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Abstract.  This article presents an application of contem-
porary software engineering practices, in particular soft-
ware comp onents, into the area of road traffic modeling 
and simulation. It shows that by building road traffic mod-
els from individual components, both the topology of the 
simulated traffic system and thebehavior of the simulation 
model can be easily changed according to the require-
ments. In fact, it is possible to develop a single road traffic 
model, the properties of which can be adjusted almost 
arbitrarily. This flexibility, resulting in a multi-adjustable 
simulation, is of a great advantage as opposed to the exist-
ing road traffic modeling and simulation tools that usually 
implement only one behavioral model and are thus prede-
termined for simulating a limited set of problems 

Introduction  
Modeling and simulation of road traffic has gained in 
popularity in recent years. This is not surprising, be-
cause it constitutes the only tool available so far for 
predicting behavior of a traffic system. Using traffic 
models, it is possible, for example, to evaluate the im-
pact of the traffic restrictions related to a road work 
(whether construction or maintenance) and to determine 
which combinations of road works can be performed 
simultaneously without causing unnecessary congestion, 
or to compare the performance of several different road 
design alternatives. In connection with the recent onset 
of intelligent traffic management and information sys-
tems, traffic models can also be used to test these sys-
tems during their development in a real-like environment. 

Basically, there are two different approaches to road 
traffic modeling (see [2], p. 25 ff.). The first one, based 
on physical theories of fluid dynamics, describes the 
traffic by differential (or, in the case of computerized 
models, difference) equations, using physical quantities 
such as traffic flow and traffic density. Such models are 
called macroscopic, because they deal with the traffic as 
a whole.  

They can be used to evaluate the performance of a 
traffic system under different conditions, but they are 
somewhat limited in their capabilities (for example, it is 
not possible to measure travel times between a given 
pair of points, or, it is difficult to estimate the effect of 
making a traffic lane restricted). Moreover, they often 
suffer from statistically significant inaccuracies once the 
traffic system gets congested. The second approach 
makes use of a greater level of detail. It describes the 
behavior of the individual traffic participants (cars, 
trucks, streetcars, and so on) by a combination of differ-
ence equations and decision trees, using quantities such 
as acceleration and speed.  

The quantities describing the traffic as a whole then 
need to be extracted using statistical measurements. On 
the other hand, any statistically measurable quantity can 
be obtained, including distance traveled by a traffic 
participant or the above-mentioned travel time between 
a pair of points. Such models are called microscopic and 
their capabilities are almost unlimited. However, their 
computational complexity (both in terms of time and 
space) can be enormous. 

1 Software Components 
The concept of software components became popular in 
1990s, especially in connection with increasing demand 
for reusability. Object-oriented programming has some 
mechanisms for supporting reusability (namely inher-
itance and method overloading), but the level of reusa-
bility that can be achieved this way is still far from the 
level that is usual in other engineering disciplines. Ma-
chinery can serve as a great example. Suppose that you 
need to fasten some things together using a bolt and a 
nut. Further suppose that you have some bolts left in 
stock, but no nuts. Because bolt and nuts are standard-
ized (they can be uniquely described by a set of their 
dimensions), you need to buy only nuts that correspond 
to the bolts you already have.  
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Moreover, they even do not have to originate from 

the same manufacturer. 
Although machinery and software engineering are 

indeed not very similar, there is no good reason for 
software to be different in this respect. Machines are 
being constructed from components (that is, self-
contained operational parts), which in turn can be con-
structed from subcomponents, and so on. These compo-
nents are then assembled together in a way that allows 
for the intended function of the machine. Software is 
developed in a similar way.  

The overall intended functionality is decomposed in-
to smaller pieces (top-down approach), which are then 
designed and implemented (bottom-up approach). In 
object object-oriented programming, these pieces take 
the form of objects, whereas in procedural programming 
they take the form of modules. Either case, they com-
municate together using method (or function) calls, so 
that the overall functionality is achieved. The only im-
portant difference between the components on one side 
and either objects or modules on the other side is thus 
the formal description of their interfaces (the points 
where they meet each other). 

 
There are many definitions what a software compo-

nent is and what it is not. One of the most generally 
accepted one is that by Szyperski (see [7], p. 548): 

‘A component is a unit of composition with con-
tractually specified interfaces and explicit con-
text dependencies only. [...] A component can 
be deployed independently and is subject to 

composition bythird parties.’

Because both objects and modules are units of composi-
tion and can be deployed independently (in the form of 
shared libraries, for instance), the fundamental part of 
this definition are the "contractually specified interfac-
es". It means that a software component needs to explic-
itly define any functionality it provides as well as any 
functionality it requires from other components. For this 
purpose, a reasonable choice is Meyer’s Design by 
Contract (DbC) principle (see [4]). Using DbC, the 
semantics of an operation (represented by a method or 
function) can be described by a union of preconditions, 
postconditions, and invariants. Preconditions describe 
the state expected before the operation can be used (that 
is, what the caller of the method or function must pro-
vide and what the provider of the implementation may 
rely on).  

Conversely, postconditions describe the state ex-
pected after the operation was used (that is, what the 
implementer must provide and what the caller of the 
method may rely on if he has fulfilled the corresponding 
preconditions). Finally, invariants describe the state that 
will not be affected by the operation itself and are there-
fore used as consistency constraints. These explicit 
statements represent a contract between the provider 
and the user of the component and allow for the above-
mentioned third-party composition (where the first party 
set up the contract and the second party provided the 
implementation). 

Contractually specified interfaces also have an inter-
esting implication. Any two components implementing 
the same contract can be substituted one for the other 
(see [7], p. 83 ff.). In other words, replacing one of them 
with the other does not require any changes in the rest 
of the software. In fact, unless the components repre-
senting the rest of the software are explicitly told, they 
are not able to learn about such a change. Components 
thus make the functionality of the software much more 
flexible and adaptable to changes. 

Implementing the same contract does not mean that 
the components must perform the functionality in exact-
ly the same way. For example, consider a component 
dealing with logging. Such a component is expected to 
make records of important events that have occurred, 
but the resulting log may differ in the recorded level of 
detail (critical errors only or a full spectrum of events 
including debugging information) or even in its form 
(text file, binary file, or a set of records in a database). 
Another great example of a set of operations imple-
mented in a possibly different ways are database con-
nectors, which provide a uniform interface for perform-
ing database operations in order to allow for easy 
change of the underlying database engine. 

2 Components in Road Traffic Models 
In theory, both macroscopic and microscopic road traf-
fic models are able to make use of the advantages of the 
component approach. Nevertheless, using software 
components for macroscopic modeling is much more 
reasonable in connection with hybrid models (see Sec-
tion 3.3) than for standalone macroscopic models. 

Every traffic system can be decomposed into two 
different aspects: its topology (the layout of road seg-
ments and intersections) and its behavior (the way in 
which the state of the system is changed).  
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These two aspect can be modeled each by a separate 

set of components. 

2.1 Road Topology Change Using Substitution of 
Components 

Road topology, constituted by so-called structural com-
ponents, is more or less static, at least in the sense that it 
will usually not change during a simulation run. How-
ever, it is important that the topology can be modified 
easily in order to test and compare different road design 
alternatives. So, an appropriate decomposition of the 
road topology is needed. 

Graph theory can help a lot in identifying structural 
components. Consider the following graph representa-
tion: each intersection (that is, a place where three or 
more road segments meet) corresponds to a vertex and 
each road segment corresponds to an edge. Then each 
vertex and each edge shall be modeled by a separate 
structural component (see Figure 1). In such a topology, 
components can be easily substituted. For example, a 
crossroad can be replaced by a roundabout (see Fig-
ure 22). More generally, in the terms of graph theory, 
any connected subgraph can be replaced by another 
connected subgraph. 

 

 
Figure 1. An example of using graph theory for identification 
of structural components. Here, the original road topology 

consisting of four crossroads (left) and its decomposition with 
structural components highlighted in grey (right). 

2.2 Model Behavior Change Using Substitution of 
Components 

Microscopic road traffic simulation models consist of 
several submodels, where each submodel handles a 
specific task in the simulation (see [5], p. 5). The most 
essential submodels are the car-following model and the 
lanechanging model. The car-following model describes 
movements of a vehicle in response to the behavior of 
the preceding vehicle traveling in the same lane, where-
as the lane-changing model describes movements of a 
vehicle in connection with a lane change (which may be 
necessary for turning at the next intersection, for in-
stance).  

There are many different car-following models (Ga-
zis-Herman-Rothery model, Gipps model, or Fritzsche 
model, to name a few), each taking a slightly different 
set of aspects into account (Fritzsche model considers 
driver’s reaction time, while most other models do not, 
for instance; for more details, see [5] or [8]). These 
differences may seem to be small, however, depending 
on the problem being simulated, they can affect the 
results in a statistically significant way. The same ap-
plies to the lane-changing models, as well as to all other 
models not yet mentioned, such as overtaking models or 
yielding models. 

Existing microscopic road traffic modeling and sim-
ulation tools (for example, Aimsun, Corsim, Mitsim, 
Paramics, or Vissim) usually select one from these 
models and stick to it in all cases. This limits their range 
of application, because, as said above, not all models are 
suitable for simulating a particular problem. Extracting 
each such model to a separate component (this time 
called behavioral component) allows to make use of the 
component substitutability described in Section 1. We 
can then select a set of models that are expected to pro-
vide the best results for a particular purpose. 

Further, we can use several different models at the 
same time. This can be particularly useful when differ-
ent classes of traffic participants shall behave different-
ly. For example, streetcars cannot travel off the track, so 
they do not need a lane-changing model (track junctions 
can be simulated much more easily). Or, in most coun-
tries, streetcars have right of way in all situations, so the 
other traffic participants are required to yield. However, 
Germany is a notable exception. German traffic law 
considers a streetcar to be an ordinary traffic participant 
in this respect. As a consequence, yielding models for 
streetcars and the rest of traffic participants will be 
different, except where a German traffic system is simu-
lated. Such changes in behavior are difficult to achieve 
in most of the existing road traffic models. 

 
Figure 2. The topology of a traffic system can be changed 

easily using substitution of structural components. Here, a 
crossroad (left) has been replaced by a roundabout (right). 
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It is also obvious that although the traffic partici-

pants belonging to the same class share the same behav-
ior, they can differ in some parameters. Unfortunately, 
these parameters may affect the behavior considerably. 
For example, mass and braking efficiency affect the 
braking distance. As a result, traffic participants may 
need to start braking at a different time if they need to 
stop at a given point. This means that the behavioral 
components need to be parametrized and each traffic 
participant needs its own instance with parameters set to 
the corresponding values.  

However, there are many traffic participants in a 
typical microscopic road traffic simulation and creating 
an instance of all the necessary behavioral components 
for each of them would cause an extremely high con-
sumption of memory. In such situations, the flyweight 
design pattern (see [1]) comes in handy. The idea of 
flyweight consists in extracting the shared part of two or 
more entities into a new entity and referencing this new 
entity from the original ones. In our case, a traffic par-
ticipant would contain only a set of its own parameter 
values and a reference to the corresponding behavioral 
model (see Figure 3). 

2.3 Multiple-Level-of-Details Modeling Using 
Component Adapters 

So far, we have considered component substitution only 
when both the substituted and the substituting compo-
nents implemented the same contract. In fact, any two 
components can be substituted one for the other provid-
ed that there is an adapter able to overcome the differ-
ences between their contracts. An adapter in this sense 
is actually an intermediate component (sometimes also 
called a connector) that implements both contracts and 
provides a logic to translate from one to the other. In 
other words, an adapter serves as an interpreter between 
components that could not otherwise communicate. 

In a road traffic simulation, the impact of a traffic 
restriction (or any other traffic control measure) typical-
ly diminishes with increasing distance from its point of 
action. So, if a point of action is located somewhere in 
the heart of downtown, there is little interest in results 
from a distant suburbs. However, even these areas still 
need to be simulated, because they are an integral part 
of the traffic system and can therefore influence the 
areas of interest over time. But they indeed can be simu-
lated at a much lower level of detail, for instance using a 
macroscopic model. Doing so can substantially reduce 
the computational intensity of the overall simulation. 

Models capable of switching between the micro-
scopic and the macroscopic level of details are also 
called hybrid. An introduction to the problematics of 
hybrid traffic modeling can be found in [3]. 
 

 

Figure 3: An example of applying the flyweight design pattern 
to behavioral components. Here, three cars (C1,C2,C3) and 

three streetcars (S1,S2,S3), each referencing the  
corresponding behavioral model (BC, BS). Both models  

share the car-following model (CF) and each has its own 
yielding model (YC, YS). In addition, the behavioral model  

for cars has a lane-changing model (LC), whereas the  
behavioral model for streetcars has none. 

Implementing the adapters between microscopic and 
macroscopic models is actually not difficult at all. The 
only important difference is that macroscopic models 
work in terms of physical quantities, whereas micro-
scopic models work in terms of individual traffic partic-
ipants. As a result, adapters from microscopic to macro-
scopic models need to estimate the values of the respec-
tive physical quantities (traffic flow and traffic density). 

Traffic flow is defined as the number of vehicles per 
a unit of time, so the corresponding value can be ob-
tained using a counter and a timer. The counter is in-
creased by every traffic participant passing through the 
adapter. The timer then periodically calculates the value 
of the traffic flow and to resets the counter to zero. 
Traffic density is defined as the number of vehicles per 
a unit of length, which is a little bit more problematic to 
measure. 

The reason is that adapters do not represent a road 
segment or any other piece of road topology and are 
thus dimensionless. Fortunately, traffic density can be 
calculated from the traffic flow and the mean speed, 
which is measurable much more easily. It shall be obvi-
ous that during this conversion, a lot of information, 
such as the classes of traffic participants or their param-
eters, is lost. 
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However, it does not constitute a problem, because 

this conversion is only done in the direction to the areas 
out of interest and the lost information will not be need-
ed anymore (see Figure 4). Conversely, adapters from 
macroscopic to microscopic models need to generate the 
individual traffic participants according to the values of 
traffic flow and traffic density. This can be done using a 
pseudorandom generator parametrized by these values. 

 
The additional information about the traffic partici-

pants that either has been lost during the reverse conver-
sion or has never existed needs to be generated at this 
moment. As a consequence, these adapters need addi-
tional sources of information, such as the probability of 
each class of traffic participants in the system. For an 
example of a boundary between macroscopic and mi-
croscopic models, see Figure 5. 

 
At first glance, it may seem that the process of 

adapting between microscopic and macroscopic models 
can affect significantly the results of the simulation. But 
this is not necessarily true. In an effort to reduce the 
amount of information transferred between microscopic 
road traffic models in a distributed computing environ-
ment, Potužak (see [6], p. 3 ff.) has studied the process 
of extracting the macroscopic quantities and using them 
for generating the traffic participants again. He showed 
that the statistical deviation caused by this process can 
be kept under 5 %. 

 

Figure 4. An example of a hybrid simulation model. The area 
of interest (dark grey) is simulated using a microscopic  

simulation model, whereas the area out of interest (light 
grey) is simulated using a macroscopic simulation model.  
The arrows show the direction in which the information  

is lost in microscopic-to-macroscopic adapters. 

 

2.4 Transparent Distributability Using Component 
Adapters 

Even if the areas out of interest are simulated using a 
macroscopic model, the overall computational intensity 
may still be too high for a single computer. In such 
situations, a distributed computing environment may be 
necessary to get the simulation results in a reasonable 
time. But this also means that the simulation model 
needs to be adapted for a distributed environment. In 
particular, the model must be divided into parts (in this 
case, disjoint subsets of structural components), it must 
be decided which part will be assigned to which node, 
and remote connections between the parts must be es-
tablished. 

 
This is another situation where software components 

can help. The remote connections can be made transpar-
ent to the components using remoting adapters, that is, 
connectors that encapsulate the additional logic needed 
for remote communication. In remote procedure call 
technologies, they are typically called stubs and skele-
tons. Because adapters can be placed between any two 
components in general, there are many places where the 
simulation model can be divided into parts (see Section 
2.2). This fact could be utilized to implement some 
load-balancing mechanism. 

 

Figure 5. An example of a boundary between macroscopic 
and microscopic models. Here, the boundary lies within a 

road segment consisting of one lane in each direction. In the 
top half of the figure, the microscopic structural component 

(right) is connected to the macroscopic structural component 
(left) through an microscopic-to-macroscopic adapter (uM). 

Conversely, in the bottom half of the figure, the macroscopic 
structural component (left) is connected to the microscopic 

structural component (right) through an macroscopic- 
to-microscopic adapter (Mu). 
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3 Summary 
In this paper, we dealt with the possibility of using 
software components in the area of road traffic model-
ing and simulation. We showed that building road traf-
fic models from individual components can be of a great 
advantage and can lead to development of a single mul-
ti-adjustable simulation model. First, we introduced the 
concept of structural components and outlined how their 
substitution can be used to change the topology of the 
simulated traffic system. Then, we applied the same 
principle to the behavior of the model and showed that 
by introducing behavioral components, several different 
models can be used at the same time, each modeling a 
specific task. 

 
Further, we outlined adapters between microscopic 

and macroscopic models and their use for simulating 
different parts of the traffic systems at a different level 
of detail. Finally, we showed that component approach 
in connection with remoting adapters provide for an 
easy adaptation of the model for a distributed environ-
ment, possibly with some load-balancing mechanism. 

The experience gained from this research and the 
still ongoing research of structural components will be 
used to develop an experimental multi-adjustable road 
traffic model. 
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