
S N E T E C H N I C A L N O T E

 SNE 22(1) – 4/2012 15

A Qualitative Comparison of Two Hybrid DEVS Approaches
Christina Deatcu*, Thorsten Pawletta

Wismar University of Applied Sciences, Res. Group Computational Engineering and Automation (CEA),
PB 1210, 23952 Wismar, Germany; *christina.deatcu@hs-wismar.de

Abstract. A hybrid system is defined as a system with
mixed discrete event and continuous parts. Two ap-
proaches for modeling and simulation of hybrid systems in
the context of the Discrete EVent System Specification
(DEVS) formalism are compared. Since the system theoret-
ic DEVS approach has been introduced during the 1970ies,
it has been completed by different extensions. The hybrid
extensions checked against each other here, are the Quan-
tized State Systems (QSS) method and a wrapper concept
based on traditional ODE solvers. For a comparison from
engineering practice point of view, these two hybrid DEVS
approaches are analyzed within the scientific and technical
computing environment MATLAB.

Introduction
There are several formal descriptions of system struc-
tures and system behaviors on hand to support the pre-
cise and complete mapping of real systems. This work is
based on the Discrete EVent System Specification
(DEVS) and its associated abstract simulator algo-
rithms. We focus on applying DEVS-based approaches
in the engineering field and in doing so try to find rea-
sons why DEVS is relatively unknown and rarely used
among engineers.

Initial research work on DEVS formalism was done
in 1976 by Zeigler [1]. The DEVS formalism offers
comprehensive options for describing systems that
change their state according to events that appear at
discrete instances of time. A main characteristic of sim-
ulation models defined according to the DEVS formal-
ism is their modular hierarchical layout. In the decades
that followed, the classic DEVS formalism was en-
hanced with extensions for hybrid, structure variable,
parallel, real time and other system types to provide op-
tions for building models of a large range of diversity [2].

Two possible approaches for hybrid DEVS are dis-
cussed here. Hybrid systems in this context are systems
with mixed discrete event and continuous system parts.
It is generally accepted t hat modeling hybrid systems
can be approached according to different worldviews.

The first, the worldview of continuous systems, maps
discrete events to zero-crossing problems. The entire
model is computed by a continuous simulator, i.e. by an
ODE solver with event detection and event localization.
Approaching the issue of hybrid systems from the se-
cond, the discrete event worldview, requires the exten-
sion of discrete event formalism in a way that allows
continuous model parts to be computed. This method is
convenient in case the systems that need to be modeled
are of a discrete event nature and include only minor
continuous parts. The simulation can be controlled by a
discrete event-based simulator that calls an ODE solver
between event times. The Prerequisite is the availability
of a closed representation of all continuous model parts
as a differential equation system. However, the usual
flattening of a modular hierarchical model to achieve a
closed equation-oriented representation causes the loss
of important model structure information during simula-
tion runtime.

This contribution focuses on analyzing methods for
hybrid system simulation within the DEVS formalism
where model structure information is kept during simu-
lation runtime. Keeping structure information is neces-
sary to allow modular hierarchical systems with struc-
ture variability following [3, 4] to be investigated.
One way to integrate continuous model parts in the
DEVS formalism without model flattening is the wrap-
per concept proposed here. Thereby, an extended DEVS
simulator controls the overall simulation and cyclically
calls an ODE solver between discrete event times. The
so-called wrapper generates the required closed repre-
sentation of the differential equations and in doing so
does not affect structure information of the modular
hierarchical DEVS model.

In contrast to the wrapper concept, the second ap-
proach discussed here, the Quantized State Systems
(QSS) method solves the problem on the model level
instead of on the simulator level. With the QSS method
Kofman [5, 6, and 7] proposes a quantization of the
state variables instead of the traditionally accepted dis-
cretization of time to solve a system of differential

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 22(1), 2012, 15-24 | doi: 10.11128/sne.22.tn.10107

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 16 SNE 22(1) – 4/2012

TN
equations by numerical approximation. This approach
allows asymptotic solutions by special DEVS model
components. Adjusting the DEVS formalism itself is not
necessary. Therefore, a hybrid model based on the QSS
approach can be computed by any standard DEVS simu-
lator.

In the following, after a short introduction to DEVS
formalism, we discuss the two hybrid approaches in
more depth. Based on the detailed examination, the
suitability of the approaches for engineering problems is
evaluated from the practitioner’s point of view. Both
approaches are studied by means of prototypical imple-
mentations within the scientific and technical computing
environment (SCE) MATLAB. Numerical aspects like
accuracy or stability problems of the examined methods
are explicitly not subject to discussion.

1 Overview of DEVS
Models designed as formal DEVS models are composed
in a modular hierarchical manner. They consist of two
basic model types. The first type, in which dynamic
behavior is defined, is the atomic DEVS model. The
second type, the coupled DEVS model, describes a set
of interacting components. These components are other
coupled DEVS models or atomic DEVS. Beside model
definitions, the DEVS formalism comprises data struc-
tures and algorithms that allow the hierarchical DEVS
model to be simulated. For simulation purposes, a simu-
lator is assigned to each atomic model and a coordina-
tor is assigned to each coupled model as depicted in
Figure 1. Simulators and coordinators are responsible
for executing the model.

Figure 1. Model components and associated simulators /

coordinators according to Zeigler.

The conjunction of a model component and a simu-
lator or a coordinator is depicted as a simulation object
below. The superordinate root coordinator initializes all
simulation objects and starts and controls the simulation
run. The root coordinator and the associated simulators
and coordinators communicate with one another through
messages.

1.1 Classic DEVS

A classic atomic DEVS A and a classic coupled DEVS
N are defined as follows [2]:

()taSYXA ext ,,,,,, int λδδ= (1)

{ }()SelectICEOCEICDdMDYXN dNN ,,,,|,,, ∈= (2)

An atomic DEVS A is described by the set of input
events X , the set of output events Y , the set of states
S , and by the four characteristic functions: internal

transition function intδ , external transition function

extδ , output function λ and time advance function ta .

The characteristic functions specify the dynamics of the
atomic DEVS. Accordingly, sets of input and output
events NX and NY are defined for the coupled DEVS

N . The set dM specifies the subcomponents, which

may be atomic or coupled DEVS. The set D is the
corresponding index set.

The way in which subcomponents are connected is
described by the coupling relations EIC (External
Input Coupling), EOC (External Output Coupling)
and IC (Internal Coupling). The Select function
controls model execution if simultaneous events appear.
Hence, an atomic DEVS is responsible for describing of
the dynamics of each component, whereas a coupled
DEVS represents the composition of components.

1.2 PDEVS
To break up conflicts caused by simultaneous events
solely at the level of atomic models, the classic DEVS
formalism has been enhanced mainly by Chow and
Zeigler to parallel DEVS (PDEVS) formalism since
1994. Atomic and coupled PDEVS are defined as fol-
lows:

()taSYXA confextP ,,,,,,, int λδδδ= (3)

{ }()ICEOCEICDdMDYXN dNNP ,,,|,,, ∈= (4)

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 SNE 22(1) – 4/2012 17

T N
In classic DEVS simultaneous events in subcompo-

nents of a coupled system need a definition of priorities
within the Select function of the coupled model at
superordinate level. The definition of priorities and
therefore the Select function can be omitted in
PDEVS. Instead, the dynamic description of the atomic
PDEVS is complemented by the confluent function

confδ . This function is called, if for an atomic PDEVS

PA one or more external events and an internal event
occur at the same time. Additionally, simulator and
coordinator algorithms were comprehensively modified
for executing PDEVS models.

1.3 DEVS with structure variability
Structure variability in the context of this work is de-
fined as the possibility of modifying the hierarchical
model structure during simulation runtime. It includes
the creation, deletion and exchange of model compo-
nents or the modification of coupling relations.

Barros [3] proposes the addition of a special atomic
model called network executive to each coupled model
which holds the structure information and describes the
structure dynamics. In contrast to this approach, we
favor extending the PDEVS coupled model definition in
a way that allows holding structure dynamics specifica-
tion directly in the coupled model according to [4].

This preference of keep structure information at the
coupled model level is based on the principles of the
primal DEVS theory where the atomic level specifies
dynamics and the coupled level specifies structure is-
sues. In both approaches the atomic model definitions
remain unchanged.

We call the current composition of a coupled sys-
tem, which means its set of subsystems and its coupling
relations, a structure state Ni Ss ∈ . A structure variable

PDEVS coupled model can have different structure
states Nn Ssss ∈,...,, 10 . Furthermore, structure dy-

namics information, e.g. the number and kind of struc-
ture changes already achieved, need to be stored. The
set of structural variables NH holds this information. A

structure state is , which is an element of the set of

sequential structure states NS is defined as follows:

{ }()ICEOCEICDdMDHs dNi ,,,|,, ∈= (5)

The set of sequential structure states extends the
formal definition of coupled PDEVS without structure
variability so that structure variable PDEVS can be
defined as follows:

{ }),,,,,,,(int, NNNconfNextNNNNNpdyn taSdYXN λδδδ= (6)

It should be noted that coupling information is now
encapsulated in the set of structure states NS . The

name of the coupled system is stored in Nd . Further-

more, the functions intNδ , Nextδ , Nconfδ , Nλ , and

Nta for coupled PDEVS systems are introduced to

provide operations similar but not identical to atomic
systems.

In analogy to event-oriented dynamic behavior of
atomic PDEVS systems, dynamic structure changes in
coupled DEVS are induced by events. The characteristic
functions describe reactions on structure events. An
application example for dynamic structure DEVS in
engineering area that deals with structure and parameter
optimization is given in [8].

2 Wrapper Concept
Scientific and technical computing environments
(SCEs) such as the widely-used SCE Matlab offer a
large number of established numerical methods for
solving differential equations. The wrapper concept
aims to make these methods applicable to hybrid, modu-
lar hierarchical DEVS models. A wrapper concept
which is adapted to PDEVS is presented here. PDEVS
is chosen because it offers a way of achieving an easy
and realistic mapping of simultaneous events.

To keep structure information available and modifi-
able, the flattening which is typically done before com-
putation of hybrid models must not be realized. This is a
strong motivation for the wrapper concept. The issue of
the structure variable PDEVS extension is sketched out
here but not discussed in detail for reasons of clarity.
However, it should be kept in mind that the wrapper
approach is applicable to static structure as well as to
structure variable models.

2.1 Formal Model Definitions
A hybrid classic atomic DEVS was defined for the first
time in the 1990ies by Prähofer [9]. To allow computa-
tion of hybrid atomic DEVS Prähofer added the explicit

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 18 SNE 22(1) – 4/2012

TN
Euler method to the DEVS simulator.

Advanced numerical methods as they are common in

engineering applications like implicit integration algo-
rithms, predictor corrector methods, or ODE solvers
with adaptive step size cannot be used. The wrapper
concept starts from Prähofer’s formal hybrid atomic
DEVS definition and adapts it to PDEVS formalism.

For the wrapper concept, just the formal model spec-
ification resembles Prähofer’s definition, whereas the
simulation approach and algorithms are completely
different. We define a hybrid atomic PDEVS as follows:

()tacfSYXA dconfextstatecsehybridp ,,,,,,,,,,, int λδδδδλ= (7)

The sets of inputs X , outputs Y and states S of hy-
brid DEVS may contain discrete as well as continuous
values. The continuous dynamics of a component is
mapped by the rate of change function f and the con-

tinuous output function cλ . Discrete events can be

external or internal events, or can be state events caused
by discontinuities in the continuous parts. The state
event condition function sec defines the conditions

under which a state event is generated.

External events, internal events, and state events al-
ter the system’s state stored in S . External events

achieve this via the external transition function extδ

while state events are computed within the state event
transition function stateδ . Internal events activate the

discrete output function dλ first and subsequently the

internal transition function intδ , which then alters the

system’s state by manipulating S .
For hybrid PDEVS not just external and internal

events may occur simultaneously. So can state events in
continuous variables with discontinuities detected by the
ODE solver. Therefore, the confluent function confδ

needs to be adapted to handle three different types of
potentially simultaneous events. After any change of
state the time advance function ta calculates the time
interval until the next internal event.

The specification for coupled models needs to be
modified marginally. A coupled structure variable
PDEVS pdynN following the specification in equation

(6) is suitable for hybrid models after extending its

Nextδ function in a way that it can react on state events

occurring in continuous parts of submodels, too. Fur-
thermore, coupling relations encapsulated in the set of
structure states NS need to be differentiated between

discrete and continuous relations. In addition, the sets of
inputs NX and outputs NY may contain discrete as

well as continuous values.

2.2 Extended Simulator Algorithms and Data
Structures

In a hybrid, modular hierarchical model, continuous
model parts are typically distributed over several model
components. To allow the deployment of advanced
numerical integration methods for computation without
a previous model flattening, these distributed continu-
ous model parts need to be collected, united and provid-
ed in a way suitable for the chosen ODE solver’s inter-
face. The ODE wrapper function supplies the closed
representation of continuous model parts required by the
ODE solver. Coevally, structure information remains
available. The modular hierarchical model itself is not
modified. Rather, a closed representation of continuous
model parts is generated additionally during simulation
runtime.

Figure 2 and Listing 1 show how the DEVS simula-

tion environment is extended by adequate data struc-
tures, an adapted root coordinator, and the ODE wrap-
per function.

Figure 2. Modular hierarchical model structure and simulator

structure with wrapper components.

The root coordinator needs to be extended to operate in
three different phases: i) initialization phase, ii) discrete
phase, and iii) continuous phase.

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 SNE 22(1) – 4/2012 19

T N

Listing 1. Root coordinator algorithm.

In addition to the well-known messages from tradi-
tional DEVS simulators, i-message, *-message, x-
message, and y-message, we introduce a z- and a z2-
message for vector configuration purposes and an se-
message for handling state events of the continuous
model parts. For exact mapping of simultaneous events
we use an interpellation y-message as proposed by [10].

At startup of a simulation run, the initialization
phase is entered and the model is initialized by an ini-
tialization message (i-message) sent by the root coordi-
nator to the outermost coupled model. The initialization
message is passed down the hierarchy among the simu-
lation objects until it reaches the leaves of the object
tree.

Based on the minimum of time stamps for the next
internal events (as they are returned by the subcompo-
nents), the root coordinator determines whether a dis-
crete or a continuous simulation phase has to be started
next. If there is no imminent internal event at current
simulation time, a continuous cycle is initiated and
starts with an update of the wrapper data structures. This
step is necessary for modular hierarchical systems with
structure variability at the beginning of each continuous
phase because the model structure may have changed
due to a previous event.

For this purpose the root coordinator sends recur-
sive configuration messages (z- and z2-message) to the
associated coordinator of the outermost coupled model.
Those messages are passed down the hierarchy tree
depicted in Figure 2. References to all hybrid atomic
simulation objects (aSimObj) as well as direct refer-
ences to all continuous state variables contained (cSc)
are returned. Furthermore, direct links between continu-
ous output and input variables are established by inter-
preting the coupling relations. This linking information
is written back to atomic simulation objects with the z2-
message.

The behavior of atomic models containing continu-
ous variables resembles either Moore automata

ccc YS →:λ or Mealy automata cccc YXS →×:λ .

Depending on the type of atomic models to which the
continuous variables belong, the references to the atom-
ic simulation objects in aSimObj are divided into two
groups in a first step. As the next task, inside of the
mealy group, references need to be sorted based on
interdependencies. The sorted reference vectors with
objects of mealy and moore type are passed to the ODE
wrapper function.

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 20 SNE 22(1) – 4/2012

TN
The ODE wrapper function is handed over as the

closed representation of all continuous model parts to
the ODE solver. Via the references to the atomic simu-
lation objects the hybrid atomic model functions cλ , f

and sec can be called by the ODE wrapper. For each

integration step the ODE wrapper calls the continuous
output functions cλ and the rate of change functions f

of all hybrid atomic subcomponents referenced in vector
aSimObj to calculate continuous outputs and deriva-
tives. Additionally, the state event condition function

sec of each subcomponent referenced in aSimObj is

evaluated to check for state events of continuous values
that may have occurred. The ODE wrapper distin-
guishes between the calls of cλ and f or the call of

sec by evaluating the flag parameter.

The continuous cycle is iterated as long as either the
next discrete internal event becomes imminent or the
cycle is interrupted by a state event. If the ODE solver
returns a state event, an se-message is passed down the
tree to find out which atomic subcomponent is affected.
The simulator of this atomic then calls the associated
state event transition function stateδ . Based on the time

for next internal discrete event returned by the se-
message, the root coordinator decides whether to start a
discrete or a continuous phase next.

A prototype of an advanced PDEVS simulation en-
vironment including the wrapper algorithms sketched
out has been implemented in the SCE Matlab. It could
be proven that, except the ode15i for fully implicit
differential equations, the entire set of ODE solvers
provided by the SCE Matlab, including variable-step
solvers as e.g. ode45 and implicit solvers as e.g.
ode15s, can be used without modifications for simulat-
ing hybrid PDEVS systems with structure variability. A
consistent separation of model definitions and numerical
solver algorithms is also ensured.

3 Quantized State Systems
Zeigler and Lee defined Quantized Systems (QSS) and
their representation in conjunction with DEVS models
in the 90ies [11]. The QSS method was improved by
Kofman and Junco [5] and offers a completely new
innovative approach to numerically solve differential
equations.

This approach does not need to be implemented
within DEVS necessarily, but it is closely connected to
this formalism from the beginning. In contrast to con-
ventional methods for numerically calculating differen-
tial equations, time is not discretized within the QSS
method, but the states. That point in time is calculated
where the continuous state variable has changed more
than a certain quantum D .

According to [12] the QSS method is applicable to

any category of differential equation systems. Based on
selected examples, in [7] Kofman compares solutions
obtained by the QSS methods QSS1 and QSS2 with
solutions calculated by conventional ODE solvers of the
commercial SCE Matlab/Simulink. For the examples
studied, he states a considerably better performance of
the QSS solutions. The basic approach of the QSS
method is introduced below with references to the ad-
vanced QSS methods.

3.1 QSS1

For one ordinary differential equation given as
))(()(txftx = Nutaro [13] specifies the following

simulation algorithm, which is independent of the
DEVS formalism:

 0←t
 0xx ←

 while terminating condition not fulfilled
print xt,

if 0)(=xf then

∞←h
else

)(xf
Dh ←

end if
if ∞=h then

stop simulation
 else

htt +←
))(sgn(xfDxx ∗+←

end if
 end while

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 SNE 22(1) – 4/2012 21

T N
D is the value of the quantum. The step size h is

variable and depends on the rate of change))((txf .

Thus, h defines the time interval after which the sys-
tem’s state variable x has changed by D . The state
values x result as the sum of the start value 0x and a
multiple k of the quantum D . Thereby, the discrete
character of the approximatively calculated state varia-
ble becomes apparent.

If not just one differential equation))(()(txftx =

but a system of differential equations))(()(txftx =
is computed, the derivatives of all state variables de-
pendent on ix need to be recalculated at time

ii xx ht + .

This modus operandi basically remains the same – also
for the advanced QSS algorithms.

3.2 Advanced QSS Algorithms
[6, 7] introduce a wide variety of advanced QSS meth-
ods. Second order QSS (QSS2) applies a different quan-
tization (First Order Quantizer) to the continuous state
variables. The quantized state variable is not constant
between two integration steps as it is for QSS1 but fol-
lows a linear function. Thereby, the number of event
times required for computing a differential equation
system is reduced.

Furthermore, there are several implicit QSS meth-
ods. The Backward QSS (BQSS) method is designed
especially for stiff systems. A combination of BQSS
and QSS the Centered QSS (CQSS) is suitable for com-
putating permanently oscillating systems. The Linearly
Implicit QSS (LIQSS) are an enhancement of BQSS.

3.3 QSS in DEVS
To permit computation of differential equation systems
using QSS in a DEVS environment, the QSS algorithms
(QSS integrators) need to be mapped to atomic DEVS
models. As far as model design is concerned, this means
that one integrator and thus one atomic DEVS are re-
quired for each continuous state variable. Detailed spec-
ifications for DEVS-based QSS integrators are pub-
lished in [5, 12, and 13]. Furthermore, each differential
equation needs to be mapped to a separate atomic
DEVS model.

The consequence of this approach is a rather com-
plex model structure. Figure 3 illustrates the basic mod-
el structure of a DEVS model for simulating a differen-
tial equation system with two interconnected state vari-

ables using the QSS1 method. The atomic DEVS of a
differential equation in the case of QSS1 employment
receives the quantized variables iq as external events

from the associated QSS1 integrators. The extδ and ta

functions of the atomic DEVS of the ODE then generate
an instantaneous internal event. Thus, its output func-
tion λ is immediately executed and computes the actu-

al rate of change value ix and sends it as an output

event iy to the connected atomic DEVS coding the

QSS integrator.

Figure 3. DEVS model structure of a differential equation

system with two state variables and associated
QSS1 integrators.

Figure 4 shows the basic DEVS model structure of the
same ODE system as it needs to be designed, if you aim
to use the QSS2 method for computation. According to
that not only the atomic DEVS models of the QSS inte-
grators have to be exchanged. The atomic DEVS speci-
fying the differential equations need to be adapted, too.
It is essential that the atomic DEVS of the differential
equations and the atomic DEVS of the QSS integrators
are attuned to one another.

Figure 4. DEVS model structure of a differential equation

system with two state variables and associated
QSS2 integrators.

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 22 SNE 22(1) – 4/2012

TN
Hence, before specifying the atomic DEVS models

for the differential equations it needs to be known which
QSS method will be used for computation [12]. At this
point it becomes clear that there is no strict separation
between model description and numerical processing for
the QSS method.

The discussed examples are pure continuous sys-

tems. But of course, the quantization of the continuous
variables and the discrete event-oriented computation
allows a seamless specification of hybrid systems too.
Event detection and localization functionality has to be
implemented in atomic DEVS of the QSS integrators or
added as separate atomic DEVS models to the system.
The model structure information is kept during simula-
tion runtime.

For software engineering practice, purpose-made

templates of e.g. atomic DEVS models for specification
of differential equations can be stored in a model li-
brary. The modeler simply takes a template file and
adapts the concrete algorithm for the derivative in the
output function. QSS method specific integrators can be
stored in the model library as predefined atomic DEVS
models as well. Here, the user can apply those methods
without detailed knowledge of the QSS algorithms.

An example of a DEVS-based model library and
simulation environment that offers support for QSS
based hybrid models is the PowerDEVS software suite
by E. Kofman [14], which is integrated into the freely
available SCE Scilab [15].

4 Qualitative Comparison
A key aspect of the comparison subsumed in Table 1 is
the quality of integration of the DEVS formalism for
hybrid systems into a SCE like Matlab and the resulting
potential for engineering application area from user’s
point of view. Both approaches ensure structure infor-
mation of the modular hierarchical model during
runtime is completely conserved and are therefore both
suited for computating structure variable problems in
engineering applications.

The QSS approach incorporates the numerical inte-
gration algorithms directly into the model description.
Model components specifying the differential equations
cannot be implemented independently from the integra-
tion algorithms the analyst has chosen. In contrast, the
wrapper concept is based on a strict separation of model
and solution algorithm. Furthermore, the wrapper con-
cept allows the straight, unadapted use of the estab-
lished ODE solvers provided by the selected SCE.

.
 Wrapper Concept Quantized State Systems

Preservation of structure
information yes yes

Computation of continuous
solution at simulator level at model level

Adapted DEVS simulator
algorithms

yes no

Usage of established numeri-
cal integration algorithms

yes no

Event detection and
localization

yes (performed by ODE solver) yes (bounded to quant. level)

Model complexity lower higher

Reusability of models yes yes

Reality equivalence of models very high high

Numerical characteristics not studied not studied

Runtime / performance not studied not studied

Table 1. Application oriented comparison of two hybrid DEVS approaches.

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 SNE 22(1) – 4/2012 23

T N
With the wrapper concept and its prototypal imple-

mentation for MATLAB, using varying solvers to exe-
cute the same hybrid model is effortless. As all Matlab
ODE solvers, except the ode15i for fully implicit dif-
ferential equations, function with the same interface -
just one line of code within the root coordinator has to
be modified.

Due to the fact that the wrapper concept requires
separate data structures, additional messages and an
interface to the ODE solver, extended DEVS simulator
algorithms need to be implemented. In contrast, QSS
models can be computed by the standard DEVS simula-
tor algorithms.

Event detection and localization is an essential task
in hybrid system simulation. The wrapper concept dele-
gates this task to the ODE solvers of the SCE, while, if
following the QSS approach, the atomic models of QSS
integrators either need to be extended or additional
atomic DEVS models for event detection and localiza-
tion have to be added to the model. Event detection and
localization are not integral capabilities of QSS integra-
tion algorithms but can be implemented as extensions to
handle events within the bounds of quantization levels.

Continuous model parts designed for computation
following the QSS approach consist of at least two
atomic models per state variable: One atomic DEVS to
specify the differential equation and another atomic
DEVS implementing the QSS integration algorithm.

The wrapper concept allows more than one continu-
ous state variable per atomic DEVS model to be de-
fined. Moreover, additional discrete functionality can be
added to the same atomic DEVS model. Hence, model
structure of models following the wrapper concept ap-
pears to be more compact. Model complexity of QSS
models compared to models following the wrapper
concept increases unavoidably since integration algo-
rithms and event detection and localization methods
become part of the model.

However, both methods provide an excellent setting
for the modeling and simulating hybrid systems whose
modular hierarchical structure may change during simu-
lation runtime. Modeling problems of this type is elabo-
rate and difficult to impossible using standard simula-
tion tools in SCEs such as the toolboxes Simulink and
SimEvents for the SCE Matlab.

Reusability of models defined once is given for both
approaches. The modular hierarchical characteristic of
the DEVS formalism supports this feature per se.

In discrete event modeling and simulation for engi-
neering applications as e.g. modeling of manufacturing
systems, it is common practice to represent objects of
the real world, e.g. work pieces, as entities [16]. One
single atomic hybrid DEVS according to the wrapper
concept can represent such an entity, including its entire
discrete event behavior, and its continuous dynamic
behavior. Modeling the same characteristics using the
QSS approach requires more than one atomic DEVS.

The wrapper concept has benefits with respect to the
degree of reality equivalence of the models over the
QSS approach. For the wrapper concept one work piece
can be represented by one atomic DEVS model. Thus,
one element in the model equates one element in reality.
To improve reality equivalence for QSS models, the
multiple atomic DEVS components needed to model
one work piece could be combined to become a coupled
DEVS model. In this case, an 1-to-1-mapping is
achieved from the user perspective.
Detailed studies regarding numerical aspects, perfor-
mance and runtime of both approaches within a SCE
have not yet been carried out.

5 Summary
Both approaches offer the potential to make the DEVS
formalism for modeling and simulation of hybrid modu-
lar hierarchical systems accessible to engineers and
support them in modeling and simulating their hybrid
engineering applications more effectively. From an
academic point of view, the wrapper concept and QSS
both lead to comparable, correct results. But today, the
DEVS formalism and the QSS method are fairly un-
known in the engineering community and are rarely
applied to real engineering problems.

Especially for the QSS approach this may be caused
by the fact that people like to continue using tools and
algorithms with which they have been familiar for years
and intuitively refuse to use unknown concepts. An
engineer who is familiar with traditional integration
algorithms could maybe be convinced more easily to try
out the wrapper approach in which he only has to study
one new concept, namely the DEVS theory.

The main benefits of the wrapper concept are the in-
tegration of established numerical integration methods
as they are familiar to engineers, and the consequent
separation of the model from the simulation or rather
integration algorithms.

 C Deatu et al. A Qualitative Comparison of Two Hybrid DEVS Approaches

 24 SNE 22(1) – 4/2012

TN
The QSS approach is a methodically new approach.

It allows the further use of the existing DEVS simula-
tion algorithms for computation of models of hybrid
systems. The lack of acceptance for the QSS approach
among engineers is probably also related to the lack of
available implementations of the integration algorithms
for commercial SCEs like Matlab. Presently, QSS im-
plementations such as the PowerDEVS suite [14] are
only available for the non-commercial SCE Scilab or
implemented as libraries for other simulation environ-
ments such as ModelicaDEVS [17]. Acceptance of the
DEVS formalism itself as well as the acceptance of the
QSS method or the wrapper concept is obviously linked
to the availability of adequate tools.

References

[1] B. P. Zeigler. Theory of Modeling and Simulation (first
ed.). Wiley Interscience, New York, 1976.

[2] B. Zeigler, H. Praehofer and T. G. Kim. Theory of Mod-
eling and Simulation (second ed.). Academic Press, New
York, 2000.

[3] F. Barros. The Dynamic Structure Discrete Event System
Specification Formalism. Trans. Soc. Comput. Simul.
Int. 13:35–46, 1996

[4] T. Pawletta, B. Lampe, S. Pawletta and W. Drewelow. A
DEVS-Based Approach for Modeling and Simulation of
Hybrid Variable Structure Systems. In Modelling, Anal-
ysis, and Design of Hybrid Systems, edited by G. F. S.
Engell and E. Schnieder, 107–129. Springer Verlag,
2002.

[5] E. Kofman, S. Junco. Quantized-State Systems: a DEVS
Approach for Continuous System Simulation. Trans. Soc.
Comput. Simul. Int. 18, 123–132, 2001.

[6] E. Kofman. Discrete Event Systems and Control of Con-
tinuous Systems. Phd thesis, Universidad Nacional de
Rosario, Argentinien, 2003.

[7] E. Kofman. Discrete Event Simulation of Hybrid Sys-
tems. SIAM Journal on Scientific Computing, 25(5),
1771–1797, 2004. doi:10.1137/S1064827502418379

[8] O. Hagendorf and T. Pawletta. A Framework for Simula-
tion Based Structure and Parameter Optimization of
Discrete Event Systems. In: Discrete-Event Modeling
and Simulation: Theory and Applications, Editors: G.A.
Wainer and P.J. Mosterman, CRC Press Inc. of Tailor &
Francis Group, USA, 199-222, 2011.

[9] H. Prähofer. System Theoretic Foundations for Com-
bined Discrete-Continuous System Simulation. Phd the-
sis, VWG, Vienna, Austria, 1992.

[10] T. Schwatinski and T. Pawletta. An Advanced Simulation
Approach for Parallel DEVS with Ports. In Proceedings
of Spring Simulation Multiconference 2010, Book 4 -
Symposium on Theory of Modeling & Simulation, 132-
139, 2010.

[11] B. P. Zeigler and J. Lee. Theory of Quantized Systems:
Formal Basis for DEVS/HLA Distributed Simualtion En-
vironment. In SPIE proceedings, 49–58, 1998.

[12] F. E. Cellier and E. Kofman. Continuous System Simula-
tion. Springer Verlag, 2006.

[13] J. Nutaro, J. Discrete Event Simulation of Continuous
Systems. In Handbook of Dynamic System Modeling,
edited by P. A. Fishwick, 11–1–11–23. Chapman &
Hall/CRC. 2007.

[14] PowerDEVS by E. Kofman. PowerDEVS Website. Ac-
cessed Apr. 2, 2012.
http://www.fceia.unr.edu.ar/lsd/powerdevs/. 2003.

[15] Scilab by INRIA. Scilab Website. Accessed Apr. 2,
2012. http://www.scilab.org. 2012

[16] C. Deatcu, T. Pawletta, O. Hagendorf, and B. Lampe.
ConsideringWorkpieces as Integral Parts of a DEVS
Model. In Proceedings of 21st European Modeling &
Simulation Symposium, Volume 1, 27–35. 2009.

[17] ModelicaDEVS by T. Beltrame. ModelicaDEVS at Mod-
elica Association Website. Accessed Apr.2, 2012.
https://www.modelica.org/libraries/ModelicaDEVS

Submitted: October 2011
Revised: January 2012
Accepted: March 17, 2012

