
S N E B E N C H M A R K N O T E

 SNE 21(3-4) – 12/2011 191

A Process-oriented Approach to ARGESIM Benchmark C2
‘Flexible Assembly System’ using AnyLogic with Java

Štefan Emrich1, *, B. Malinowsky2, Oliver Höftberger2
1 Dept. Real Estate Development, Vienna University of Technology, Gusshausstrasse 28-30, 1040 Vienna, Austria
2 Inst. f. Analysis and Scientific Computing, Vienna University of Technology; *stefan.emrich@tuwien.ac.at

Simulator. AnyLogic Advanced (educational version
6.2.0) is used for this comparison. The software allows
simulation of discrete, continuous and hybrid systems.
From version 6 on, the Integrated Development Envi-
ronment (IDE) is built upon the Eclipse framework and
uses a subset of design- and development features from
the standard Eclipse Java IDE. Models are built using a
graphical editor and can be accessed by using the Java
programming language. Interaction is done through
basic action-event notifications of library objects. Modi-
fication using Java data types is supported as well.
AnyLogic is an object oriented simulator which gener-
ates Java code generated.

Modeling. Major parts of the model are built using the
Enterprise Library of AnyLogic, its primary tool for
discrete event modeling. The model consists of 8 almost
identical subsystems which only differ in their respec-
tive setup- and timing-parameters. Thus in a first step an
AnyLogic active object class AssemblyStation is creat-
ed, which can be regarded as a sub model. This object is
displayed in Figure 1. The subsystem contains external
ports over which pallets are exchanged. In this was
these ports are used to interconnect the subsequent as-
sembly stations via conveyor belts (of 0.4 meter length).
The assembler within AssemblyStation is modeled by
an instance of Delay from the Enterprise library, with
parameters for statistical data-collection.

Figure 1. Detailed view of single assembly station, containing

belts, shifting, buffers and assembler.

The graphical editor was used to choose, place, ar-
range and connect the required components from the
AnyLogic palette view onto the drawing surface. The
object logic is programmed manually in the customiza-
tion view of the corresponding component using Java
language. This logic is stored together with the rest of
the model in a XML project file. All of the eight subsys-
tems are linked either directly (A2 and A3 as well as A6
and A1) or by conveyor belts to form the assembly line.

A-Task: Control Strategy - Statistical Evaluation. A local
control strategy is used within the components, e.g. for
decision whether a pallet is to be shifted and processed.
Each pallet object is represented by an instance of the
user defined Java class Pallet, which extends the prede-
fined class Entity. Pallet contains flags representing its
processing state and time information, is used for calcu-
lations regarding the throughput time.

Collection and analysis of statistical data are dealt
with directly in the model. This is supported by the
native AnyLogic objects Dataset (for internal data stor-
age) and Chart (for graphical output) which are in-
stanced from the Analysis palette of components.

For the export of the graphical information, i.e. chart
presentations the diagrams have been captured from the
on-screen simulator window. On the other hand the
textual data stored within the Dataset objects can be
accessed and exported by using a copy-command.

B-Task: Simulation-Throughput. The plot in Figure 2
shows an overview of the simulation results for simula-
tion runs with a varying number of pallets in the system.
The red markers indicate the total throughput of pallets
processed during the whole simulation period (blue
markers: average throughput time of a pallet in sec.).

A total throughput of 1440 pallets is achieved when
there are 16 pallets in the system. This result remains
constant for any run with a higher number of pallets.
Parallel to this, the average throughput time increases
steadily, starting from 20 to 60 pallets (Table 1).

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 21(3-4), 2011, 191-192 | doi: 10.11128/sne.21.bn02.10099

S Emrich et al. Process-oriented Approach using Anylogic with Java – C02 Flexible Assembly System

 192 SNE 21(3-4) – 12/2011

BN

Figure 2. Total pallet throughput (red) and average through-

put time of pallet (blue) vs. number of pallets in system.

A validation of the throughput time (for one pallet)
can be calculated by hand. It sums up the travelling and
processing times. One needs to calculate the travel
through internal (2*2m + 3*1.6m + 1.6m + 1.6m +
1.6m) and connecting (6 * 0.4m) belts which sums up to
16m and divided this by the travel speed of 18 m/min
(0.3m/s) which leads to 53.33s. The processing time of a
pallet consist of shifting (2 * 5 * 2s) and processing (15s
+ 60s + 20s + 20s + 20s) actions which sum up to 155s.
Thus a pallet needs at least 208.33s to travel the system
- which correlates with the simulation results (Table 1).

C-Task: Pallet Number Optimisation. A parameter loop
(Listing 1) was used in order to find an optimum with
regard to maximal throughput and minimal throughput
times. The found optimum number for pallets in the
system is 16 and leads to a throughput time of 311.76
seconds. This can be taken from Figure 2: The total
throughput of pallets remains constant (1440) for 16 and
more pallets in the system and a higher number only
leads to higher average throughput times. A throughput
greater than 1440 pallets cannot be achieved sincethe
system is limited by the processing times of the stations
(which – as in Tas B - can be calculated by hand).

As suggested the simulation is run without meas-
urement for a warm-up period (method warmup()) of
two hours followed by a measuring interval of eight
hours. The method getState() queries the execution
state of the simulator. This is helpful during initial tests
of the model so the loop can be exited earlier without
having to wait for completion.

Pallets 1-3 4 5 15 20 40 60
TTpt 208 234 294 299 398 791 1194

Table 1. Average throughput time TTp for number of pallets.

1. for (int i = 0; i < 20; ++i) {
2. injectPallet(1);
3. warmup();
4. getEngine().getPresentation().refresh();
5. measure();
6. if (getState() == FINISHED) {
7. break;

Listing 1. JAVA-fraction of the implemented loop.

Figure 3 presents the utilization-ratio (time occupied
over total time) of the assemblers within the assembly
stations. The ratio is plotted with respect to the number
of pallets within the system (loading times neglected).

From Figure 3 the supportive role of A6 for stations
A3-A5 becomes clearly visible (e.g. at 17-19 pallets in
system). Further the ratio of A1 remains at 75% from 16
pallets on (explained by processing time of 15s vs. 20s
for three A2 stations and each of A3-A5) and shows the
same qualitative behavior as the total throughput in fig.
2 (as its load stays constant and every pallet has to pass
through it).

Figure 3. Utilization ratio of assembly stations with

respect to pallets in system.

Resume. AnyLogic proved to be a stable and handy
simulation environment for the realization of ARGES-
IM Benchmark C2. Its main drawbacks lie with the
post-processing of simulation results/-data for which
workarounds needed to be found. Big advantages of the
simulator are definitely the existing libraries in combi-
nation with the possibility for the user to add Java code
at any given place and thus customize and enhance
models, classes or predefined objects, as well as the
platform-independence of AnyLogic.

Submitted: March, 2010
Revised: November 5, 2010
Accepted: August 30, 2011

