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Abstract.   A second-order plus dead-time model is de-
rived from the data used for the characterization of a self–
regulating process with a view to its PID control. This 
modeling approach provides guidelines for the design of 
the controller and tuning relations are proposed which 
provide flexibility in the choice of the control system re-
sponses and guarantee of stability and robustness. These 
features are illustrated by simulation results.  

Introduction 
Most industrial processes are stable, hence self-
regulating, and they can be controlled by PI or PID 
controllers combining proportional, integral and deriva-
tive control terms. From the pioneering paper [9] by 
Ziegler and Nichols in the forties hundreds of design 
relations, tuning rules, and other methods for tuning PID 
controllers have been proposed in the literature; tens of 
them are compiled in [5], and the most popular ones can 
be found in many textbooks on process control; see e.g. 
[1, 6, 7]. Tuning rules proposed by Ziegler-Nichols in 
the forties, Cohen-Coon and Chien-Hrones-Reswick in 
the fifties, and by Astrom-Hagglund in the nineties are 
based on a three-parameter characterization of the con-
trolled system, that is the process itself and the various 
components in the measurement and control lines; see 
[1, 2, 3, 9]. Such a three-parameter characterization of 
the controlled system is consistent with the use of a PID 
controller since tuning the latter involves also three 
parameters, the controller gain and the integral and 
derivative time constants. The three parameters of the 
process characterization are the process static gain and 
two parameters in the time domain. The latter may be an 
apparent time constant which provides a rough global 
representation of all the elementary storage processes in 
the controlled system and an apparent dead time which 
aims to some approximation of the unknown dynamics 
related to the interactions between all these individual 
processes. However a better characterization of the 
system dynamics is given by the average residence time 
which is the sum of the apparent time constant and dead 

time, so determining the time scale of the system dy-
namics, and by the normalized dead time, that is the 
ratio of the apparent dead time to the average residence 
time, which is a dimensionless parameter whose value 
in the range  indicates the difficulty of controlling 
the process. The values of the three parameters can be 
easily determined by graphical methods from the pro-
cess reaction curve (step response) or by a method of 
moments applied to the reaction curve or to the step 
response of a stable PI control loop. 

However, the first-order plus dead-time (FOPDT) 
model which can be constructed from this three parame-
ter characterization is not a realistic model neither for 
simulation nor even for controller design if the normal-
ized dead time is small (below 0.5). In any control loop 
indeed, there are more than one single time constant, 
there may be additional time constants in the process 
itself and there are others in the various components of 
the control loop, especially in the actuator. Consequent-
ly, in the time domain the step response of the con-
trolled system exhibits a smooth start-up whereas that of 
the FOPDT model shows an abrupt take-off. In the 
frequency domain the gain diagram of the FOPDT mod-
el has a slope of  at frequencies beyond 
the inverse of the apparent time constant whereas the 
additional time constants hidden in the control loop 
result into a steeper descent of the gain diagram at high 
frequencies. These discrepancies between the true trans-
fer function of the controlled system and its FOPDT 
model are minor for processes where the apparent dead 
time is relatively long ( ), they may be signifi-
cant in other cases. Then, a second-order plus dead time 
(SOPDT) model would be more appropriate for design-
ing a controller. Such a model can be obtained by vari-
ous identification methods; in the sixties already van der 
Grinten had proposed formulas determining the model 
parameters from the process reaction curve and graph-
ical methods [8]. Here it is proposed to construct a 
SOPDT model with only three independent parameters 
closely related to that of the usual FOPDT model; the 
values of these parameters can be determined from the 
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same two moments used for determining the parameters 
of the FOPDT model, or directly from the latter or from any 
transfer function representing the process to be controlled. 

1 Model building via the method of 
moments 

Denoting by  the variable in the Laplace domain the 
transfer functions of FOPDT and SOPDT models of a 
selfregulating process can be written as 

  (1) 

  (2) 

where  is the static gain, and  and  are the appar-
ent time constant and dead time for a FOPDT model 
while  are the two time constants and the dead 
time of a SOPDT model. Such models can be used for 
designing a PID controller or any three-term feedback 
controller if the first terms of the Taylor-McLaurin ex-
pansion of the model are equal to that of the process. 
The transfer function of the latter can be expanded as 
  
           (3) 

where  are the derivatives of  with 
respect to the complex variable  and , 

, , … The process 
gain can be determined from the final value in the pro-
cess step response; from well–known properties of the 
Laplace transform the coefficients  are given by 
the “moments”, that is integrals, of the weighted com-
plementary function of the normalized response. As for 
the Taylor-McLaurin expansion of the model transfer 
function it can be obtained by successive differentia-
tions as in (3) or better by applying the algorithm in 
Appendix A. Then, comparing the coefficients in the 
expansions of the process and the model transfer functions 
yields the following relations: 

    (4) 
    

    (5) 

   

    (6) 

These relations provide values of the three parameters in 
the FOPDT model (1), hence the value of the normal-
ized dead time 

  (7) 

For determining the parameters of a SOPDT model 
additional relation or constraint is necessary; here, it is 
proposed to set 
  
  (8) 

where  is dimensionless parameter with values in the 
interval , close to that of the normalized dead time 
. From the equality in (6) straightforward calculations 

indeed result into the following relationship between the 
two dimensionless parameters  and : 

  (9) 

starting from the initial approximation ; less than 
5 iterations provide the value of  with 4 exact deci-
mals, which is largely beyond the accuracy required for 
controller tuning. 

It should be noted that this SOPDT model is based 
on three parameters, the static gain of the process, the 
average residence time, that is the time scale, of the 
latter, and a dimensionless parameter  indicating the 
difficulty of controlling the system. This is exactly the 
same simplicity as with the usual FOPDT model, and 
the tools used for parameter estimation are the same, 
with no more data being required. These data can be 
obtained from the process reaction curve or from the 
step response of any stable control system including the 
process to be controlled and a proper PI controller, as it 
is shown in Appendix B. Actually, the SOPDT model 
can be viewed as being derived from the FOPDT model 
but it is more realistic, both in the frequency domain 
and in the time domain. This SOPDT model indeed 
contains a main time constant 

, which is close (slightly lower) to the 
apparent time constant  of the FOPDT 
model, but the additional uncertain dynamics of the 
process is now modeled at the first order (in ) by an 
additional time constant  and at the 
second order by a dead time  whereas it is 
was modeled at the first-order by the apparent dead time 

 in the FOPDT model. Last but not least, this 
SOPDT model provides guidelines for the design of a 
PID controller. 

2 Design of a PID controller 
In 1965 A. Haalman proposed to tune PID controllers 
via the representation of the process to be controlled by 
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a SOPDT model and the cancellation of the two process 
time constants by means of the two controller time con-
stants [4]. This method is resumed here with the SOPDT 
model (2) but a design parameter  is included in the 
controller gain, then allowing some adaptation of the 
control loop damping by a modification of the controller 
gain only. Setting 

  (11) 

where  and  are, respectively, the integral 
and proportional gains of the controller, the open–loop 
transfer function then becomes 

  (12) 

In the Nyquist plane the plot of the open–loop transfer 
function (12) is a spiral which is starting along a vertical 
with abscissa , asymptotically from the zero fre-
quency, and which is getting wound around the origin 
for increasing frequencies; at all frequencies, the 
Nyquist plot is standing at the right-hand side of this 
vertical . Straightforward calculations then yield 
the ultimate frequency  and the ultimate value  
bringing the closed-loop system to the stability limit 
  and  
  (13) 

Therefore, with a selected value of , the designer of the 
control system can determine the gain margin , as 
also the cut-off frequency and the phase margin of the 
control loop 
  and  

  (13) 

as shown by Table 1. 
Since there is a close relationship between the damp-

ing and the phase margin of the closed–loop system, 
selecting values of  between  and  allows the de-
signer to choose the types of closed–loop responses, 
from fast responses with a high overshoot (

) to over–damped slow responses ( ). This 
choice can be achieved by varying the parameter , that 
is the controller gain only, without changing the control-
ler time constants; by the way, this is the natural reaction of 
control engineers and plant operators when they want to 
change on-line the behavior of the control system. 

In [1], Åström and Hägglund have proposed a collection 
of transfer functions representative of typical industrial 
processes. Many simulation runs have been performed 
with various transfer functions of this collection. For all 
of them the shape of the open-loop Nyquist plot was 
similar to the spiral shape of the nominal transfer func-
tion (12), with the plot standing at the right-hand side of 
the vertical  or at least close to it at all frequen-
cies. Therefore, the minimum distance from the actual 
Nyquist plot to the critical point  is greater than 

, and the gain margin and the phase margin are 
greater than, respectively,  and . Therefore, 
the proposed tuning method is not only simple and in-
tuitive, but it also provides some flexibility in the choice 
of the closed-loop responses together with some guarantee 
on the control system robustness. This is illustrated by 
the simulation results presented in the next section. 

3 Simulation results 
Simulation tests have been performed with the two 
following typical transfer functions: 

 ,  (15) 

 ,  (16) 

with the same average residence time  for the 
two transfer functions. Table 2 below shows the parame-
ter values of the FOPDT and SOPDT models for the 
two processes, and the responses of each process and its 
FODPT and SOPDT models are shown in Figure 1. 
Clearly, the response of the process is better represented 
by the SOPDT model than by the FOPDT model, espe-
cially for the fist process whose normalized dead time is 
low (  for  versus  for ). Obvi-
ously, the first process is also easier to control than the 
other one thanks to its low normalized dead time. The 
responses to a unit-step change of the process load (dis-
turbance at the process input) are shown in Figure 2 for 
these two processes and PID controllers tuned according 
as proposed here or with the well-known Ziegler-
Nichols settings or with the Åström-Hägglund settings, 
the one for slow responses without overshoot, the other 

 1.3 1.5 2 3 
Gain margin 2 2.4 3.1 4.7 

Phase margin 46° 52° 61° 71° 

Table 1. Robustness with proposed controller settings. 

Process FOPDT parameters SOPDT parameters 
   

0.67 0.33 0.33 0.37 0.63 0.23 0.14 
0.32 0.68 0.68 0.75 0.25 0.19 0.56 

Table 2. Parameter values of the FOPDT and SOPDT for the 
processes (14, 15). 
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for faster responses with some overshoot. It turns out 
that the controller tuning based on the SOPDT model 
proposed here provides better responses with a wide 
flexibility in the choice of the response damping; thanks 
to a proper choice of the design parameter, that is of the 
controller gain, it is possible to cover continuously the 
whole range between a slow over-damped response and 
a fast under-damped response, without changing the 
controller time constants unlike the Åström-Hägglund 
settings. 

4 Conclusions 
With a view to the design and tuning of controllers a 
SOPDT model has been derived from the usual FOPDT 
characterization most often used for PID control of self-
regulating processes. This modeling approach allows 
the use of tuning methods based on SOPDT models; this 
provides some flexibility in the choice of the control 
loop behavior together with some guarantee on the 
stability and robustness of the latter. These features are 

proven by simple calculations and they are illustrated by 
simulation results. Actually, modeling is used here not 
for simulation purposes but in order to provide some 
guidelines for the design of controllers. 
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Figure 2. PIDcontrol. Responses to a load unit–step change. 
Top: , bottom: ; Proposed controller settings (full 

lines), Åström–Hägglund settings (broken lines), Ziegler–
Nichols settings (dash–dotted lines), process reaction curve 

(dotted lines). 

 

 

Figure 1. Step responses of the process and its models. Top: 
, bottom: ; process (full lines), proposed SOPDT 

model (broken lines), FOPDT model (dash-dotted lines), van 
der Grinten SOPDT model (dotted lines). 
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Appendix A 
Given a transfer function 

  

the coef cients of its Taylor–McLaurin expansion 

  

can be determined without any derivative calculation, 
just by multiplying the above expansion of  by 
the denominator of the rational fraction and identifying 
the coef cients of the same degree terms in this product 
and in the numerator of the latter. This provides the 
following set of linear equations: 

  
  

allowing a sequential determination of the coef cients 
 If the process transfer function includes non-

rational factors, for example the exponential factor 
associated to a dead time, one has simply to include the 
Taylor-McLaurin expansions of these factors into the 
numerator or into the denominator of the rational frac-
tion as appropriate. In particular, the transfer function 

  

can be written down in the form 

  

Then, straight-forward calculations yield 

  

  

Appendix B 
Thanks to the algorithm proposed in Appendix A it is 
possible to obtain the required characteristics of the 
process to be controlled from the step response of any 
stable control loop including this process and a PI con-
troller with known parameters. Denoting by  and 

 the transfer functions of the process and of the PI 
controller, and by  and  the closed–loop trans-
fer functions relating, respectively, the process output 
variable  and the controller output variable  to the 
controller reference signal , and using the following 
Taylor-McLaurin expansions of these transfer functions: 
  

  

  

 , 

straightforward calculations yield the following rela-
tions for the process characteristics: 

  

  

  

where 

 ,    

 ,    

where  and  are, respectively, the process and 
controller responses to a step of magnitude  in the 
controller reference variable. 

 


