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Abstract.  Every third death in developed countries is 
caused by cardiac diseases, which are the number one 
cause of death. Duration and dynamic changes of certain 
intervals of the ECG are well established indicators in the 
diagnosis of cardiac diseases. Furthermore, several agen-
cies require the assessment of the effect of newly devel-
oped drugs on the QT interval. 
Automated measurement and annotation of the ECG 
shows numerous advantages over manual methods, there-
fore the long term aim is to develop an all-in-one device 
for data acquisition and ECG analysis. The development 
process is conducted in different stages, whereas the first 
step and short term aim described in this paper consists of 
creating algorithms in MATLAB® and validating them 
against ECG signals manually annotated by medical ex-
perts. This early stage is followed by porting all algorithms 
to the aimed platform and finally by hardware-in-the-loop 
simulations coupling the measurement hardware with the 
MATLAB® model. 
The presented algorithm detects R peaks based on the 
signals amplitude and first derivative as well as RR inter-
vals. False positive detections due to artifacts are prevent-
ed by analyzing the signal’s local statistic characteristics. 
These intermediate results are automatically classified to 
distinguish normal heartbeats from potential premature 
ventricular contractions. QRS complexes, P and T waves 
are detected by their first derivative for each class of 
heartbeats and are separately refined for each detected 
heartbeat. 
The algorithm has been verified against four PhysioNet 
databases and achieved a sensitivity of 98.5% and a posi-
tive predictive value of 98.3%, respectively.  
These results are promising, but further work is still re-
quired to implement the algorithm on an embedded sys-
tem to build an easy to use all-in-one device. 

Introduction 
Every third death in the United States and actually near-
ly every second one in Europe is caused by cardiovascu-
lar diseases [1, 2]. Their main forms are coronary heart 
diseases, causing nearly half of all deaths caused by 
cardiovascular diseases. Coronary heart diseases are the 
most and second most common cause of death in Eu-
rope and the United States, respectively [1, 2]. 

 
Figure 1. Schematic representation of a normal heartbeat and 

its features seen on ECG (modified from [3]). 

Electrocardiography (ECG) is a widespread, non-
invasive and painless technique to measure physiologic 
activity and pathologic changes of the myocardium. As 
shown in Figure 1, the tracing of one heartbeat consists 
of a P wave (atrial depolarization), a QRS complex 
(ventricular depolarization) and a T wave (ventricular 
repolarization). Several well-defined segments and 
intervals between these features are well established 
indicators in the diagnosis of cardiac diseases, most 
notably the PR interval (from the onset of the P wave to 
the onset of the QRS complex) and the QT interval 
(from the onset of the QRS complex to the offset of the 
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T wave). In addition, some non-antiarrhythmic drugs 
may have the undesired property of prolonging the QT 
interval, therefore several agencies and national regula-
tors require the assessment of this effect in newly de-
veloped drugs [4]. Automated methods for measurement 
and annotation of the ECG offer several advantages 
over manuals ones, such as immunity to observer relat-
ed errors and operator fatigue, higher accuracy in re-
peated measurements and faster or more extensive test-
ing at lower cost. 

In the last decades, a lot of ECG analysis methods 
have been presented. Especially the rapid development 
of powerful computing hardware led to a widespread 
application of software ECG annotation algorithms in 
the last 30 years. Despite the usage of many different 
approaches such as signal derivatives [5], digital filters, 
wavelets [6] and neural networks, most methods focus 
only on the detection of the QRS complex [7]. Other 
software algorithms extend existing QRS detectors with 
the evaluation of QT intervals [8, 9] or P waves [6], but 
these methods are only suitable for offline ECG analy-
sis. This paper presents an algorithm combining some of 
these methods and adopting them for online (real time) 
measurements. 

1 Development Process 
To facilitate the use of full automatic ECG annotation, 
the aim is to develop an all-in-one-device for ECG ac-
quisition and analysis. As Figure 2 shows, the process 
of development is conducted in several stages, starting 
with offline prototyping and verification using 
MATLAB®, followed by porting the algorithm to an 
embedded system and finally performing hardware-in-
the-loop simulations to validate the functionality. 

 
Figure 2. Overview of the development process. 

MATLAB®, a numerical computing software devel-
oped by MathWorks™, allows easy matrix and vector 
manipulations and can interface with other program-
ming languages including C. These properties make 
MATLAB® the ideal choice for rapid development of 
signal processing algorithms intended to be used on 

digital signal processors. Besides, based on its scripting 
features, it allows the automation of the verification 
process. The developed algorithm has been verified 
against ECG signals manually annotated by medical 
experts from different PhysioNet databases [10, 11]. 

After its successful validation, the algorithm is port-
ed to an embedded system containing a digital signal 
processor. Embedded MATLAB®, a subset of the 
MATLAB® language, supports efficient code genera-
tion for deployment for embedded systems and there-
fore is the optimal choice for this task. 

Finally the embedded system is validated using a 
hardware-in-the-loop simulation. In this step, the final 
system is ready to use, but instead of measuring ECGs 
in real subjects, they will be simulated using a signal 
generator controlled by MATLAB®. A hardware-in-
the-loop simulation allows the reproduction of previous-
ly annotated signals and hence an efficient verification 
of the results as well as a validation of the final device. 

2 Measurement Algorithm 
R peaks are the most prominent feature in ECG tracings. 
Thus they can be used as reference point for further 
features and are a good choice to start detection with. 
The measurement algorithm continuously tries to detect 
them based on the signal amplitude and its first deriva-
tive [5]. Local statistics of the signal are evaluated to 
distinguish correctly detected R peaks from artifacts 
caused by movements of the subject. Once an R peak is 
found a classification is applied in real time to separate 
normal QRS complexes from potential premature ven-
tricular contractions. Creating templates by averaging 
the signals reduces noise and allows a more accurate 
detection of all further features. Subsequently, QRS on- 
and offset are detected based on the signal’s local am-
plitude. T and P waves as well as their on- and offsets 
are derived based on their first derivatives [9]. QRS on- 
and offset as well as all parts of T and P waves are pri-
marily detected in the template of their respective class. 
The actual signal is only used for local refinement. 

To detect R peaks, a feature signal is continuously 
calculated as follows: 
• Calculate the first discrete derivative Dt of the signal St 

 (1)

• Evaluate the amplitudes SAt of St and DAt of Dt with-
in a moving window (w = 60 ms) 
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 (3)

• Combine SAt and DAt 

 (4)

• Calculate feature signal FSt within a moving window 
(w = 100 ms) 

 (5)

• Use the mean value of the last 2 seconds of FSt as 
threshold Tht (w = 2 s) 

 (6)

Figure 3 shows three different ECG signals (containing 
noise and small artifacts; high T wave; sudden subject 
motion) with their corresponding feature signals. The 
feature signal is robust regarding noise, small artifacts 
and prominent T waves, but does respond to sudden 
motion of the subject. 

 
Figure 3. Differently shaped ECG signals with their  
corresponding response of the feature signal FSt  
(equation 5) and its threshold Tht (equation 6). 

Whenever the feature signal exceeds the threshold, the 
following statistic criterions have to be fulfilled. Other-
wise the detected part of the signal is interpreted as an 
artifact: 

• Standard deviation  within the last 400 ms 

 (7)

• Kurtosis 2 within the last 2.5 seconds 

 (8)

Within each region containing an R peak, differences 
between local minima and maxima are calculated. The 
maximum with the highest difference to its surrounding 
minima is chosen as the exact position of the R peak. If 
more than two R peaks have already been detected, a 
template is built by averaging them. The correlation 
between the newly detected R peak and the template is 
computed as similarity measure and has to exceed a 
predefined threshold. Otherwise the R peak is discarded. 

To avoid not detecting potentially missed or wrongly 
discarded R peaks, the intervals between two consecu-
tive R peaks (RR interval) are calculated. If one RR 
interval exceeds 1.8 times the previous ones, the section 
between those R peaks is searched again with lower 
thresholds. 

Classification of the R peaks is performed in real 
time. The ECG signal at each R peak ± 0.5 seconds is 
compared to a predefined number of classes using corre-
lation and is assigned to its most similar class. If classes 
among each other correlate better than with the current 
R peak, these classes are merged and a new class is 
created from the current signal. This approach results in 
dynamically evolving classes, continuously enhancing 
with the duration of the measurement. 

To reduce noise, templates are created by averaging 
each class and are used for the detection of all subse-
quent features (QRS on- and offset, P and T wave as 
well as their on- and offsets). Only a local refinement is 
performed using the original signal. 

 
To detect the onset of the QRS complex, an interval 

of 150 ms straight before the R peak of the template is 
analyzed as follows: 

• Calculate the amplitudes TAt and TDAt of the tem-
plate Tt and its first discrete derivate within a moving 
window (w = 30 ms) 

 (9)

 (10)

• Calculate a threshold TT and TD for the amplitudes 
TAt and TDAt 
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(12)

with c1 and c2 being predefined constants. 
• The point closest to the R peak, where TAt is below 

TT or TDAt is below TD is marked as reference for 
the QRS onset. 

• The exact QRS onset is found within a 40 ms region 
prior to the reference point at the closest extremum to 
the R peak in the original signal. If no extremum is 
present, the point with the lowest slope is considered 
to be the QRS onset. 

The computation of the QRS offset is very similar to the 
onset, with two exceptions: 
• In order to annotate prolonged QRS complexes cor-

rectly, the analyzed interval is chosen larger. 
• In equation (9) and (10), window w is 60 ms. 

The peak of the T wave is detected by a special ‘wings’ 
function W as described by Christov and Simova [9] as 
follows: 

 (13)

 (14)

 (15)

The ‘wings’ function is applied to the template Tt be-
tween the previously detected QRS offset and the end of 
the template (0.5 seconds after the R peak). As shown in 
Figure 4, the position of the minimum of the ‘wings’ 
function represents the peak of the T wave, regardless of 
the polarization of the T wave. Subsequently, the posi-
tion of the peak of the T wave is refined using the origi-
nal signal by finding a local minimum or maximum, 
depending on the wave’s polarization. 

 
Figure 4. Top: Different T waves (left: positive T wave, right: 
negative T wave). Bottom: corresponding 'wings' function. 

The part of the template between QRS offset and T 
peak is searched for the closest extremum to the T peak, 
which is used as reference point for T onset. If no ex-
tremum is present, the point with the flattest slope is 
used instead. Like the T peak, the T onset is refined by 
finding a local extremum in the original signal. In some 
cases, especially in ECG traces showing prolonged 
duration of the QRS complex, T wave and QRS com-
plex overlap. In this case, no reasonable T onset point 
can be found, even not by medical experts. This condi-
tion leads to detection of the T onset straight before the 
T peak, allowing easy recognition. In this case, no T 
onset will be annotated at all. 

The detection of the T offset is performed in a simi-
lar manner between the T peak and the end of the tem-
plate (0.5 seconds after the R peak). 

To detect the peak of the P wave, the interval be-
tween the preceding T offset and the current QRS onset 
is evaluated in the template by a slightly altered ‘wings’ 
function (equation 13, 14, 15) which responds just to 
positive peaks. Again, the peak is located at the mini-
mum of the ‘wings’ function. P onset and P offset are 
found in the same way as T onset and T offset. 

Due to very small amplitude or high noise level, the 
P wave in some ECG recordings is indiscernible. To 
prevent the algorithm from false detections, the ampli-
tude of the P wave (derived as difference in voltage 
between the P peak and the mean of P onset and P off-
set) has to exceed a certain fraction of the amplitude of 
the QRS complex, otherwise no P wave (peak, onset 
and offset) is detected at all. 

3 Results 
PhysioNet databases are a collection of recordings of 
different physiological modalities such as electroen-
cephalogram, electrocardiogram, blood pressure, respi-
ration and others. Depending on their objective, several 
databases contain different kinds of annotations [10, 
11]. Hence, annotations done by medical experts can be 
used to verify automated algorithms. The following 
databases have been chosen for the verification of the 
algorithm presented in this paper due to a wide range of 
different ECG signals as well as a reasonable amount of 
expert annotations: 
• QT Database, created to evaluate algorithms detect-

ing the QT interval [12]. 
• AF Termination Challenge Database, designed to be 

used in ‘Computers in Cardiology Challenge 2004’. 
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• MIT-BIH Arrhythmia Database, test material for 

evaluation of arrhythmia detectors. 
• Fantasia Database, originally used for testing auto-

mated arrhythmia detection [13]. 
The presented algorithm was tested against all four 
databases with respect to the detection rate of QRS 
complexes. The American National Standards Institute 
(ANSI) essentially recommends two parameters for the 
evaluation of the detection rate [14]: the sensitivity Se 

 (16)

and the positive predictive value PPV 

 (17)

where TP is the number of true positive, FN the number 
of false negative and FP the number of false positive 
detections. 

A sensitivity of 98.5% and a positive predictive val-
ue of 98.3% were achieved in the verification of the 
detection rate. Time differences between detected and 
corresponding annotated points of the QT database are 
shown in Table 1. Durations of the PR interval, the QRS 
complex and the QT interval were calculated from the 
results of the algorithm and the expert annotations, 
respectively. The differences between the results of the 
algorithm and the annotations are shown in Figure 5 as 
Bland-Altman diagrams [15]. Mean and standard devia-
tion of these differences are -1.1 ± 19.9 ms for the PR 
interval, 3.6 ± 16.5 ms for the QRS complex and -4.8 ± 
35.3 ms for the QT interval. These results are satisfying 
and match existing offline algorithms [7, 8, 16]. 

 
 Algorithm-expert 

deviation 
Inter-expert devia-
tion 

Feature Mean Std Mean Std 

P onset 2.3 ms 23.8 ms * * 

P peak 0.5 ms 22.2 ms * * 

P offset - 0.3 ms 27.2 ms * * 

QRS onset 0.5 ms 10.2 ms 3.8 ms 14.2 ms 

R peak - 9.1 ms 14.4 ms 0.1 ms 2.4 ms 

QRS offset 4.3 ms 12.5 ms 2.7 ms 17.0 ms 

T onset 10.8 ms 63.0 ms 9.5 ms 44.9 ms 

T peak - 3.3 ms 33.1 ms 3.5 ms 30.0 ms 

T offset - 4.2 ms 38.8 ms 5.8 ms 39.9 ms 

Table 1: Means and standard deviations of differences in time 
between annotated and detected points as well as between 

different expert annotations. (* Annotated by one expert only). 

 
 

 
Figure 5. Bland-Altman diagrams comparing the duration of 
certain intervals derived from expert annotations with the 

results of the algorithm. Top left: PR interval. Top right:  
QRS complex. Bottom: QT interval. 

4 Discussion and Conclusion 
In most cases, the average deviations shown in Table 1 
are in the range of the sampling interval of 4 ms, sug-
gesting an insignificant error. The standard deviations of 
the differences between algorithm results and expert 
annotations also match with those of inter-expert anno-
tations. Reflecting the uncertainty regarding the exact 
position of these features among experts, these results 
suggest that the presented algorithm performs approxi-
mately as well as humans. 
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The two outliers in Table 1, R peak and T onset, are 

partially arising from bad or unusual annotations in the 
QT Database. R peaks are sometimes annotated at nega-
tive peaks within the QRS complex, whereas they ought 
to be positive by definition. The position of the T onset 
point is often ambiguous due to overlapping of the T 
wave with the QRS complex. This fact is also reflected 
by the high standard deviation of the inter-expert devia-
tions. Nevertheless, even unambiguous T onset points 
often have not been annotated in the QT database, mak-
ing reasonable comparison with the algorithm difficult. 

Bland-Altman diagrams comparing the annotated 
and calculated durations of the PR interval, the QRS 
complex and the QT interval in Figure 5 do not show 
any trends and thus do not suggest any methodical error. 
Their means and standard deviations are in the same 
range as those in Table 1 and therefore do not show any 
abnormalities. 

The results of the offline verification process are 
promising. Further work is required to implement the 
algorithm on an embedded system and run hardware-in-
the-loop simulations for validation in order to build an 
all-in-one device for ECG measurement with real time 
annotation. 

References 

[1] V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, 
J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de 
Simone, E.S. Ford, and others: Heart disease and stroke 
statistics-2011 update: A report from the American 
Heart Association. Circulation 123 (2011), e18-e209. 

[2] S. Allender, P. Scarborough, V. Peto, M. Rayner, J. Leal, 
R. Luengo-Fernandez, and A. Gray: European cardio-
vascular disease statistics. European Heart Network 
(2008) 

[3] A. Atkielski: SinusRhythmLabels. http://en.wikipedia. 
org/wiki/File:SinusRhythmLabels.svg (23:40, 13 January 
2007). 

[4] U.S. Department of Health and Human Services - Food 
and Drug Administration and Center for Drug Evaluation 
and Research (CDER) and Center for Biologics Evalua-
tion and Research (CBER): Guidance for Industry: E14 
Clinical Evaluation of QT/QTc Interval Prolongation 
and Proarrhythmic Potential for Non-Antiarrhythmic 
Drugs. Regulatory Information (10 2005). 

 
 
 
 
 

[5] V.S. Chouhan, and S.S. Mehta: Detection of QRS com-
plexes in 12-lead ECG using adaptive quantized thresh-
old. IJCSNS 8 (2008), 155-63. 

[6] A. Diery, D. Rowlands, T.R.H. Cutmore, and D. James: 
Automated ECG diagnostic P-wave analysis using wave-
lets. Computer Methods and Programs in Biomedicine 
(2010). 

[7] B.U. Köhler, C. Hennig, and R. Orglmeister: The princi-
ples of software QRS detection. IEEE Engineering in 
Medicine and Biology Magazine 21 (2002), 42-57. 

[8] D. Hayn, A. Kollmann, and G. Schreier: Automated QT 
interval measurement from multilead ECG signals. 
Computers in Cardiology (2008), 381-384 

[9] I. Christov, and I. Simova: Fully automated method for 
QT interval measurement in ECG. Computers in Cardi-
ology (2008), 321-324 

[10] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. 
Hausdorff, P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. 
Moody, C.-K. Peng, and H.E. Stanley: PhysioBank, 
PhysioToolkit, and PhysioNet: Components of a New 
Research Resource for Complex Physiologic Signals. 
Circulation 101 (2000), e215-e220 

[11] PhysioNet: PhysioBank. http://physionet.org/ physi-
obank/database (19:21, 15 April 2011). 

[12] P. Laguna, R.G. Mark, A. Goldberg, and G.B. Moody: A 
database for evaluation of algorithms for measurement 
of QT and other waveform intervals in the ECG. Com-
puters in Cardiology (1997), 673-676. 

[13] N. Iyengar, C.-K. Peng, R. Morin, A.L. Goldberger, and 
L.A. Lipsitz: Age-related alterations in the fractal scal-
ing of cardiac interbeat interval dynamics. American 
Journal of Physiology 271 (1996), R1078-R1084 

[14] ANSI/AAMI EC57: Testing and  reporting performance 
results of cardiac rhythm and ST  segment  measurement 
algorithms. AAMI Recommended Practice/American 
National Standard (1998). Available: 
http://www.aami.org; Order Code: EC57-293. 

[15] J.M. Bland and D.G. Altman: Statistical methods for as-
sessing agreement between two methods of clinical 
measurement. The LANCET 1 (1986), 307-310  

[16] G. Schreier, D. Hayn, and S. Lobodzinski: Development 
of a new QT algorithm with heterogenous ECG data-
bases. Journal of electrocardiology 36 (2003), 145-150. 

 
Submitted: October 2011 
Revised: January 2012 
Accepted: March 15, 2012 
 


