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Abstract.  The paper presents simulation-based method-
ology to solving multi-echelon supply chain planning and 
optimisation problems. It is aimed to analyse an efficiency 
of a specific planning policy over the product life cycle 
within the entire supply chain and to optimise the cyclic 
planning policy at the product maturity phase. Software 
prototypes and applications are described in the paper. 
The presented research is funded by the ECLIPS Specific 
Targeted Research Project of the European Commission 
‘Extended Collaborative Integrated Life Cycle Supply Chain 
Planning System . 

Introduction  
For the last decade, supply chain planning has become a 
critical factor in the success and profitability of an en-
terprise, especially given a global competition, rapidly 
changing markets and increasing customer expectations. 

Supply chain planning can be defined as a process of 
coordinating and integrating key logistics activities, i.e. 
inventory management, production planning, warehous-
ing, etc., from the procurement of raw materials through 
production to distribution of finished products to the 
end-customer with the goal to minimise total supply 
chain cost and maximise customer service level [2]. 
To manage supply chains, two different approaches are 
used [5] in practice. For years, researchers and practi-
tioners have primarily investigated so called single 
echelon approach, where a stage or facility in the supply 
chain is managed. Recently, however, increasing atten-
tion has been placed on the performance, design, and 
analysis of the supply chain as a whole that allows op-
timising the global supply chain performance. Indeed, 
almost every product is produced in a chain of succes-
sive processes (either in different companies or different 
departments within the same company). A multi-
echelon environment considers multiple processes (e.g. 
purchasing, production, picking and transportation) and 
multiple stock points (buffer or storage). 

A variety of planning policies, which are grouped in 
non-cyclic and cyclic ones, can be used within a mul-
tiechelon approach. In cyclic planning, fixed processing 
(i.e. order, production or delivery) interval lengths are 
applied to all items, while non-cyclic planning assumes 
that interval lengths can vary over the planning horizon. 

In practice, cyclic policies are more preferable for a 
multi-product and a multi-stock case, as they easier to 
control, and reducing administrative costs could reduce 
higher inventory costs [1]. However, when a customer 
demand is variable and uncertain, e.g. at the product 
introduction or end-of-life phases, flexibility in spacing 
of planning periods can result in lower total costs for the 
non-cyclic policy. 

Simulation technology provides an experimental ap-
proach [5] to supply chain analysis and optimisation that 
allows the analyst easily to: 1) introduce into the multi-
echelon cyclic planning procedure variability of de-
mand, lot sizes and processes lead times; 2) model pro-
cesses that contain nonlinearities, combinatorial rela-
tionships and uncertainties; 3) take into account con-
straints at different echelons of the supply chain. More-
over, by building a virtual reality out of small compo-
nents and not requiring a rigid structure of the analytical 
model, a simulation model provides the great flexibility 
that allows in the planning procedure: 1) validate differ-
ent assumptions and planning decisions; 2) estimate 
consequences of planning decisions in time and by 
echelon; 3) perform a sensitivity analysis of parameters 
that influence optimality of the cyclic schedule; 4) de-
fine optimal planning parameter for each of supply 
chain nodes during the product maturity phase; and 5) 
analyse stability of the optimal production schedule 
under conditions of uncertain demand and finite capacity. 

The ECLIPS Specific Targeted Research Project 
[13] is addressing both academic and business state-of-
the-art in supply chain planning and management. Its 
abbreviation stands for ‘Extended Collaborative Inte-
grated Life Cycle Supply Chain Planning System’.  
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The key research is multi-echelon supply chain 

planning for industries with batch and semi-batch pro-
cesses on a tactical level spanning the full life cycle of 
the product. The project is aimed at minimization of 
total inventories through the whole supply chain, taking 
into account a product lifecycle, from its introduction 
into market, through a maturity phase, and finally to an 
end-of-life phase. In order to achieve this goal, simula-
tion is used intensively in the ECLIPS project [6]. From 
one hand, it supports supply chain management pro-
cesses (e.g., optimization and decision making), thus 
providing conditions for minimization of inventories. 
From another hand, simulation provides a platform for 
testing algorithms and tools, being developed within the 
project. The benefits of the project developments have 
been proved in practice in the environments of two 
industrial partners. The results, however, could be ex-
ploited to a wide range of industries, e.g., in manufac-
turing, wholesale and retail sale, and transport. 

The project scope in the paper focuses on develop-
ment of simulation-based methodology and tools for 
optimizing multi-echelon cyclic planning solutions for 
products at the maturity phase, and analysing cyclic and 
noncyclic planning policies over the product life cycle 
in order to prove in practice efficiency of a cyclic 
schedule or to switch from a cyclic planning policy to a 
non-cyclic one. 

1 Simulation-based Multi-echelon  
Cyclic Planning and Optimization 

Application of the MILP (Mixed Integer Linear Prob-
lem) analytical model in multi-echelon supply chain 
planning and optimisation is limited by assumptions of a 
constant demand, fixed set-up costs and lead times. 
These assumptions significantly decrease the complexi-
ty of the problem, but still are considered very useful for 
mature products [3]. In this context, simulation-based 
planning and optimization techniques are more flexible 
and do not require a rigid structure of the analytical 
model. They allow estimating consequences of different 
planning policies and decisions in time and by echelon; 
analysing stability of an optimal production schedule 
received from the MILP analytical model, and define 
optimal parameters of a multi-level cyclic schedule under 
conditions of uncertain demand and finite capacity [5]. 

 
 

In the paper, multi-echelon cyclic planning and op-
timisation at the product maturity phase is based on 
integration of analytical and simulation techniques [7]. 
Analytical formulas are used to obtain initial planning 
decisions under conditions of stochastic demand and 
constant or stochastic lead time. Simulation techniques 
extend these conditions to backlogging and capacity 
constraints. In this case, the multi-echelon cyclic plan-
ning problem is formulated as a simulation-based opti-
misation problem that is aimed to determine optimal 
parameters of cyclic schedules at different supply chain 
echelons. 

1.1 Network Conceptual Model 
The following are main assumptions that define the 
scope of a network simulation model: (1) Demand is 
considered to be uncertain, while predicting the demand 
mean value, its variations are estimated by a standard 
deviation of the demand per period; (2) Lead times of 
the processes are considered to be variable and/or sto-
chastic; (3) 

Lot sizes of the products are variable; (4) Capacities 
are limited; (5) Demand is considered to be independent 
only for customised products; (5) Backorders are deliv-
ered in full; (6) Fixed production and ordering costs, 
and linear inventory holding costs are assumed; (7) 
Planning is performed for a finite planning horizon. 

A network simulation model [7] itself is built as pro-
cess oriented model with a one-directional flow of 
goods. It is presented by two types of atomic elements: 
stock points and processes that are graphically repre-
sented by triangles and rectangles, correspondingly (see 
Figure 1). Any process with a stock point connected 
with a directed arc defines a stage. A set of stages that 
belong to the same network level creates an echelon. 
Input parameters, decision variables and constraints are 
assigned to atomic elements. The supply chain generic 
network is constructed from basic sub-networks, such as 
linear, convergent and divergent. The replenishment and 
delivery logic for each sub-network is defined. 

 

 
Figure 1. Basic sub-networks of the supply chain. 
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Average total cost of a cyclic schedule that includes 

a sum of set-up, ordering and inventory costs is defined 
as the main network model performance measure. How-
ever, in order to avoid unconstrained minimization of 
the total cost and satisfy customer service requirements, 
the average order fill rate is introduced as additional 
performance measure to be analysed in simulation op-
timisation experiments. It is defined as the percentage of 
endcustomer s orders filled from the available inven-
tory. As controllable variables, lengths of replenishment 
cycles and order-up-to-levels for stock points are de-
fined in the network model. These variables determine 
the reorder period and quantity to be ordered or pro-
duced for each mature product in the network. 

The main idea of a cyclic schedule is to use fixed 
order intervals at each stage or echelon while synchro-
nizing these cycles in a multi-echelon supply chain to 
keep cycle inventory and order costs low. For that, addi-
tional cyclical replenishment constraints that define 
cyclic policy, e.g. power-of-two policy, are introduced. 

1.2 Simulation Environment 
The simulation environment for cyclic planning and 

optimisation is built in the ProModel simulation soft-
ware [4]. It provides automatic generation of the simula-
tion model of a generic network described in the Excel 
format by using the ProModel ActiveX technology; as 
well as definition of an initial point for simulation opti-
mization using analytical calculus, and realization of the 
simulation-based optimization algorithm to find optimal 
parameters of a multi-echelon cyclic schedule and opti-
mise network simulation model performance measures. 
Automation capability allows the program to automati-
cally generate simulation models from external applica-
tions by using VBA programming language. The Ac-
tiveX-based VBA program developed in MS Excel 
consists of subroutines that provide ProModel opera-
tional control and allows accessing the model infor-
mation, i.e. loading a blank simulation model; definition 
a title of the model, a path to a graphical library, an 
animation speed, the simulation length and number of 
replications; creating entities, locations of stock points 
and processes, path networks used to establish links 
between a stock and process points; creating arrays, 
variables, functions and procedures; and definition of 
entities arrival schedule, sequence of processes and their 
operational logic. The simulation environment for cyclic 
planning and optimisation includes [7] the following 
components presented in Figure 2: 

1. Database component built in the Excel format that 
contains network and dataset subcomponents. The 
dataset subcomponent includes basic data about 
products, costs, capacities, time steps or period in the 
planning horizon and customer demand. 

2. Procedural component by using analytical calculus 
generates cyclic schedules for different products and 
contains lot sizing procedures workable under condi-
tions of time-varying demand. 

3. Process component where the network is built up and 
simulated, cyclic schedules are modelled, inventory 
levels are controlled, and the network performance 
measures are estimated  

4. Optimisation component to find optimal parameters 
of a multi-echelon cyclic schedule and optimize net-
work simulation model performance measures. 

 

 
Figure 2. Basic components of simulation environment 

Architecture of simulation-based environment, compo-
nents structure and data exchange processes between 
these components are described in [8]. 

1.3 Simulation Optimisation 
Within simulation-optimisation component the network 
simulation model is used in traditional way with a simu-
lation optimiser in negative feedback. Variables con-
trolled in the simulation model, i.e. lengths of replen-
ishment cycles and order-up-to-levels for stock points, 
define multiple decision variables to be optimised in the 
problem. 

The number of decision variables increases with the 
number of stock points. As a result, a large number of 
decision variables in practice could make conducting 
iterative optimisation experiments difficult. Moreover, 
two objective functions such the average total costs and 
the average order fill rate are associated to the network 
simulation model. As a result, optimisation of multi-
echelon cyclic solutions leads to the multi-objective 
combinatorial optimisation problem. To solve the prob-
lem, the simulation-based optimisation algorithm based 
on the cooperative search of the multiobjective genetic 
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algorithm (GA) and response surface-based method 
(RSM) is introduced [9]. While a GA is well suited to 
solve combinatorial problems and is used to guide the 
search towards the Pareto-optimal front, RSM-based 
linear search is appropriate to improve GA solutions 
based on the local search approach. Let us note that 
metric scales of decision variables have a very different 
range of possible values. During simulation experi-
ments, ‘order-up-to-levels  type variables are calibrat-
ed with a discrete step size. 

Multi-objective genetic algorithm [12] is used to 
find optimal parameters of cyclic schedules, i.e. cycles 
and order-up-to levels, in each echelon of the supply 
chain. Starting with the initialisation of an initial popu-
lation, the following steps are performed per loop itera-
tion. First, the initial population of the pre-defined size 
is randomly generated and chromosomes are encoded 
with respect to power-of-two synchronisation policy. 
Afterwards, fitness values are assigned to population 
members using Pareto-ranking approach and discrete-
event simulation model. Next, penalty function is ap-
plied to infeasible solutions in current population. In 
order to maintain a diverse population and prevent 
premature convergence, crowding distances of all 
chromosomes are calculated. The next step represents 
the mating selection, where individuals are chosen by 
means of crowded tournament selection. 

Finally, after crossover and mutation the new popu-
lation is replaced by the union of the best parents and 
mating pool individuals. The user-interface of the de-
veloped genetic algorithm is implemented in MS Excel 
using ActiveX controls. 

RSM-based linear search is used [9] to improve cy-
clic planning solutions of the genetic algorithm by ad-
justing order-up-to levels that could result in decreasing 
the total cost and/or increasing the end-customers fill 
rate. The algorithm is based on local approximation of 
the simulation response surface by a regression type 
meta-model in a small region of independent factors and 
integrates linear search techniques for optimising stock 
points  orderup to levels. Finally, the Pareto-optimal 
front initially generated by the GA is updated including 
solutions found in RSM-based linear search procedure. 
Solutions received are reordered according to their fit-
ness values in the increasing sequence.  

Numerical example that illustrates simulation opti-
misation algorithm is given in section 4 of the paper. 

2 Simulation-based Comparative 
Analysis of Cyclic and non-cyclic  
Policies 

Evaluation of the difference between performance 
measures of cyclic and non-cyclic planning policies in 
supply chains gives possibilities to determine the most 
efficient planning policy at the product life cycle differ-
ent phases, and provides a control mechanism for 
switching from one planning policy to another one. 
Simulation is defined as the most suitable technique to 
reveal significant parameters affecting the difference 
between costs of cyclic and non-cyclic schedules and to 
investigate the optimality gap [10] between performanc-
es of cyclic and non-cyclic planning policies in condi-
tions of demand variability and uncertainty for switch-
ing to cyclic planning. 

2.1 Simulation-based Methodology for Comparative 
Analysis 

The following main factors that influence the difference 
between the cost of the cyclic policy and the cost of the 
non-cyclic policy are analysed in literature [1, 10]: coef-
ficient of demand variation (CODVAR); capacity utili-
zation; and number of planning periods. It is shown in 
that the coefficient of demand variation is the key factor 
affecting an additional cost of a cyclic schedule. 

In general, the optimality gap is defined as a per-
centage or ratio measure to investigate how close a 
solution is to optimum. To measure the gap between 
performances of planning policies, usually the differ-
ence in their costs is expressed as percentage. For this 
purpose, ACCS performance measure (i.e. an Addition-
al Cost of a Cyclic Schedule) that describes the gap 
between cyclic and non-cyclic solutions is used: 

tolutionCosNoncyclicS
CostSolutionNoncyclicCostSolutionCyclicACCS −=

Simulation-based scheme for comparative analysis of 
planning alternatives over the product life cycle is intro-
duced [11] and presented in Figure 3. It allows estimat-
ing the difference between the total costs of cyclic and 
non-cyclic policies, analysing an additional cost of a 
cyclic schedule and making a decision about application 
of an appropriate policy. As input data, parameters of 
non-cyclic and cyclic policies are determined using 
either analytical calculus or simulation optimisation 
techniques.  
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Here, cycles and order-up-to levels are used as pa-

rameters of a cyclic planning policy, while a non-cyclic 
policy is defined by reorder points and order quantities 
per each supply chain echelon. For a cyclic planning 
policy the optimal parameters received from simulation 
optimisation component are used. Supply chain simula-
tor model behaviour of alternative planning policies, 
and correspondent performance measures, i.e. the total 
costs mean values and correspondent ACCS values, are 
received from simulation experiments. Cost comparison 
for planning alternatives requires a careful analysis to 
ensure that the differences being observed are attributa-
ble to actual differences in their performances and not to 
statistical variations. This is done by analysing steady-
state behaviour of the network simulation model, per-
forming multiple simulation replications for each plan-
ning policy and comparing average results received 
from replications. 

To determine the most efficient planning policy at a 
specific phase of the product life cycle, simulation-
based switching algorithm is developed that contains the 
following phases: cost comparison for planning alterna-
tives based on testing statistical hypotheses in the first 
phase, and ACCS analysis based on a set of supply 
chain parameters in the second phase. Cost comparison 
for alternative policies is based on estimation of the 
difference between their total costs mean values through 
simulation experiments by using the Paired-t confidence 
interval method. It is aimed to discover if two mean 
values are significantly different. Confidence level is 
defined at least at 95%. Two statistical hypotheses, i.e. 
the null hypothesis H0 and an alternative hypothesis H1, 
for making these comparisons are intro duced and test-
ed. The null hypothesis supposes that there is no a sig-
nificant difference between total costs mean values for 
two policies. 

Let cyclic and non-cyclic define the true mean value of 
total costs for cyclic and non-cyclic policy, correspond-
ingly, and cyclic - non-cyclic or (cyclic-Non-cyclic) defines the 
difference between mean values of total costs for two 
policies. In Paired-t notation these statistical hypotheses 
are formulated as follows: H0: (cyclic-Non-cyclic) = 0 and 
H1: (cyclic-Non-cyclic)  0. While testing statistical hypothe-
ses, it is supposed that simulation observations are inde-
pendent, normally distributed and a number of observa-
tions received for two policies are equal. Based on test-
ing of statistical hypotheses H0 and H1, the following 
conclusions are made.  

 

If the Paired-t confidence interval excludes zero with 
a probability 1-7, then cyclic is significantly different 
from the non-cyclic with 7 significance level (Figure 4, 
position (b) and position (c)). In case of cyclic < non-cyclic 

(Figure 4, position (c)) the cyclic planning policy out-
performs non-cyclic one. Otherwise, if the Paired-t 
confidence interval includes zero (Figure 4, position (a)) 
with a probability 1-7, the null hypothesis H0 is failed 
to reject, and there is no a significant difference between 
the mean costs for two policies, i.e. cyclic is not signifi-
cantly different from the non-cyclic with 7 significance 
level. In this case, the final decision is based on the 
ACCS analysis. 

 

 
Figure 3. Comparative analysis of planning alternatives 

through simulation experiments  

 
Figure 4. Hypotheses testing using Paired-t confidence 

 intervals. 

An additional cost of a cyclic schedule is estimated by 
the mean ACCS value. The width of the ACSS confi-
dence interval is used to indicate accuracy of the ACCS 
estimate.  
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The mean ACCS value received from simulation ex-
periments is compared with the critical one (or the max-
imum allowed) by using IF-THEN production rules. 
ACCS critical values are fixed by an application expert, 
refined within simulation-based analysis and used as a 
threshold for final decision making. 

2.2 Software Prototype 
The developed software prototype that allows ana-

lysing efficiency of planning policies and determining 
the switching from one planning policy to another is 
developed using ProModel, MS Excel and VBA integra-
tion possibilities. It includes the following main blocks: 
• Modelling & Simulation module controls the input of 

initial parameters of the simulation model and plan-
ning policies; initialize the simulation model run 
within ProModel Software and export the output data 
from the simulation model to the MS Excel format. 
The network simulation model itself consists of three 
sub modules that simulate two alternative planning 
policies and estimate ACCS performance measure. 

• Switching Module recognizes the switching moment 
from non-cyclic to cyclic policy by performing two 
types of analysis, i.e. Cost Comparison of planning 
alternatives by using Paired-t confidence interval 
method, and following ACCS analysis on a set of pa-
rameters. 

• Advanced Analysis on a Parameter Set performs sen-
sitivity analysis of parameters influences ACCS val-
ues; What-If Analysis and off-line gap investigation. 

3 Application 
The application itself is aimed to find an 
optimal cyclic plan of a chemical product, i.e. 
liquid based raisin, in order to minimise in-
ventory holding, ordering and production 
costs, and maximise end-customers fill rate. 
As a test bed, the chemical manufacturing 
supply chain is used. The main operations 
occurred in the supply chain network are the 
following. In the plant CH (see, Figure 5), the 
raw material is converted to the liquid based 
raisin. 

It is then either sourced to direct custom-
ers or shipped to the plant DE, where other 
components are added to make different 
products. From that plant, the end-products 
are shipped to different customers. The Pro-
Model-based network simulation model is 

generated automatically using a simulation-based envi-
ronment described in Section 2.2.  

The end-customer demand is normally distributed; 
and cycles are defined according to the power-of-two 
policy. Cycles are presented in weeks as follows, 7, 14, 
28, 56, where 56 days is the maximal cycle that corre-
sponds to one full turn of a planning wheel. Initial 
stocks are equal to order-up-to levels plus average de-
mand multiplied by cycle delays. Stock point 1 has 
infinite on hand stock and is not controlled by any poli-
cy. Backorders are delivered in full. 

Simulation run length is equal to 224 periods. This 
allows modelling of four full turns of the planning 
wheel, i.e. 4*56 periods. Number of simulation replica-
tions is equal to 5. The GA is executed with the follow-
ing parameters: the population size is 40; crossover and 
mutation probabilities are 0.5 and 0.1, correspondingly; 
a tournament size is equal to 2. The GA works with 66 
decision variables assigned to network stock points. 
Initial values of order-up-to levels are calculated analyt-
ically. When the number of generations with a stagnant 
nondomination set is equal to 3, the GA is terminated. 

Figure 6 shows solutions received from the final 
population that includes three non-dominated solutions 
with performance average measures 1) total cost = 
787,431, fill rate = 100.00; 2) total cost = 766,669, fill 
rate = 98.88; and total cost = 752,300, fill rate = 93.76. 

Figure 5. Simulation model screenshot  
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Figure 6. Final GA population mapped in the objective space. 

RSM-based linear search algorithm is used to adjust 
order-up-to levels of three non-dominated solutions 
received with the GA while fixing stock points’ cycles. 
The updated Pareto-optimal front contains three non-
dominated solutions found by the GA, where the second 
solution is improved by the RSM-based linear search 
algorithm with the average total cost and average fill 
rate equal to EUR 756,178 and 98.88%, respectively. 

 

 
Figure 7. The average cost values per period as function  

of CODVAR. 

The results of simulation-based analysis of performanc-
es of multi-echelon cyclic and non-cyclic planning poli-
cies are presented in Figure 7 and show that the average 
total cost per period and its confidence interval increase 
as demand variability CODVAR. Here, CODVAR coef-
ficient is limited by 1.  

Here, process lead times are assumed to be constant, 
and confidence intervals are estimated with 95% of 
confidence. The difference between total costs average 
values for cyclic and non-cyclic policies always stays 
negative and leads to conclusion that in this case the 
cyclic solution is more preferable then non-cyclic one. 

4 Conclusions 
The paper describes simulation-based methodology 

and tools for analysis and optimisation of planning 
policies over product life cycle within the entire supply 
chain. Simulation optimisation is used to define the 
optimal parameters of cyclic planning policies for ma-
ture products by integrating the multi-objective genetic 
algorithm and RSM-based linear search.  

Simulation-based comparison analysis provides es-
timating the difference between the total costs of cyclic 
and non-cyclic policies, analysing an additional cost of 
a cyclic schedule and allows determining the most effi-
cient planning policy at the product life cycle different 
phases, providing a control mechanism for switching 
from one planning policy to another one and finally 
improving the product life cycle management. 

The application described and presented results 
demonstrate efficiency of the proposed methodology. 
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