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Abstract.  In this paper we will evaluate approaches to the 
simulation of DAE of higher order under real-time condi-
tions. Some of these approaches are new variants of well-
known methods. For the purpose of evaluation we used, 
for example, explicit multistep methods with and without 
subsequent inexact projection, and BDF approaches under 
real-time termination conditions. The Hardware in the 
loop (HIL) Simulation requires plant models which can be 
simulated under hard real-time conditions. Thus the com-
bination of DAE and real-time simulation is very interest-
ing for model-based generation of plant models because 
the socalled hybrid differential algebraic equations 
(HDAE), see e.g. [11] Appendix C, are the mathematical 
foundation of modeling languages such as Modelica and 
Simscape. So beyond the numerical properties of a tech-
nique we will watch out wherever they are suitable for 
model-based code generation. 

Introduction 
The modeling process takes place on several levels of 
abstraction: In a certain way, the top level is the least 
abstract because on this level one can still deal with the 
real object, which is set by reality. The real object 
serves as a model for the ‘physical model’. This process 
is based on physical simplification: Geometrical details 
and effects, e.g. temperature dependency, need to be ne-
glected. The mathematical representation of this physi-
cal model is now the ‘mathematical model’. This math-
ematical model is taken to construct a numerical model. 
The model finally gained is then used in simulation 
studies.  
Modelica tools or Simscape give the modeler an oppor-
tunity to design the plan model primarily on the physi-
cal level and not on the mathematical one. Latter one is 
carried out with the help of modeling tools such as Sim-
ulink or by directly coding the model to C/C++. 

 
 

If these model based code generation tools were 
used in a perfect world, there would be only little need 
for the modeler to bother about the mathematical level.  

On the numerical level there would be no bother at 
all. Unfortunately this is not the case up to now. Model-
ers still need a lot of knowledge about all levels of mod-
eling, including the numerical level. This is particularly 
true for real-time simulation.  

The purpose of this paper is to improve this type of 
simulation by evaluating and adapting established 
methods for real-time use case. It is well known that the 
numerical simulation of DAE with a high index requires 
a high level of effort and care. As part of an automatic 
code generation from physical models some approaches 
in the literature are hard to apply, if at all. The reason is 
that they require more knowledge than a DAE system 
without modeling-context can provide to a code genera-
tion software. Even with more data about the context the 
skills how to treat the system are hardly capable to be 
set in todays software expert systems. Beyond this in 
some techniques, e.g. Baumgarte's method, parameters 
depend on the discretization and used integration method. 

This has already been pointed out by Ascher et al. 
[1] and seems to be still state of the art for modern 
simulation tools, see [14]. In consequence, we do e.g. 
not consider Baumgarte's method in this paper because 
it seems impossible up to now to choose an optimal set 
of parameters automatically for such a general use case. 
Neither do we consider approaches limited to special ap-
plication areas such as mechanical models because we are 
looking for general approaches to multi-physical tools. 

1 Real-time Requirements - Test Case 
Performance must be defined with respect to whether 
there are real-time requirements or not. Most numerical 
simulations are carried-out without real-time require-
ments.  
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In such cases ‘performance’ means that the simula-

tion is completed as quickly as possible. This goal is 
frequently followed by means of continually or tempo-
rarily large time steps. The latter are the outcome of 
adaptive techniques. On the one hand, a time step of t 
=1e-3 seconds is in most simulations considered to be 
abnormally small. Hence, it would only be used in an 
emergency for a limited number of time steps. On the 
other hand, t =1e-3 seconds is the typical time step 
size of a HIL simulation with hard real-time require-
ments.  

Hence, it is fairly reasonable to explore whether 
techniques, generally considered as inefficient in the lit-
erature, may perform well in real-time simulation. In the 
context of many approaches this question has not been 
answered yet because real-time simulation gains only 
little attention in numerical research. Even less attention 
is paid to high index DAE in this context. For example, 
explicit Runge-Kutta approaches combined with projec-
tion methods are often regarded to be quite efficient 
techniques in the field of differential algebraic equations 
with a high index (see e.g. Hairer et. al. [7]). But the 
used Runge-Kutta style solver DOPRI5 is unsuitable for 
real-time simulation, even if it is the basis of the 
MATLAB and Simulink solver ode45 and so nearly an 
industrial standard because as an adaptive solver it is 
designed to achieve accuracy and stability by chosen 
variable time steps sizes.  

We can therefore summarize that we are looking for 
approaches with fixed time step. The CPU costs per 
time step must be predictable, and the technique must 
meet high requirements with respect to stability and ac-
curacy. 

As test case we are going to use the Lagrangian for-
mulation of a mathematical pendulum with a mass and a 
line length of one. 

 

 
 

We take this set of equations because it is a straightfor-
ward standard example of an index 3 problem, which is, 
for instance, discussed in [2], [7], [5]. So there are plen-
ty of data available for. In order to compare the results 
with [5] and to obtain an exact period of 2, we choose 
g=13.7503716373294544.  
 

The initial conditions are x = 1, y = 0, u = 0 and v = 
0. It is well known (e.g. [7] p. 454ff) that this index-3 
formulation can be transferred to index-1 or index-0 
formulation by repeatedly differentiating the algebraic 
constraint and replace it by one of its derivatives. 
 

index = 3  

index = 2  

index = 1  

index = 0 
  

As we can see, it is in the index-1 formulation easy to 
express lambda out of the other values: 

 

In other words, no matter if we choose to use an index-1 
integrator such as IDA or a standard ODE integrator 
like CVODE - both are part of the Sundial software col-
lection [8].  

Generally it makes sense to stop at an index-1 for-
mulation, as long as the formulation can be transformed 
into a form that is compatible to an ODE. But first we 
should explain why the way most Modelica tools deal 
with these kinds of equations seems to be unsuitable for 
for real-time purposes.. 

2 Considered and Adapted Techniques 

2.1 Simulation using the Pantelides Algorithm and 
Dummy Derivatives 

Most Modelica tools use a mixture of the dummy deriv-
atives approach [10] with the Pantelides Algorithm [12], 
which was designed to initialize DAE. The resulting al-
gorithm is described by Cellier and Kofman (see [2]). 
One reason for using it might be that it leads to a 
straightforward code generation that can be used with 
standard ODE integrators.  

The discussion by Cellier and Kofman ([2], chapter 
7.8) e.g. shows some problems that occur when this al-
gorithm is applied to the index-3 formulation of the 
pendulum.  
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To cut a long story short: it fails completely, no mat-

ter if it is combined with techniques like inline- or 
mixed-mode integration. 

One may argue, as Cellier and Kofman do, that a 
smart modeler should use the following index-1 formu-
lation to describe the pendulum. 

 

 

On the one hand, this represents a fairly sensible strate-
gy and on the other hand, this means that we limit our 
options in the fields of library and model construction. 
Furthermore, we postulate that users are able to identify 
the point at which the differential index of a formulation 
rises especially in a more complex and connected mod-
el. Relying on the skilled modeler with deep knowledge 
in all modeling levels seems to be inappropriate. This is 
particularly true when the objective lies in the model-
based generation of a software from a mathematical or 
physical modelling level.  

However, not all hope is lost because the Pantelides 
variant from [2] can handle this, at least for considerable 
number of problems, using a technique known from 
Dymola as ‘dymanic state selection’. In the context of 
real-time simulation this workaround is associated with 
a number of drawbacks. In the very instance in which a 
state-switch becomes necessary, a multiple of the origi-
nal CPU time is needed per time step. In general, this 
causes an overrun in the real-time simulation. Let us re-
capitulate that predictability of CPU-time is critical for 
real-time simulation. Otherwise we would always have 
to calculate our resources for the biggest possible CPU 
resource need during the simulation. Another point to be 
made is that this Pantelides variant is not fully theoreti-
cally understood.  

For example: For a while a lot of people thought that 
the structural index used by the Pantelides algorithm is 
+/-1 the same as the differential index of the numerical 
theory, but Reissig, Martinson and Barton manage to 
demonstrate (see [13]) that in some cases an equation of 
a differential index 1 may have an arbitrarily high struc-
tural index. 

Now it is proved that the Pantelides algorithm might 
transform a totally harmless set of equations into an un-
suitable appearance.  

 

So in fact, the Pantelides algorithm and its variants - 
with or without dummy derivatives - are no silver bul-
lets for higher index problems. Thus, it seems that the 
real-time simulation of DAE with higher index calls in 
for alternatives. We assume that they are already on the 
market but have not yet been modified for the use under 
real-time conditions. For this reason we will examine 
approaches and present slight modifications for real-
time simulation in the following section. 

2.2 Integration of the Index-1 Formulation with 
Multistep Method 

So now we use the Index-1/Index-0 formulation with 
standard ODE-Solvers. 

 

 

A lot of people associate real-time and HIL with the ex-
plicit Euler algorithm. One reason for this might be that 
it is easy to generate code with an embedded explicit 
Euler from Simulink using the RTW. Unfortunately, the 
results for stiff systems are often devastating, as Fig-
ure 1 shows. 

As a consequence, ‘.. for physical models, Math-
Works recommends implicit solvers, such as ode14x, 
...’, [9], or to switch for a better performance to local 
approaches. In this approach the local solver is by de-
fault the implicit Euler, in other words BDF(1). So 
maybe the implicit Euler is an approach for our ODE 
above? In the numerical community it is quite well 
known that it is not.  

 
Figure 1. y-coordinate of the pendulum computed with 

 the explicit Euler algorithm t = 0.001. 
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Figure 2. BDF(1), drift effect in y-coordinate  

with t = 6:25e-5. 
The implicit Euler is afflicted with the drift effect 

(see Figure 2), and unstable for this problem. But there 
are numerous alternatives with fixed timestep size. 
 
Adams-Bashforth Methods. The failure experienced 
when using the Euler does not mean that all explicit 
methods fail. Multi-step methods like the Adams-
Bashforth Methods, see e.g. [6] p. 357f. or [2] p. 122f. 
for details, share a number of features that we require: 
Firstly CPU costs are low, just one evaluation of the 
given right side f, and secondly one can achieve high 
accuracy if the solution is smooth enough. In general the 
third order is a good compromise between stability and 
accuracy. So we try 
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The advantage of multi-step methods lies in the use of 
the history of the simulation. A minor drawback might 
be the start phase. At the first time step there obviously 
is no simulation history to rely on. For this reason we 
have two major strategies: We start with an order 1 ap-
proach for the first time step, next perform an order 2 
approach and then continue the simulation with the or-
der 3.  

Unfortunately, one loses some accuracy in this start-
ing phase because of the two steps with lower order. To 
minimize this effect one should split the first step into 
three smaller ones. For a real-time simulation this prob-
ably results in an overrun in the first time step, but on 
most HIL-Systems one overrun in the first time step is 
no problem (see e.g [4]).  

 

The other strategy is to assume that the initial situa-
tion has endured for a longer period of time, hence cre-
ating an artifuiial history. For our example this means 
x(-2 t) = x(- t) = x(0) = 1 ; y((-2 t) = y(- t)  = y(0) = 0 
and u(-2 t) = u(- t) = u(0) = 0 ; v(-2 t) = v(- t) = v(0) 
= 0. In other situations, however, its not physical. In 
other words, it cannot be generalized. The reason why 
we use it is to avoid initialization effects for the numeri-
cal test. 

 
Backward Differentiation Formulas. Backward Differ-
entiation Formulas, for a detailed description see [7] p. 
246ff. or [2] p. 128ff., are in contrast to Adams-
Bashforth Methods implicit linear multistep methods. 
These methods are particularly suitable for solving stiff 
differential equations. Our ODEs generated out of DAE 
are very often fairly stiff, so they seem to be a natural 
approach.  

However, the use of implicit methods is objectiona-
ble because they seem to undermine the predictability of 
CPU resources. They would iterate until a given error 
boundary is reached. Knowing this, we use a fairly 
widespread approach to make the algorithm predictable. 
We limit the number of Newton-iterations. The Number 
of Newton iterations needed to fulfill a given limit of er-
ror depends, of course, both on the initial value and on 
the problem as a given, unchangeable factor. If we take 
the value from the last time step as the initial value for 
the next time step, it becomes clear that a smaller time 
step size leads to better initial values.  

In our test case with time step size t =1e-3 the av-
erage number of Newton iterations per time step to 
achieve a residual smaller than 1e-10 is 2. Because of its 
good mixture of stability and accuracy we choose the 
BDF(3) scheme. 
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For the initial values back in time we use the same ap-
proach as for the Adams-Bashforth Methods. Higher or-
der BDF methods have good properties concerning 
DAE of low order index anyway. That is one reason 
why they are the basis of the DAE-Index-1-solver 
DASSL. Therefore it makes sense to test them for our 
transformed index-1 problem.  
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The first challenge is: Can we avoid a drift effect us-

ing the typical HIL time step size? As you can see from 
the table in section 4 the approach looks very stable. 

3 An Inexact Projection Approach 
Concerning stability, numerical literature identifies a re-
sidual risk in the restrictive application of high order 
BDF or Adams-Bashforth methods to high order DAE. 

Maybe the typical small time step sizes in real-time 
simulation save our necks but we would like to explore 
whether stability can be improved by projection tech-
niques (see e. g. [7], p. 470ff.). Unfortunately, the meth-
ods applied to this problem generally make use of in-
formation that an automatic code generator often does 
not have.  

The process of embedding these data is quite 
diffcult. The successful application of these approaches, 
e.g. discussed in the paper [5], to a huge set of equa-
tions, which are not sorted by application domain, de-
rived from a multi-physical tool such as Modelica tools, 
seems very unlikely at this moment. It seems easier to 
use a technique based on the concept of dealing with 
high order DAE by using overdetermined approaches 
(see e.g. [7] p. 477ff.). In this case one just assembles all 
the equations that arise during the generation of the in-
dex-1- formulation. This leads to a set of equations, 
containing more equations than degrees of freedom. In 
our test case this will look like this: 

 

 

This analytical problem is in actual fact not overdeter-
mined because we can find a solution, so that the resid-
ual is zero. The set of equations can be solved exactly. 
But we need to discretize these equations to simulate 
them. We do that using the BDF approach which leads to 
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and similar expressions for the other derivatives. The re-
sult is a discrete system which cannot be solved exactly.  
 

 
 

However, this is not our goal anyway. We will per-
form only a very limited number of iterations of a kind 
of Gauss - Newton algorithm. The result is an inexact 
projection approach. 

4 Results 
We can easily compare the results at t = 100 because we 
know that the period of the solution is 2. There we de-
fine 

 
and 

 
.  
In Table 1, in the column Newton - Steps the first sum-
mand is the number of steps per time step for the BDF 
part and the second for the inexact projection. Beyond 
this, we compute a reference solution based on the for-
mulation presented in section 2.1.  

The reference solution is computed by ode15s. The 
parameter ‘RelTol’ is set to 1e-12 and ‘AbsTol’ to 1e-
14. The goal of this reference solution is to give us a 
feeling for the global error and its development. In Fig-
ure 3 we can see the difference between the Adams-
Bashforth(3) followed by a single inexact projection 
step.  

In Figure 4 the same is displayed for the BDF(3), 
with only one single newton step followed by a single 
inexact projection step. Both seems to be very stable. 
While the implicit approach performs better for t = 100, 
as one can see from the table above, the Adams-
Bashforth(3) variant seems altogether preferable. 

 

 
Figure 3. y-coordinate: Comparison Adams-Bash.(3)  

+ projection approach, t = 0.00025 with ode15s. 
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Figure 4. y-coordinate: Comparison Inexact BDF(3)  
+ projection approach, t = 0.00025 with ode15s. 

The BDF (3), however, seems to be more stable when it 
is used in a long term test with a maximum duration of 
one hour. Its tendency to run out of phase is more pro-
nounced as in the case of the BDF(3), which generally 
steals a bit of system energy. Beyond this we see that 
the inexact approach with only one newton step and one 
projection step per time step performs very well for 
these typical HIL time step sizes.  

Moreover it shows very good reduction rates near 
the third order in time. We also tried to increase the per-
formance or accuracy of the BDF approach by precondi-
tioning it with the result of the Adams-Bashforth meth-
od, but this did not work well.  

In general both the explicit and the implicit approach 
are improved applying a single projection step using 
over-determinated system. 

 

5 Proposal for a Parallel Real-time 
Algorithm 

Our survey demonstrates that a high order BDF or Ad-
ams-Bashforth approach combined with a single projec-
tion step is the best technique for the problem class dis-
cussed in this paper. Wherever we use an explicit or an 
implicit approach we need at least to assemble a Jacobi 
matrix and factorize it into a QR- or a LU-form, resp. 

If we performed an assembling and a decomposition 
in every iteration step this would probably be hard to 
achieve in 1ms real-time. Thus, we intend to turn to a 
simplified Newton approach as described, for instance 
in [3] p. 52ff. 

However, the shift to a simplified Newton approach 
will not lead to a real-time compatible technique. Be-
yond this one has to use the power of current multicore 
architectures also that tend to be the standard for HILs 
as well. With four cores it is possible to keep all I/O and 
OS aspects on one core, e.g. Core4, and use the remain-
ing three cores for the computation. The basic architec-
ture is displayed in Figure 5. As a result, the Jacobi ma-
trix is only updated in the simplified Newton approach 
if the computation is finished. This procedure results in 
an algorithm whose turnaround is highly predictable 
time in real-time simulation. 

 
 

 
 

Figure 5. Tasks in a Parallel Real-time approach. 
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Method Newton 
Steps 

Pro- 
jection 

t or 
Tol x y RES ERR 

Results achieved with the methods discussed 

BDF(3) 2 + 0 No  t = 1e-3 1.8e-5 5.8e-6 3.7e-5 6.2e-5 

Precond-BDF3 1 + 0 No  t = 1e-3 2.2e-5 1.2e-5 4.5e-5 8.0e-5 

Precond-BDF3 1 + 3 Yes  t = 1e-3 1.1e-9 4.4e-5 2.8e-10 4.4e-5 

Precond-BDF3 1 + 3 Yes  t = 5e-4 2.6e-11 5.8e-6 1.7e-11 5.8e-6 

BDF(3) 1 + 0 No  t = 1e-3 6.4e-5 7.6e-5 1.2e-4 2.7e-4 

BDF(3) 1 + 0 No  t = 5e-4 9.4e-6 1.1e-5 1.8e-5 3.9e-5 

BDF(3) 1 + 0 No  t = 2.5e-4 4.2e-6 5.7e-6 8.5e-6 1.8e-5 

Adams-Bash.(3) 0 + 0 No  t = 1e-3 2.1e-5 1.1e-5 4.2e-5 7.5e-5 

Adams-Bash.(3) 0 + 0 No  t = 5e-4 2.6e-6 9.6e-7 5.3e-6 8.9e-6 

Adams-Bash.(3) 0 + 0 No  t = 2.5e-4 3.3e-7 8.0e-8 6.6e-7 1.0e-6 

Adams-Bash.(3) 0 + 1 Yes  t = 1e-3 2.4e-9 7.1e-5 2.9e-10 7.1e-5 

Adams-Bash.(3) 0 + 1 Yes  t = 5e-4 7.1e-11 1.2e-5 1.8e-11 1.2e-5 

Adams-Bash.(3) 0 + 1 Yes  t = 2.5e-4 2.1e-12 2.3e-6 1.1e-12 2.3e-6 

BDF(3) 1 + 1 Yes  t = 1e-3 1.0e-9 4.4e-5 1.7e-10 4.4e-5 

BDF(3) 1 + 1 Yes  t = 5e-4 2.2e-11 5.8e-6 1.0e-11 5.8e-6 

BDF(3) 1 + 1 Yes  t = 2.5e-4 5.9e-13 7.2e-7 6.7e-13 7.2e-7 

Results from [5] with a different projection approach 

MKS-DAEOL - Yes Tol = 1e-5 2.4e-8 2.2e-4 7.2e-10 2.2e-4 

MKS-DAEOL - Yes Tol = 1e-5 9.7e-9 1.4e-4 5.9e-11 1.4e-4 
 

Table 1. Results from discussed DAE Solvers. 
 

 

6 Conclusion and Future Prospects 
We gave an outlook on how we hope to produce an al-
gorithm that can use the power of multi-core architec-
tures to simulate industrial size DAE systems in 
realtime without making too much use of the unreliable 
approaches discussed in Section 2.1 with their draw-
backs and uncertainties. Of course, for problems with a 
low structural index of 0 or 1 it will always be more ent 
to use the approaches of Section 2.1. One of our future 
prospects is to verify that accuracy and stability can be 
retained using this parallel approach.  

 

 
Moreover, a deeper analysis of the process will be 

considered in future publications. We have shown that 
by using common multistep methods, explicit and im-
plicit ones, it is even possible to simulate high order 
DAE with a very limited number of iterative steps. A 
single projection step can improve the results signicant-
ly. But beyond this, the presented approaches might 
support a least square modeling paradigma. When ODE 
integrators are regarded as preconditioners for an over-
determined system, this obviously leads to a direct 
modeling of overdetermined systems, which may be 
quite useful in some applications. 
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