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Abstract.  A hybrid system is defined as a system with 
mixed discrete event and continuous parts. Two ap-
proaches for modeling and simulation of hybrid systems in 
the context of the Discrete EVent System Specification 
(DEVS) formalism are compared. Since the system theoret-
ic DEVS approach has been introduced during the 1970ies, 
it has been completed by different extensions. The hybrid 
extensions checked against each other here, are the Quan-
tized State Systems (QSS) method and a wrapper concept 
based on traditional ODE solvers. For a comparison from 
engineering practice point of view, these two hybrid DEVS 
approaches are analyzed within the scientific and technical 
computing environment MATLAB. 

Introduction 
There are several formal descriptions of system struc-
tures and system behaviors on hand to support the pre-
cise and complete mapping of real systems. This work is 
based on the Discrete EVent System Specification 
(DEVS) and its associated abstract simulator algo-
rithms. We focus on applying DEVS-based approaches 
in the engineering field and in doing so try to find rea-
sons why DEVS is relatively unknown and rarely used 
among engineers. 

Initial research work on DEVS formalism was done 
in 1976 by Zeigler [1]. The DEVS formalism offers 
comprehensive options for describing systems that 
change their state according to events that appear at 
discrete instances of time. A main characteristic of sim-
ulation models defined according to the DEVS formal-
ism is their modular hierarchical layout. In the decades 
that followed, the classic DEVS formalism was en-
hanced with extensions for hybrid, structure variable, 
parallel, real time and other system types to provide op-
tions for building models of a large range of diversity [2]. 

Two possible approaches for hybrid DEVS are dis-
cussed here. Hybrid systems in this context are systems 
with mixed discrete event and continuous system parts. 
It is generally accepted t hat modeling hybrid systems 
can be approached according to different worldviews. 

The first, the worldview of continuous systems, maps 
discrete events to zero-crossing problems. The entire 
model is computed by a continuous simulator, i.e. by an 
ODE solver with event detection and event localization. 
Approaching the issue of hybrid systems from the se-
cond, the discrete event worldview, requires the exten-
sion of discrete event formalism in a way that allows 
continuous model parts to be computed. This method is 
convenient in case the systems that need to be modeled 
are of a discrete event nature and include only minor 
continuous parts. The simulation can be controlled by a 
discrete event-based simulator that calls an ODE solver 
between event times. The Prerequisite is the availability 
of a closed representation of all continuous model parts 
as a differential equation system. However, the usual 
flattening of a modular hierarchical model to achieve a 
closed equation-oriented representation causes the loss 
of important model structure information during simula-
tion runtime. 

This contribution focuses on analyzing methods for 
hybrid system simulation within the DEVS formalism 
where model structure information is kept during simu-
lation runtime. Keeping structure information is neces-
sary to allow modular hierarchical systems with struc-
ture variability following [3, 4] to be investigated. 
One way to integrate continuous model parts in the 
DEVS formalism without model flattening is the wrap-
per concept proposed here. Thereby, an extended DEVS 
simulator controls the overall simulation and cyclically 
calls an ODE solver between discrete event times. The 
so-called wrapper generates the required closed repre-
sentation of the differential equations and in doing so 
does not affect structure information of the modular 
hierarchical DEVS model. 

In contrast to the wrapper concept, the second ap-
proach discussed here, the Quantized State Systems 
(QSS) method solves the problem on the model level 
instead of on the simulator level. With the QSS method 
Kofman [5, 6, and 7] proposes a quantization of the 
state variables instead of the traditionally accepted dis-
cretization of time to solve a system of differential 
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equations by numerical approximation. This approach 
allows asymptotic solutions by special DEVS model 
components. Adjusting the DEVS formalism itself is not 
necessary. Therefore, a hybrid model based on the QSS 
approach can be computed by any standard DEVS simu-
lator. 

In the following, after a short introduction to DEVS 
formalism, we discuss the two hybrid approaches in 
more depth. Based on the detailed examination, the 
suitability of the approaches for engineering problems is 
evaluated from the practitioner’s point of view. Both 
approaches are studied by means of prototypical imple-
mentations within the scientific and technical computing 
environment (SCE) MATLAB. Numerical aspects like 
accuracy or stability problems of the examined methods 
are explicitly not subject to discussion. 

1 Overview of DEVS 
Models designed as formal DEVS models are composed 
in a modular hierarchical manner. They consist of two 
basic model types. The first type, in which dynamic 
behavior is defined, is the atomic DEVS model. The 
second type, the coupled DEVS model, describes a set 
of interacting components. These components are other 
coupled DEVS models or atomic DEVS. Beside model 
definitions, the DEVS formalism comprises data struc-
tures and algorithms that allow the hierarchical DEVS 
model to be simulated. For simulation purposes, a simu-
lator is assigned to each atomic model and a coordina-
tor is assigned to each coupled model as depicted in 
Figure 1. Simulators and coordinators are responsible 
for executing the model.  

 
Figure 1. Model components and associated simulators /  

coordinators according to Zeigler. 

The conjunction of a model component and a simu-
lator or a coordinator is depicted as a simulation object 
below. The superordinate root coordinator initializes all 
simulation objects and starts and controls the simulation 
run. The root coordinator and the associated simulators 
and coordinators communicate with one another through 
messages. 

1.1 Classic DEVS 

A classic atomic DEVS A  and a classic coupled DEVS 
N  are defined as follows [2]: 

( )taSYXA ext ,,,,,, int λδδ=  (1) 

{ }( )SelectICEOCEICDdMDYXN dNN ,,,,|,,, ∈=    (2) 

An atomic DEVS A  is described by the set of input 
events X , the set of output events Y , the set of states 
S , and by the four characteristic functions: internal 

transition function intδ , external transition function 

extδ , output function λ  and time advance function ta . 

The characteristic functions specify the dynamics of the 
atomic DEVS. Accordingly, sets of input and output 
events NX  and NY  are defined for the coupled DEVS 

N . The set dM  specifies the subcomponents, which 

may be atomic or coupled DEVS. The set D  is the 
corresponding index set.  

The way in which subcomponents are connected is 
described by the coupling relations EIC  (External 
Input Coupling), EOC  (External Output Coupling) 
and IC  (Internal Coupling). The Select  function 
controls model execution if simultaneous events appear. 
Hence, an atomic DEVS is responsible for describing of 
the dynamics of each component, whereas a coupled 
DEVS represents the composition of components. 

1.2 PDEVS 
To break up conflicts caused by simultaneous events 
solely at the level of atomic models, the classic DEVS 
formalism has been enhanced mainly by Chow and 
Zeigler to parallel DEVS (PDEVS) formalism since 
1994. Atomic and coupled PDEVS are defined as fol-
lows: 

( )taSYXA confextP ,,,,,,, int λδδδ=  (3) 

{ }( )ICEOCEICDdMDYXN dNNP ,,,|,,, ∈=     (4) 
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In classic DEVS simultaneous events in subcompo-

nents of a coupled system need a definition of priorities 
within the Select  function of the coupled model at 
superordinate level. The definition of priorities and 
therefore the Select  function can be omitted in 
PDEVS. Instead, the dynamic description of the atomic 
PDEVS is complemented by the confluent function 

confδ . This function is called, if for an atomic PDEVS 

PA  one or more external events and an internal event 
occur at the same time. Additionally, simulator and 
coordinator algorithms were comprehensively modified 
for executing PDEVS models. 

1.3 DEVS with structure variability 
Structure variability in the context of this work is de-
fined as the possibility of modifying the hierarchical 
model structure during simulation runtime. It includes 
the creation, deletion and exchange of model compo-
nents or the modification of coupling relations. 

Barros [3] proposes the addition of a special atomic 
model called network executive to each coupled model 
which holds the structure information and describes the 
structure dynamics. In contrast to this approach, we 
favor extending the PDEVS coupled model definition in 
a way that allows holding structure dynamics specifica-
tion directly in the coupled model according to [4].  

This preference of keep structure information at the 
coupled model level is based on the principles of the 
primal DEVS theory where the atomic level specifies 
dynamics and the coupled level specifies structure is-
sues. In both approaches the atomic model definitions 
remain unchanged.  

We call the current composition of a coupled sys-
tem, which means its set of subsystems and its coupling 
relations, a structure state Ni Ss ∈ . A structure variable 

PDEVS coupled model can have different structure 
states Nn Ssss ∈,...,, 10 . Furthermore, structure dy-

namics information, e.g. the number and kind of struc-
ture changes already achieved, need to be stored. The 
set of structural variables NH  holds this information. A 

structure state is , which is an element of the set of 

sequential structure states NS  is defined as follows: 

{ }( )ICEOCEICDdMDHs dNi ,,,|,, ∈=  (5) 

The set of sequential structure states extends the 
formal definition of coupled PDEVS without structure 
variability so that structure variable PDEVS can be 
defined as follows: 

{ } ),,,,,,,( int, NNNconfNextNNNNNpdyn taSdYXN λδδδ= (6) 

It should be noted that coupling information is now 
encapsulated in the set of structure states NS . The 

name of the coupled system is stored in Nd . Further-

more, the functions intNδ , Nextδ , Nconfδ , Nλ , and 

Nta  for coupled PDEVS systems are introduced to 

provide operations similar but not identical to atomic 
systems. 

In analogy to event-oriented dynamic behavior of 
atomic PDEVS systems, dynamic structure changes in 
coupled DEVS are induced by events. The characteristic 
functions describe reactions on structure events. An 
application example for dynamic structure DEVS in 
engineering area that deals with structure and parameter 
optimization is given in [8]. 

2 Wrapper Concept 
Scientific and technical computing environments 
(SCEs) such as the widely-used SCE Matlab offer a 
large number of established numerical methods for 
solving differential equations. The wrapper concept 
aims to make these methods applicable to hybrid, modu-
lar hierarchical DEVS models. A wrapper concept 
which is adapted to PDEVS is presented here. PDEVS 
is chosen because it offers a way of achieving an easy 
and realistic mapping of simultaneous events.  

To keep structure information available and modifi-
able, the flattening which is typically done before com-
putation of hybrid models must not be realized. This is a 
strong motivation for the wrapper concept. The issue of 
the structure variable PDEVS extension is sketched out 
here but not discussed in detail for reasons of clarity. 
However, it should be kept in mind that the wrapper 
approach is applicable to static structure as well as to 
structure variable models. 

2.1 Formal Model Definitions 
A hybrid classic atomic DEVS was defined for the first 
time in the 1990ies by Prähofer [9]. To allow computa-
tion of hybrid atomic DEVS Prähofer added the explicit 
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Euler method to the DEVS simulator.  

 
Advanced numerical methods as they are common in 

engineering applications like implicit integration algo-
rithms, predictor corrector methods, or ODE solvers 
with adaptive step size cannot be used. The wrapper 
concept starts from Prähofer’s formal hybrid atomic 
DEVS definition and adapts it to PDEVS formalism.  

For the wrapper concept, just the formal model spec-
ification resembles Prähofer’s definition, whereas the 
simulation approach and algorithms are completely 
different. We define a hybrid atomic PDEVS as follows: 

( )tacfSYXA dconfextstatecsehybridp ,,,,,,,,,,, int λδδδδλ= (7) 

The sets of inputs X , outputs Y  and states S  of hy-
brid DEVS may contain discrete as well as continuous 
values. The continuous dynamics of a component is 
mapped by the rate of change function f  and the con-

tinuous output function cλ . Discrete events can be 

external or internal events, or can be state events caused 
by discontinuities in the continuous parts. The state 
event condition function sec  defines the conditions 

under which a state event is generated.  

External events, internal events, and state events al-
ter the system’s state stored in S . External events 

achieve this via the external transition function extδ  

while state events are computed within the state event 
transition function stateδ . Internal events activate the 

discrete output function dλ  first and subsequently the 

internal transition function intδ , which then alters the 

system’s state by manipulating S .  
For hybrid PDEVS not just external and internal 

events may occur simultaneously. So can state events in 
continuous variables with discontinuities detected by the 
ODE solver. Therefore, the confluent function confδ  

needs to be adapted to handle three different types of 
potentially simultaneous events. After any change of 
state the time advance function ta  calculates the time 
interval until the next internal event. 

The specification for coupled models needs to be 
modified marginally. A coupled structure variable 
PDEVS pdynN  following the specification in equation 

(6) is suitable for hybrid models after extending its 

Nextδ  function in a way that it can react on state events 

occurring in continuous parts of submodels, too. Fur-
thermore, coupling relations encapsulated in the set of 
structure states NS  need to be differentiated between 

discrete and continuous relations. In addition, the sets of 
inputs NX  and outputs NY  may contain discrete as 

well as continuous values. 

2.2 Extended Simulator Algorithms and Data 
Structures 

In a hybrid, modular hierarchical model, continuous 
model parts are typically distributed over several model 
components. To allow the deployment of advanced 
numerical integration methods for computation without 
a previous model flattening, these distributed continu-
ous model parts need to be collected, united and provid-
ed in a way suitable for the chosen ODE solver’s inter-
face. The ODE wrapper function supplies the closed 
representation of continuous model parts required by the 
ODE solver. Coevally, structure information remains 
available. The modular hierarchical model itself is not 
modified. Rather, a closed representation of continuous 
model parts is generated additionally during simulation 
runtime.  

 
Figure 2 and Listing 1 show how the DEVS simula-

tion environment is extended by adequate data struc-
tures, an adapted root coordinator, and the ODE wrap-
per function. 

 
Figure 2. Modular hierarchical model structure and simulator 

structure with wrapper components. 

The root coordinator needs to be extended to operate in 
three different phases: i) initialization phase, ii) discrete 
phase, and iii) continuous phase. 
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Listing 1. Root coordinator algorithm. 

In addition to the well-known messages from tradi-
tional DEVS simulators, i-message, *-message, x-
message, and y-message, we introduce a z- and a z2- 
message for vector configuration purposes and an se-
message for handling state events of the continuous 
model parts. For exact mapping of simultaneous events 
we use an interpellation y-message as proposed by [10]. 

At startup of a simulation run, the initialization 
phase is entered and the model is initialized by an ini-
tialization message (i-message) sent by the root coordi-
nator to the outermost coupled model. The initialization 
message is passed down the hierarchy among the simu-
lation objects until it reaches the leaves of the object 
tree.  

Based on the minimum of time stamps for the next 
internal events (as they are returned by the subcompo-
nents), the root coordinator determines whether a dis-
crete or a continuous simulation phase has to be started 
next. If there is no imminent internal event at current 
simulation time, a continuous cycle is initiated and 
starts with an update of the wrapper data structures. This 
step is necessary for modular hierarchical systems with 
structure variability at the beginning of each continuous 
phase because the model structure may have changed 
due to a previous event.  

For this purpose the root coordinator sends recur-
sive configuration messages (z- and z2-message) to the 
associated coordinator of the outermost coupled model. 
Those messages are passed down the hierarchy tree 
depicted in Figure 2. References to all hybrid atomic 
simulation objects (aSimObj) as well as direct refer-
ences to all continuous state variables contained (cSc) 
are returned. Furthermore, direct links between continu-
ous output and input variables are established by inter-
preting the coupling relations. This linking information 
is written back to atomic simulation objects with the z2-
message. 

The behavior of atomic models containing continu-
ous variables resembles either Moore automata 

ccc YS →:λ  or Mealy automata cccc YXS →×:λ . 

Depending on the type of atomic models to which the 
continuous variables belong, the references to the atom-
ic simulation objects in aSimObj are divided into two 
groups in a first step. As the next task, inside of the 
mealy group, references need to be sorted based on 
interdependencies. The sorted reference vectors with 
objects of mealy and moore type are passed to the ODE 
wrapper function.  
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The ODE wrapper function is handed over as the 

closed representation of all continuous model parts to 
the ODE solver. Via the references to the atomic simu-
lation objects the hybrid atomic model functions cλ , f  

and sec  can be called by the ODE wrapper. For each 

integration step the ODE wrapper calls the continuous 
output functions cλ  and the rate of change functions f  

of all hybrid atomic subcomponents referenced in vector 
aSimObj to calculate continuous outputs and deriva-
tives. Additionally, the state event condition function 

sec  of each subcomponent referenced in aSimObj is 

evaluated to check for state events of continuous values 
that may have occurred. The ODE wrapper distin-
guishes between the calls of cλ  and f  or the call of 

sec  by evaluating the flag parameter. 

The continuous cycle is iterated as long as either the 
next discrete internal event becomes imminent or the 
cycle is interrupted by a state event. If the ODE solver 
returns a state event, an se-message is passed down the 
tree to find out which atomic subcomponent is affected. 
The simulator of this atomic then calls the associated 
state event transition function stateδ . Based on the time 

for next internal discrete event returned by the se-
message, the root coordinator decides whether to start a 
discrete or a continuous phase next. 

A prototype of an advanced PDEVS simulation en-
vironment including the wrapper algorithms sketched 
out has been implemented in the SCE Matlab. It could 
be proven that, except the ode15i for fully implicit 
differential equations, the entire set of ODE solvers 
provided by the SCE Matlab, including variable-step 
solvers as e.g. ode45 and implicit solvers as e.g. 
ode15s, can be used without modifications for simulat-
ing hybrid PDEVS systems with structure variability. A 
consistent separation of model definitions and numerical 
solver algorithms is also ensured. 

3 Quantized State Systems 
Zeigler and Lee defined Quantized Systems (QSS) and 
their representation in conjunction with DEVS models 
in the 90ies [11]. The QSS method was improved by 
Kofman and Junco [5] and offers a completely new 
innovative approach to numerically solve differential 
equations.  

This approach does not need to be implemented 
within DEVS necessarily, but it is closely connected to 
this formalism from the beginning. In contrast to con-
ventional methods for numerically calculating differen-
tial equations, time is not discretized within the QSS 
method, but the states. That point in time is calculated 
where the continuous state variable has changed more 
than a certain quantum D .  

 
According to [12] the QSS method is applicable to 

any category of differential equation systems. Based on 
selected examples, in [7] Kofman compares solutions 
obtained by the QSS methods QSS1 and QSS2 with 
solutions calculated by conventional ODE solvers of the 
commercial SCE Matlab/Simulink. For the examples 
studied, he states a considerably better performance of 
the QSS solutions. The basic approach of the QSS 
method is introduced below with references to the ad-
vanced QSS methods. 

3.1 QSS1 

For one ordinary differential equation given as 
))(()( txftx =  Nutaro [13] specifies the following 

simulation algorithm, which is independent of the 
DEVS formalism: 
 

  0←t  
  0xx ←  

  while terminating condition not fulfilled 
print xt,  

if 0)( =xf  then 

∞←h  
else 

)(xf
Dh ←  

end if 
if ∞=h  then 

stop simulation 
       else 

htt +←  
))(sgn( xfDxx ∗+←  

end if 
  end while 
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D  is the value of the quantum. The step size h  is 

variable and depends on the rate of change ))(( txf . 

Thus, h  defines the time interval after which the sys-
tem’s state variable x  has changed by D . The state 
values x  result as the sum of the start value 0x  and a 
multiple k  of the quantum D . Thereby, the discrete 
character of the approximatively calculated state varia-
ble becomes apparent.  

If not just one differential equation ))(()( txftx =  

but a system of differential equations ))(()( txftx =  
is computed, the derivatives of all state variables de-
pendent on ix  need to be recalculated at time 

ii xx ht + . 

This modus operandi basically remains the same – also 
for the advanced QSS algorithms. 

3.2 Advanced QSS Algorithms 
[6, 7] introduce a wide variety of advanced QSS meth-
ods. Second order QSS (QSS2) applies a different quan-
tization (First Order Quantizer) to the continuous state 
variables. The quantized state variable is not constant 
between two integration steps as it is for QSS1 but fol-
lows a linear function. Thereby, the number of event 
times required for computing a differential equation 
system is reduced.  

Furthermore, there are several implicit QSS meth-
ods. The Backward QSS (BQSS) method is designed 
especially for stiff systems. A combination of BQSS 
and QSS the Centered QSS (CQSS) is suitable for com-
putating permanently oscillating systems. The Linearly 
Implicit QSS (LIQSS) are an enhancement of BQSS. 

3.3 QSS in DEVS 
To permit computation of differential equation systems 
using QSS in a DEVS environment, the QSS algorithms 
(QSS integrators) need to be mapped to atomic DEVS 
models. As far as model design is concerned, this means 
that one integrator and thus one atomic DEVS are re-
quired for each continuous state variable. Detailed spec-
ifications for DEVS-based QSS integrators are pub-
lished in [5, 12, and 13]. Furthermore, each differential 
equation needs to be mapped to a separate atomic 
DEVS model.  

The consequence of this approach is a rather com-
plex model structure. Figure 3 illustrates the basic mod-
el structure of a DEVS model for simulating a differen-
tial equation system with two interconnected state vari-

ables using the QSS1 method. The atomic DEVS of a 
differential equation in the case of QSS1 employment 
receives the quantized variables iq  as external events 

from the associated QSS1 integrators. The extδ  and ta  

functions of the atomic DEVS of the ODE then generate 
an instantaneous internal event. Thus, its output func-
tion λ  is immediately executed and computes the actu-

al rate of change value ix  and sends it as an output 

event iy  to the connected atomic DEVS coding the 

QSS integrator. 

 
Figure 3. DEVS model structure of a differential equation 

system with two state variables and associated  
QSS1 integrators. 

Figure 4 shows the basic DEVS model structure of the 
same ODE system as it needs to be designed, if you aim 
to use the QSS2 method for computation. According to 
that not only the atomic DEVS models of the QSS inte-
grators have to be exchanged. The atomic DEVS speci-
fying the differential equations need to be adapted, too. 
It is essential that the atomic DEVS of the differential 
equations and the atomic DEVS of the QSS integrators 
are attuned to one another.  

 
Figure 4. DEVS model structure of a differential equation 

system with two state variables and associated  
QSS2 integrators. 
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Hence, before specifying the atomic DEVS models 

for the differential equations it needs to be known which 
QSS method will be used for computation [12]. At this 
point it becomes clear that there is no strict separation 
between model description and numerical processing for 
the QSS method. 

 
The discussed examples are pure continuous sys-

tems. But of course, the quantization of the continuous 
variables and the discrete event-oriented computation 
allows a seamless specification of hybrid systems too. 
Event detection and localization functionality has to be 
implemented in atomic DEVS of the QSS integrators or 
added as separate atomic DEVS models to the system. 
The model structure information is kept during simula-
tion runtime.  

 
For software engineering practice, purpose-made 

templates of e.g. atomic DEVS models for specification 
of differential equations can be stored in a model li-
brary. The modeler simply takes a template file and 
adapts the concrete algorithm for the derivative in the 
output function. QSS method specific integrators can be 
stored in the model library as predefined atomic DEVS 
models as well. Here, the user can apply those methods 
without detailed knowledge of the QSS algorithms.  

 

An example of a DEVS-based model library and 
simulation environment that offers support for QSS 
based hybrid models is the PowerDEVS software suite 
by E. Kofman [14], which is integrated into the freely 
available SCE Scilab [15]. 

4 Qualitative Comparison 
A key aspect of the comparison subsumed in Table 1 is 
the quality of integration of the DEVS formalism for 
hybrid systems into a SCE like Matlab and the resulting 
potential for engineering application area from user’s 
point of view. Both approaches ensure structure infor-
mation of the modular hierarchical model during 
runtime is completely conserved and are therefore both 
suited for computating structure variable problems in 
engineering applications. 

The QSS approach incorporates the numerical inte-
gration algorithms directly into the model description. 
Model components specifying the differential equations 
cannot be implemented independently from the integra-
tion algorithms the analyst has chosen. In contrast, the 
wrapper concept is based on a strict separation of model 
and solution algorithm. Furthermore, the wrapper con-
cept allows the straight, unadapted use of the estab-
lished ODE solvers provided by the selected SCE.  

. 
 Wrapper Concept Quantized State Systems 

Preservation of structure 
information yes yes 

Computation of continuous 
solution at simulator level at model level 

Adapted DEVS simulator 
algorithms 

yes no 

Usage of established numeri-
cal integration algorithms 

yes no 

Event detection and  
localization 

yes (performed by ODE solver) yes (bounded to quant. level) 

Model complexity lower higher 

Reusability of models yes yes 

Reality equivalence of models very high high 

Numerical characteristics not studied not studied 

Runtime / performance not studied not studied 
 

Table 1. Application oriented comparison of two hybrid DEVS approaches. 
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With the wrapper concept and its prototypal imple-

mentation for MATLAB, using varying solvers to exe-
cute the same hybrid model is effortless. As all Matlab 
ODE solvers, except the ode15i for fully implicit dif-
ferential equations, function with the same interface - 
just one line of code within the root coordinator has to 
be modified. 

Due to the fact that the wrapper concept requires 
separate data structures, additional messages and an 
interface to the ODE solver, extended DEVS simulator 
algorithms need to be implemented. In contrast, QSS 
models can be computed by the standard DEVS simula-
tor algorithms. 

Event detection and localization is an essential task 
in hybrid system simulation. The wrapper concept dele-
gates this task to the ODE solvers of the SCE, while, if 
following the QSS approach, the atomic models of QSS 
integrators either need to be extended or additional 
atomic DEVS models for event detection and localiza-
tion have to be added to the model. Event detection and 
localization are not integral capabilities of QSS integra-
tion algorithms but can be implemented as extensions to 
handle events within the bounds of quantization levels. 

Continuous model parts designed for computation 
following the QSS approach consist of at least two 
atomic models per state variable: One atomic DEVS to 
specify the differential equation and another atomic 
DEVS implementing the QSS integration algorithm.  

The wrapper concept allows more than one continu-
ous state variable per atomic DEVS model to be de-
fined. Moreover, additional discrete functionality can be 
added to the same atomic DEVS model. Hence, model 
structure of models following the wrapper concept ap-
pears to be more compact. Model complexity of QSS 
models compared to models following the wrapper 
concept increases unavoidably since integration algo-
rithms and event detection and localization methods 
become part of the model. 

However, both methods provide an excellent setting 
for the modeling and simulating hybrid systems whose 
modular hierarchical structure may change during simu-
lation runtime. Modeling problems of this type is elabo-
rate and difficult to impossible using standard simula-
tion tools in SCEs such as the toolboxes Simulink and 
SimEvents for the SCE Matlab. 

Reusability of models defined once is given for both 
approaches. The modular hierarchical characteristic of 
the DEVS formalism supports this feature per se. 

 

In discrete event modeling and simulation for engi-
neering applications as e.g. modeling of manufacturing 
systems, it is common practice to represent objects of 
the real world, e.g. work pieces, as entities [16]. One 
single atomic hybrid DEVS according to the wrapper 
concept can represent such an entity, including its entire 
discrete event behavior, and its continuous dynamic 
behavior. Modeling the same characteristics using the 
QSS approach requires more than one atomic DEVS. 

The wrapper concept has benefits with respect to the 
degree of reality equivalence of the models over the 
QSS approach. For the wrapper concept one work piece 
can be represented by one atomic DEVS model. Thus, 
one element in the model equates one element in reality. 
To improve reality equivalence for QSS models, the 
multiple atomic DEVS components needed to model 
one work piece could be combined to become a coupled 
DEVS model. In this case, an 1-to-1-mapping is 
achieved from the user perspective. 
Detailed studies regarding numerical aspects, perfor-
mance and runtime of both approaches within a SCE 
have not yet been carried out. 

5 Summary 
Both approaches offer the potential to make the DEVS 
formalism for modeling and simulation of hybrid modu-
lar hierarchical systems accessible to engineers and 
support them in modeling and simulating their hybrid 
engineering applications more effectively. From an 
academic point of view, the wrapper concept and QSS 
both lead to comparable, correct results. But today, the 
DEVS formalism and the QSS method are fairly un-
known in the engineering community and are rarely 
applied to real engineering problems.  

Especially for the QSS approach this may be caused 
by the fact that people like to continue using tools and 
algorithms with which they have been familiar for years 
and intuitively refuse to use unknown concepts. An 
engineer who is familiar with traditional integration 
algorithms could maybe be convinced more easily to try 
out the wrapper approach in which he only has to study 
one new concept, namely the DEVS theory. 

The main benefits of the wrapper concept are the in-
tegration of established numerical integration methods 
as they are familiar to engineers, and the consequent 
separation of the model from the simulation or rather 
integration algorithms.  
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The QSS approach is a methodically new approach. 

It allows the further use of the existing DEVS simula-
tion algorithms for computation of models of hybrid 
systems. The lack of acceptance for the QSS approach 
among engineers is probably also related to the lack of 
available implementations of the integration algorithms 
for commercial SCEs like Matlab. Presently, QSS im-
plementations such as the PowerDEVS suite [14] are 
only available for the non-commercial SCE Scilab or 
implemented as libraries for other simulation environ-
ments such as ModelicaDEVS [17]. Acceptance of the 
DEVS formalism itself as well as the acceptance of the 
QSS method or the wrapper concept is obviously linked 
to the availability of adequate tools. 
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