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Abstract.   DAISY (Differential Algebra for Identifiability of 
Systems) is a recently developed computer algebra soft-
ware tool which can be used to automatically check global 
identifiability of (linear and) nonlinear dynamic models 
described by differential equations involving polynomial or 
rational functions. Global identifiability is a fundamental 
prerequisite for model identification which is important 
not only for biological or medical systems but also for 
many physical and engineering systems derived from first 
principles. Obviously, once a priori identifiability is as-
sessed, the accuracy of the estimates will eventually de-
pend on other different factors, as for example, noise, the 
paucity of the available data and/or the complexity of the 
model with respect to the available data. 
 The software does not require understanding of the 
underlying mathematical principles and can be used by 
researchers in applied fields with a minimum of mathe-
matical background. 
 We demonstrate the DAISY software by checking the a 
priori global identifiability of two benchmark nonlinear 
models taken from the literature. The analysis of these 
two examples includes comparison with other methods 
and demonstrates how identifiability analysis is simplified 
by this tool. It includes discussion of some specific aspects 
related for example to the role of observability and 
knowledge of initial conditions in testing identifiability. 
The main focus of this paper is not on the description of 
the mathematical background of the algorithm, which has 
been presented elsewhere, but on illustrating its use and 
on some of its more interesting features. 
 DAISY is available on the web site http:// 
www.dei.unipd.it/ pia/. 

1 Identifiability of a Model for a  
Batch Reactor 

In this section we shall analyze the identifiability of a 
nonlinear model of microbial growth in a batch reactor 
in which only the concentration of microorganisms is 

measured. This model has been widely employed as a 
benchmark model for studying global identifiability [2], 
[3]. The model incorporates Michaelis-Menten-type 
nonlinearities and is mathematically described by the 
following rational nonlinear differential equations: 

 
(1)

where  and  are the concentrations of microorgan-
isms and of growth-limiting substrate respectively, 

 is the unknown parameter vector, 
 and  are the measured input and output of the model, 

respectively. The initial concentrations are 

 

The main question to be addressed is whether the un-
known parameter vector  is globally identifiable from 
the input-output experiment. 

The a priori identifiability of this model has been 
first analyzed in [2] by using the similarity transfor-
mation approach. Note that the state isomorphism test 
requires a preliminary check of the minimality (control-
lability and observability) of the system, which may 
turn out to be quite difficult for nonlinear systems. The 
method requires an assumption of linearity of the state 
isomorphism map and some lengthy analysis is needed 
to check whether this assumption holds. In order to 
overcome this limitation, a modified method has been 
applied by [3], still based on the local state space iso-
morphism theorem. This method is based on the possibil-
ity, valid under certain restrictions, to perform a linear/non-
linear splitting of the similarity map. 

Our global identifiability test uses a method based 
on differential algebra. A first advantage with respect to 
the similarity transformation approach is that it does not 
require a preliminary check of minimality of the model. 
The differential algebra test is implemented in the com-
puter algebra tool DAISY. In the following the calcula-
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tions performed by DAISY will be illustrated referring 
to the two specific examples treated in this paper. The 
input and the output files of the program are reported in 
the Appendix 6. 

The user has to write in the input file the ordered list 
of the input, output and state variables as indicated in 
the instructions of the program, the list of the unknown 
parameters, the number of the state and the output vari-
ables respectively, the model equations and the initial 
conditions. The program can manage (partial or com-
plete) knowledge of the initial conditions of the model 
and automatically uses this information in the identifia-
bility analysis. This is theoretically justified in [7]. 

By looking at the input file reported in Appendix 
6.1, one may appreciate the advantage of using this 
computer algebra tool: DAISY does not require exper-
tise on mathematical modelling by the experimenter. For 
this example, in less than two seconds DAISY provides 
all the required calculations needed to provide the glob-
al identifiability answer. 

Specifically, DAISY automatically ranks the input, 
output, state variables and their derivatives, starts the 
pseudodivision algorithm and calculates the character-
istic set of the model (for explanations see [7]). This is a 
minimal set of differential polynomials which provides an 
equivalent description of the model (1), 

 

 
 

(2)

The first differential polynomial does not depend on the 
variable and provides the so-called input-output rela-
tion of the model. After a suitable normalization, the 
input-output polynomial can be rendered monic and its 
coefficients provide a set of rational functions of the 
unknown parameter which form the so-called exhaus-
tive summary of the model, see Appendix 6.1. Identifia-
bility is checked by checking injectivity of the exhaus-
tive summary with respect to the parameter . This is 

done by solving for the unknown parameters the alge-
braic equations obtained by equating these coefficients 
to a set of pseudo-randomly chosen numerical points in 
their range set. Solution of these algebraic equations is 
done by computing a Grobner basis. Solving the system 
provided by the input-output relation in (2) by the 
Buchberger algorithm yields the following Gröbner 
basis: 

 
 

(3)

which shows that only parameters  are unique-
ly identifiable from an input-output experiment as are 
the combinations  and . So far this result 
agrees with what presented in [2] and successively in 
[3]. Note that the construction of the characteristic set 
ignores initial conditions and the identifiability result 
above holds irrespective of which initial conditions the 
system may have started from. However, Daisy can also 
manage known initial conditions and check if, based on 
this extra information, some additional parameter can be 
globally identified. To this end, after having checked the 
algebraic observability [7] of the model, Daisy calcu-
lates at time zero the polynomials of the characteristic 
set where the state variables appear. In this example, 
DAISY calculates at time zero only the third polynomi-
al. Recalling that both initial states are equal to zero, 
this yields: 

 

Equating this polynomial to zero, provides an extra 
equation to be added to the solution of the exhaustive 
summary (3). It is easy to see that this new equation, 
involving only  and , parameters already globally 
identifiable without initial conditions, does not modify 
the previous identifiability results.  

2 Identifiability of a Model for in vitro 
Homoacetogenesis by Human-colon 
Bacteria 

In this section we shall analyze the identifiability of a 
fifth order model based on in vitro experiments to study 
the kinetics of homoacetogenesis by human-colon bac-
teria. Due to its complexity it is considered in [8] as a 
challenging example to analyze. The model is mathe-
matically described by the following rational nonlinear 
differential equations: 
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(4)

where  are concentrations, ,  and  
are physical constants known from the literature. Fol-
lowing [8], the ratio  is assumed known and is not 
included in the list of unknown parameters so that the 
unknown parameter vector turns out to be 

. The variables ,  and  are the 
measured outputs of the system. The initial conditions 
are unknown. 

The a priori identifiability of this model has been 
first analyzed in [8] by using a sufficient condition for 
global identifiability due to [4]. This condition holds for 
uncontrolled models started at known initial conditions. 
To verify this condition (which is only sufficient) sever-
al calculations are required. 

We test the identifiability of this model by using 
DAISY. With the standard ranking of the input, output 
and state variables, i.e. , 
the program starts all the required calculations. Due to 
space limitations we do not report here the exhaustive 
summary of this model which is very long but only its 
Gröbner basis solution: 

 (5)

which shows that all the parameters  and  
are uniquely identifiable from input-output experiments. 
Note that in this case, the knowledge of the initial con-
ditions would be redundant to identifiability. 

Even for this rather complex model, in few minutes 
DAISY provides all the required calculations to give the 
global identifiability answer. 

3 Conclusions 
Our aim in this paper was to show that the software 
DAISY based on differential algebra, described in detail 
in [1], is a useful tool for checking a priori identifiabil-

ity of nonlinear dynamical systems. We have shown 
how easily DAISY checks global identifiability of two 
nonlinear biological models from the literature: a batch 
reactor model and a model of in vitro homoacetogenesis 
by human-colon bacteria which have taken quite some 
effort to be analyzed by different identifiability methods 
from the literature. 

We may conclude that, based on our experience, 
DAISY is the only available software tool which, alt-
hough being based on a rather sophisticated set of math-
ematical tools, is very easy to use especially for medi-
cal/biological investigations. 
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Appendix A: Input file of a non-linear batch reactor 
model 

1 WRITE “BATCH REACTOR MODEL”$ 
% B_ is the variable vector 

2 B_:={u,y,x1,x2}$ 
3 FOR EACH EL_ IN B_ DO DEPEND EL_,T$ 

% B1_ is the unknown parameter vector 
4 B1_:={p1,p2,p3,p4,p5,p6}$ 

% Number of states 
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5 NX_:=2$ 

% Number of outputs 
6 NY_:=1$ 

% Model equations 
7 C_:={df(x1,t)=p1*X1*X2/(p2+X2-p3*x1+P4*u, 

     df(X2,t)=-p1*X1*X2/(p5*(p2+X2))+p6*u, 
     y=x1}$ 

8 SEED_:=30$ 
9 DAISY()$ 

% Values of initial conditions are given 
10 IC_:={X1=0,X2=0}$ 
11 CONDINIZ()$ 

Appendix B: Output file of a non-linear batch reactor 
model 

1 BATCH REACTOR MODEL$ 
2 seed_:=30$ 
3 NUMBER OF EQUATIONS$ n_:=3$ 
4 VARIABLE VECTOR$ 
5 b_:={u,y,x1,x2}$ 
6 PARAMETER VECTOR$ 
7 b1_:={p1,p2,p3,p4,p5,p6}$ 
8 RANKING AMONG THE VARIABLES$ 
9 bb_:={u,y,df(u,t),df(y,t),df(u,t,2),df(y,t,2) 

      x1,x2,df(x1,t),df(x2,t)}$ 
10 NUMBER OF INPUTS$ 
11 nu_:=1$ 
12 NUMBER OF OUTPUTS$ 
13 ny_:=1$ 
14 MODEL EQUATIONS$ 
15 c_:={df(x1,t)=(-(p2+x2)*(p3*x1-p4*u)+p1*x1*x2) 

                /(p2+x2), 
     df(x2,t)=((p2+x2)*p5*p6*u – p1*x1*x2) 
                /(p2*p5+p5*x2), y = x1} 

16 CHARACTERISTIC SET$ 
17 aa_(1):=df(u,t)*y*p1*p2*p4*p5-df(y,t,2)*y*p1  

   *p2*p5-df(y,t)**3+df(y,t)**2*u*(3*p4+p5*p6) 
 +df(y,t)**2*y*(2*p1-3*p3)+df(y,t)**2*p1*p2*p5 
 +df(y,t)*u**2*p4*(-3*p4-2*p5*p6)+2*df(y,t)*u 
   *y(-2*p1*p4-p1*p5*p6+3*p3*p4+p3*p5*p6) 
 -df(y,t)*u*p1*p2*p4*p5+df(y,t)*y**2*(-p1**2 
   +4*p1*p3 – 3*p3**2)+u**3*p4**2*(p4+p5*p6) 
 +u**2*y*p4*(2*p1*p4+2*p1*p5*p6-3*p3*p4-2*p3 
  *p5*p6+u**2*y*p4*(2*p1*p4+2*p1*p5*p6-3*p3*p4 
  -2*p3*p5*p6)+u*y**2*(p1**2*p4+p1**2*p5*p6 
  -4*p1*p3*p4-2*p1*p3*p5*p6+3*p3**2*p4 
 +p3**2*p5*p6)+y**3*p3*(-p1**2+2*p1*p3-p3**2)$ 

18 aa_(2):=-x1 + y$ 
19 aa_(3):=df(y,t)*x2 + df(y,t)*p2 – u*x2*p4 

 - u*p2*p4 + x2*y*(-p1 + p3) + y*p2*p3$ 
20 THE SYSTEM IS ALGEBRAICALLY OBSERVABLE$ 
21 RANDOMLY CHOSEN NUMERICAL PARAMETER VECTOR$ 
22 b2_:={p1=15,p2=9,p3=15,p4=12,p5=10,p6=17}$ 
23 EXHAUSTIVE SUMMARY$ 
24 flist_ := {p1*p2*p4*p5 – 16200, 

 -p1*p2*p5 + 1350, 
 p1*p2*p5 -1350, 
 -p1*p2*p4*p5 + 16200, 
 3*p4 + p5*p6 – 206, 
 -3*p4**2 – 2*p4*p5*p6 + 4512, 
 2*p1 – 3*p3 + 15, 
 -p1**2 + 4*p1*p3 – 3*p3**2, 
 p4**3 + p4**2+p5+p6 – 26208, 
 -p1**2 + 2*p1*p3 – p3**2, 
 2*p1*p4**2 + 2*p1*p4*p5*p6 – 3*p3*p4**2 
  - 2*p3*p4*p5*p6 + 2160, 
 -2*p1*p4 – p1*p5*p6 + 3*p3*p4 + p3*p5*p6–180, 
 p1**2*p4 + p1**2*p5*p6 – 4*p1*p3*p4 
  - 2*p1*p3*p5*p6 + 3*p3**2*p4 + p3**2*p5*p6}$ 

25 MODEL PARAMETER SOLUTION$ 
26 g_:={{p2=90/p5,p6=170/p5,p3=15,p1=15,p4=12}}$ 
27 SYSTEM NONIDENTIFIABLE$ 
28 BBBB_ INCLUDES THE BB_ ENTRIES CALCULATED T=0$ 
29 bbbb_:={df(y,t,2)=y20, df(u,t,2)=u20,  

        df(y,t)=y10, df(u,t)=u10,  
        y=y0, u=u0, x1=0, x2=0}$ 

30 EXHAUSTIVE SUMMARY INCLUDING 2 KNOWN INITIAL 
CONDITIONS$ 

31 flist1_:={p2=270/p5, p6=250/p5, p1=25, p3=23, 
          p4=8, 27*(-8*u0 + 23*y0 + y10)}$ 

32 MODEL PARAMETER SOLUTION(S)$ 
33 g_:={{p2=90/p5,p6=170/p5,p3=15,p1=15,p4=12}}$ 
34 SYSTEM NONIDENTIFIABLE$ 

 


