The reference solution is computed by ode15s. The
parameter ‘RelTol’ is set to 1e-12 and ‘AbsTol’ to 1e-
14. The goal of this reference solution is to give us a
feeling for the global error and its development. In Fig-
ure 3 we can see the difference between the Adams-
Bashforth(3) followed by a single inexact projection
step.

In Figure 4 the same is displayed for the BDF(3),
with only one single newton step followed by a single
inexact projection step. Both seems to be very stable.
While the implicit approach performs better for t = 100,
as one can see from the table above, the Adams-
Bashforth(3) variant seems altogether preferable.

Figure 3. y-coordinate: Comparison Adams-Bash.(3)

+ projection approach, t = 0.00025 with ode15s.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 50 SNE 22(1) – 4/2012

TN

Figure 4. y-coordinate: Comparison Inexact BDF(3)
+ projection approach, t = 0.00025 with ode15s.

The BDF (3), however, seems to be more stable when it
is used in a long term test with a maximum duration of
one hour. Its tendency to run out of phase is more pro-
nounced as in the case of the BDF(3), which generally
steals a bit of system energy. Beyond this we see that
the inexact approach with only one newton step and one
projection step per time step performs very well for
these typical HIL time step sizes.

Moreover it shows very good reduction rates near
the third order in time. We also tried to increase the per-
formance or accuracy of the BDF approach by precondi-
tioning it with the result of the Adams-Bashforth meth-
od, but this did not work well.

In general both the explicit and the implicit approach
are improved applying a single projection step using
over-determinated system.

5 Proposal for a Parallel Real-time
Algorithm

Our survey demonstrates that a high order BDF or Ad-
ams-Bashforth approach combined with a single projec-
tion step is the best technique for the problem class dis-
cussed in this paper. Wherever we use an explicit or an
implicit approach we need at least to assemble a Jacobi
matrix and factorize it into a QR- or a LU-form, resp.

If we performed an assembling and a decomposition
in every iteration step this would probably be hard to
achieve in 1ms real-time. Thus, we intend to turn to a
simplified Newton approach as described, for instance
in [3] p. 52ff.

However, the shift to a simplified Newton approach
will not lead to a real-time compatible technique. Be-
yond this one has to use the power of current multicore
architectures also that tend to be the standard for HILs
as well. With four cores it is possible to keep all I/O and
OS aspects on one core, e.g. Core4, and use the remain-
ing three cores for the computation. The basic architec-
ture is displayed in Figure 5. As a result, the Jacobi ma-
trix is only updated in the simplified Newton approach
if the computation is finished. This procedure results in
an algorithm whose turnaround is highly predictable
time in real-time simulation.

Figure 5. Tasks in a Parallel Real-time approach.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 SNE 22(1) – 4/2012 51

T N

Method Newton
Steps

Pro-
jection

t or
Tol x y RES ERR

Results achieved with the methods discussed

BDF(3) 2 + 0 No t = 1e-3 1.8e-5 5.8e-6 3.7e-5 6.2e-5

Precond-BDF3 1 + 0 No t = 1e-3 2.2e-5 1.2e-5 4.5e-5 8.0e-5

Precond-BDF3 1 + 3 Yes t = 1e-3 1.1e-9 4.4e-5 2.8e-10 4.4e-5

Precond-BDF3 1 + 3 Yes t = 5e-4 2.6e-11 5.8e-6 1.7e-11 5.8e-6

BDF(3) 1 + 0 No t = 1e-3 6.4e-5 7.6e-5 1.2e-4 2.7e-4

BDF(3) 1 + 0 No t = 5e-4 9.4e-6 1.1e-5 1.8e-5 3.9e-5

BDF(3) 1 + 0 No t = 2.5e-4 4.2e-6 5.7e-6 8.5e-6 1.8e-5

Adams-Bash.(3) 0 + 0 No t = 1e-3 2.1e-5 1.1e-5 4.2e-5 7.5e-5

Adams-Bash.(3) 0 + 0 No t = 5e-4 2.6e-6 9.6e-7 5.3e-6 8.9e-6

Adams-Bash.(3) 0 + 0 No t = 2.5e-4 3.3e-7 8.0e-8 6.6e-7 1.0e-6

Adams-Bash.(3) 0 + 1 Yes t = 1e-3 2.4e-9 7.1e-5 2.9e-10 7.1e-5

Adams-Bash.(3) 0 + 1 Yes t = 5e-4 7.1e-11 1.2e-5 1.8e-11 1.2e-5

Adams-Bash.(3) 0 + 1 Yes t = 2.5e-4 2.1e-12 2.3e-6 1.1e-12 2.3e-6

BDF(3) 1 + 1 Yes t = 1e-3 1.0e-9 4.4e-5 1.7e-10 4.4e-5

BDF(3) 1 + 1 Yes t = 5e-4 2.2e-11 5.8e-6 1.0e-11 5.8e-6

BDF(3) 1 + 1 Yes t = 2.5e-4 5.9e-13 7.2e-7 6.7e-13 7.2e-7

Results from [5] with a different projection approach

MKS-DAEOL - Yes Tol = 1e-5 2.4e-8 2.2e-4 7.2e-10 2.2e-4

MKS-DAEOL - Yes Tol = 1e-5 9.7e-9 1.4e-4 5.9e-11 1.4e-4

Table 1. Results from discussed DAE Solvers.

6 Conclusion and Future Prospects
We gave an outlook on how we hope to produce an al-
gorithm that can use the power of multi-core architec-
tures to simulate industrial size DAE systems in
realtime without making too much use of the unreliable
approaches discussed in Section 2.1 with their draw-
backs and uncertainties. Of course, for problems with a
low structural index of 0 or 1 it will always be more ent
to use the approaches of Section 2.1. One of our future
prospects is to verify that accuracy and stability can be
retained using this parallel approach.

Moreover, a deeper analysis of the process will be

considered in future publications. We have shown that
by using common multistep methods, explicit and im-
plicit ones, it is even possible to simulate high order
DAE with a very limited number of iterative steps. A
single projection step can improve the results signicant-
ly. But beyond this, the presented approaches might
support a least square modeling paradigma. When ODE
integrators are regarded as preconditioners for an over-
determined system, this obviously leads to a direct
modeling of overdetermined systems, which may be
quite useful in some applications.

 J Frochte Evaluation and Adaption of DAE Techniques for HIL

 52 SNE 22(1) – 4/2012

TN
References

[1] U. M. Ascher, H. Chin, S. Reich. Stabilization of daes
and invariant manifolds. Numer. Math, 67:131-149,
1993.

[2] F. Cellier, E. Kofman. Continuous system simulation.
New York, Springer, 2006.

[3] P. Deuflhard. Newton methods for nonlinear problems.
Affine invariance and adaptive algorithms. Berlin: Sprin-
ger, 2004.

[4] dSPACE GmbH. dSPACE FAQ 242 Handling Overrun
Situations. 2011.

[5] E. Eich. Convergence results for a coordinate projection
method applied to mechanical systems with algebraic con-
straints. SIAM J. Numer. Anal., 30(5):1467-1482, 1993.

[6] E. Hairer, S. P. NNorsett, G. Wanner. Solving ordinary
differential equations. I: Nonstiff problems. Berlin:
Springer, 2010.

[7] E. Hairer, G. Wanner. Solving ordinary differential
equations. II: Stiff and differential-algebraic problems.
Berlin: Springer, 2010.

[8] A. Hindmarsh, P. Brown, K. Grant, R. S. S.L. Lee, D.
Shumaker, C. Woodward. SUNDIALS: Suite of Nonline-
ar and Differential/Algebraic Equation Solvers. ACM
Trans. on Mathematical Software, 31(3):363-396, 2005.

[9] The MathWorks, Inc. MATLAB 2011a Documentation,

Simscape, 2011.
[10] S. E. Mattsson, G. Soederlind. Index reduction in differ-

ential-algebraic equations using dummy derivatives. SI-
AM J. Sci. Comput., 14(3):677-692, 1993.

[11] Modelica Association. Modelica Language Specification
- Version 3.2. 2010.

[12] C. C. Pantelides. The consistent initialization of differen-
tial algebraic systems. SIAM J. Sci. Stat. Comput.,
9(2):213-231, 1988.

[13] G. Reissig, W. S. Martinson, P. I. Barton. Differential-
algebraic equations of index 1 may have an arbitrarily
high structural index. SIAM J. Sci. Comput.,
21(6):1987-1990, 2000.

[14] G. D. Wood, D. C. Kennedy. Simulating mechanical sys-
tems in Simulink with SimMechanics. Technical Report
91124v00, 2003.

Submitted: September 2011 (ASIM STS Winterthur)
Accepted: February 15, 2012

