
S N E T E C H N I C A L N O T E

 SNE 21(1) – 4/2011 21

Introducing Software Components to Road Traffic
Modeling and Simulation

Petr Zelenka

University of West Bohemia, Dept. of Computer Science and Engineering, Univerzitni 8, 30614 Plzen, Czech Republic;
pzeli@kiv.zcu.cz

Abstract. This article presents an application of contem-
porary software engineering practices, in particular soft-
ware comp onents, into the area of road traffic modeling
and simulation. It shows that by building road traffic mod-
els from individual components, both the topology of the
simulated traffic system and thebehavior of the simulation
model can be easily changed according to the require-
ments. In fact, it is possible to develop a single road traffic
model, the properties of which can be adjusted almost
arbitrarily. This flexibility, resulting in a multi-adjustable
simulation, is of a great advantage as opposed to the exist-
ing road traffic modeling and simulation tools that usually
implement only one behavioral model and are thus prede-
termined for simulating a limited set of problems

Introduction
Modeling and simulation of road traffic has gained in
popularity in recent years. This is not surprising, be-
cause it constitutes the only tool available so far for
predicting behavior of a traffic system. Using traffic
models, it is possible, for example, to evaluate the im-
pact of the traffic restrictions related to a road work
(whether construction or maintenance) and to determine
which combinations of road works can be performed
simultaneously without causing unnecessary congestion,
or to compare the performance of several different road
design alternatives. In connection with the recent onset
of intelligent traffic management and information sys-
tems, traffic models can also be used to test these sys-
tems during their development in a real-like environment.

Basically, there are two different approaches to road
traffic modeling (see [2], p. 25 ff.). The first one, based
on physical theories of fluid dynamics, describes the
traffic by differential (or, in the case of computerized
models, difference) equations, using physical quantities
such as traffic flow and traffic density. Such models are
called macroscopic, because they deal with the traffic as
a whole.

They can be used to evaluate the performance of a
traffic system under different conditions, but they are
somewhat limited in their capabilities (for example, it is
not possible to measure travel times between a given
pair of points, or, it is difficult to estimate the effect of
making a traffic lane restricted). Moreover, they often
suffer from statistically significant inaccuracies once the
traffic system gets congested. The second approach
makes use of a greater level of detail. It describes the
behavior of the individual traffic participants (cars,
trucks, streetcars, and so on) by a combination of differ-
ence equations and decision trees, using quantities such
as acceleration and speed.

The quantities describing the traffic as a whole then
need to be extracted using statistical measurements. On
the other hand, any statistically measurable quantity can
be obtained, including distance traveled by a traffic
participant or the above-mentioned travel time between
a pair of points. Such models are called microscopic and
their capabilities are almost unlimited. However, their
computational complexity (both in terms of time and
space) can be enormous.

1 Software Components
The concept of software components became popular in
1990s, especially in connection with increasing demand
for reusability. Object-oriented programming has some
mechanisms for supporting reusability (namely inher-
itance and method overloading), but the level of reusa-
bility that can be achieved this way is still far from the
level that is usual in other engineering disciplines. Ma-
chinery can serve as a great example. Suppose that you
need to fasten some things together using a bolt and a
nut. Further suppose that you have some bolts left in
stock, but no nuts. Because bolt and nuts are standard-
ized (they can be uniquely described by a set of their
dimensions), you need to buy only nuts that correspond
to the bolts you already have.

SNE Simulation Notes Europe – Print ISSN 2305-9974 | Online ISSN 2306-0271
SNE 21(1), 2011, 21-26 | doi: 10.11128/sne.21.tn.10041

 P Zelenka Software Components to Road Traffic Modeling

 22 SNE 21(1) – 4/2011

TN
Moreover, they even do not have to originate from

the same manufacturer.
Although machinery and software engineering are

indeed not very similar, there is no good reason for
software to be different in this respect. Machines are
being constructed from components (that is, self-
contained operational parts), which in turn can be con-
structed from subcomponents, and so on. These compo-
nents are then assembled together in a way that allows
for the intended function of the machine. Software is
developed in a similar way.

The overall intended functionality is decomposed in-
to smaller pieces (top-down approach), which are then
designed and implemented (bottom-up approach). In
object object-oriented programming, these pieces take
the form of objects, whereas in procedural programming
they take the form of modules. Either case, they com-
municate together using method (or function) calls, so
that the overall functionality is achieved. The only im-
portant difference between the components on one side
and either objects or modules on the other side is thus
the formal description of their interfaces (the points
where they meet each other).

There are many definitions what a software compo-

nent is and what it is not. One of the most generally
accepted one is that by Szyperski (see [7], p. 548):

‘A component is a unit of composition with con-
tractually specified interfaces and explicit con-
text dependencies only. [...] A component can
be deployed independently and is subject to

composition bythird parties.’

Because both objects and modules are units of composi-
tion and can be deployed independently (in the form of
shared libraries, for instance), the fundamental part of
this definition are the "contractually specified interfac-
es". It means that a software component needs to explic-
itly define any functionality it provides as well as any
functionality it requires from other components. For this
purpose, a reasonable choice is Meyer’s Design by
Contract (DbC) principle (see [4]). Using DbC, the
semantics of an operation (represented by a method or
function) can be described by a union of preconditions,
postconditions, and invariants. Preconditions describe
the state expected before the operation can be used (that
is, what the caller of the method or function must pro-
vide and what the provider of the implementation may
rely on).

Conversely, postconditions describe the state ex-
pected after the operation was used (that is, what the
implementer must provide and what the caller of the
method may rely on if he has fulfilled the corresponding
preconditions). Finally, invariants describe the state that
will not be affected by the operation itself and are there-
fore used as consistency constraints. These explicit
statements represent a contract between the provider
and the user of the component and allow for the above-
mentioned third-party composition (where the first party
set up the contract and the second party provided the
implementation).

Contractually specified interfaces also have an inter-
esting implication. Any two components implementing
the same contract can be substituted one for the other
(see [7], p. 83 ff.). In other words, replacing one of them
with the other does not require any changes in the rest
of the software. In fact, unless the components repre-
senting the rest of the software are explicitly told, they
are not able to learn about such a change. Components
thus make the functionality of the software much more
flexible and adaptable to changes.

Implementing the same contract does not mean that
the components must perform the functionality in exact-
ly the same way. For example, consider a component
dealing with logging. Such a component is expected to
make records of important events that have occurred,
but the resulting log may differ in the recorded level of
detail (critical errors only or a full spectrum of events
including debugging information) or even in its form
(text file, binary file, or a set of records in a database).
Another great example of a set of operations imple-
mented in a possibly different ways are database con-
nectors, which provide a uniform interface for perform-
ing database operations in order to allow for easy
change of the underlying database engine.

2 Components in Road Traffic Models
In theory, both macroscopic and microscopic road traf-
fic models are able to make use of the advantages of the
component approach. Nevertheless, using software
components for macroscopic modeling is much more
reasonable in connection with hybrid models (see Sec-
tion 3.3) than for standalone macroscopic models.

Every traffic system can be decomposed into two
different aspects: its topology (the layout of road seg-
ments and intersections) and its behavior (the way in
which the state of the system is changed).

 P Zelenka Software Components to Road Traffic Modeling

 SNE 21(1) – 4/2011 23

T N
These two aspect can be modeled each by a separate

set of components.

2.1 Road Topology Change Using Substitution of
Components

Road topology, constituted by so-called structural com-
ponents, is more or less static, at least in the sense that it
will usually not change during a simulation run. How-
ever, it is important that the topology can be modified
easily in order to test and compare different road design
alternatives. So, an appropriate decomposition of the
road topology is needed.

Graph theory can help a lot in identifying structural
components. Consider the following graph representa-
tion: each intersection (that is, a place where three or
more road segments meet) corresponds to a vertex and
each road segment corresponds to an edge. Then each
vertex and each edge shall be modeled by a separate
structural component (see Figure 1). In such a topology,
components can be easily substituted. For example, a
crossroad can be replaced by a roundabout (see Fig-
ure 22). More generally, in the terms of graph theory,
any connected subgraph can be replaced by another
connected subgraph.

Figure 1. An example of using graph theory for identification
of structural components. Here, the original road topology

consisting of four crossroads (left) and its decomposition with
structural components highlighted in grey (right).

2.2 Model Behavior Change Using Substitution of
Components

Microscopic road traffic simulation models consist of
several submodels, where each submodel handles a
specific task in the simulation (see [5], p. 5). The most
essential submodels are the car-following model and the
lanechanging model. The car-following model describes
movements of a vehicle in response to the behavior of
the preceding vehicle traveling in the same lane, where-
as the lane-changing model describes movements of a
vehicle in connection with a lane change (which may be
necessary for turning at the next intersection, for in-
stance).

There are many different car-following models (Ga-
zis-Herman-Rothery model, Gipps model, or Fritzsche
model, to name a few), each taking a slightly different
set of aspects into account (Fritzsche model considers
driver’s reaction time, while most other models do not,
for instance; for more details, see [5] or [8]). These
differences may seem to be small, however, depending
on the problem being simulated, they can affect the
results in a statistically significant way. The same ap-
plies to the lane-changing models, as well as to all other
models not yet mentioned, such as overtaking models or
yielding models.

Existing microscopic road traffic modeling and sim-
ulation tools (for example, Aimsun, Corsim, Mitsim,
Paramics, or Vissim) usually select one from these
models and stick to it in all cases. This limits their range
of application, because, as said above, not all models are
suitable for simulating a particular problem. Extracting
each such model to a separate component (this time
called behavioral component) allows to make use of the
component substitutability described in Section 1. We
can then select a set of models that are expected to pro-
vide the best results for a particular purpose.

Further, we can use several different models at the
same time. This can be particularly useful when differ-
ent classes of traffic participants shall behave different-
ly. For example, streetcars cannot travel off the track, so
they do not need a lane-changing model (track junctions
can be simulated much more easily). Or, in most coun-
tries, streetcars have right of way in all situations, so the
other traffic participants are required to yield. However,
Germany is a notable exception. German traffic law
considers a streetcar to be an ordinary traffic participant
in this respect. As a consequence, yielding models for
streetcars and the rest of traffic participants will be
different, except where a German traffic system is simu-
lated. Such changes in behavior are difficult to achieve
in most of the existing road traffic models.

Figure 2. The topology of a traffic system can be changed

easily using substitution of structural components. Here, a
crossroad (left) has been replaced by a roundabout (right).

 P Zelenka Software Components to Road Traffic Modeling

 24 SNE 21(1) – 4/2011

TN
It is also obvious that although the traffic partici-

pants belonging to the same class share the same behav-
ior, they can differ in some parameters. Unfortunately,
these parameters may affect the behavior considerably.
For example, mass and braking efficiency affect the
braking distance. As a result, traffic participants may
need to start braking at a different time if they need to
stop at a given point. This means that the behavioral
components need to be parametrized and each traffic
participant needs its own instance with parameters set to
the corresponding values.

However, there are many traffic participants in a
typical microscopic road traffic simulation and creating
an instance of all the necessary behavioral components
for each of them would cause an extremely high con-
sumption of memory. In such situations, the flyweight
design pattern (see [1]) comes in handy. The idea of
flyweight consists in extracting the shared part of two or
more entities into a new entity and referencing this new
entity from the original ones. In our case, a traffic par-
ticipant would contain only a set of its own parameter
values and a reference to the corresponding behavioral
model (see Figure 3).

2.3 Multiple-Level-of-Details Modeling Using
Component Adapters

So far, we have considered component substitution only
when both the substituted and the substituting compo-
nents implemented the same contract. In fact, any two
components can be substituted one for the other provid-
ed that there is an adapter able to overcome the differ-
ences between their contracts. An adapter in this sense
is actually an intermediate component (sometimes also
called a connector) that implements both contracts and
provides a logic to translate from one to the other. In
other words, an adapter serves as an interpreter between
components that could not otherwise communicate.

In a road traffic simulation, the impact of a traffic
restriction (or any other traffic control measure) typical-
ly diminishes with increasing distance from its point of
action. So, if a point of action is located somewhere in
the heart of downtown, there is little interest in results
from a distant suburbs. However, even these areas still
need to be simulated, because they are an integral part
of the traffic system and can therefore influence the
areas of interest over time. But they indeed can be simu-
lated at a much lower level of detail, for instance using a
macroscopic model. Doing so can substantially reduce
the computational intensity of the overall simulation.

Models capable of switching between the micro-
scopic and the macroscopic level of details are also
called hybrid. An introduction to the problematics of
hybrid traffic modeling can be found in [3].

Figure 3: An example of applying the flyweight design pattern
to behavioral components. Here, three cars (C1,C2,C3) and

three streetcars (S1,S2,S3), each referencing the
corresponding behavioral model (BC, BS). Both models

share the car-following model (CF) and each has its own
yielding model (YC, YS). In addition, the behavioral model

for cars has a lane-changing model (LC), whereas the
behavioral model for streetcars has none.

Implementing the adapters between microscopic and
macroscopic models is actually not difficult at all. The
only important difference is that macroscopic models
work in terms of physical quantities, whereas micro-
scopic models work in terms of individual traffic partic-
ipants. As a result, adapters from microscopic to macro-
scopic models need to estimate the values of the respec-
tive physical quantities (traffic flow and traffic density).

Traffic flow is defined as the number of vehicles per
a unit of time, so the corresponding value can be ob-
tained using a counter and a timer. The counter is in-
creased by every traffic participant passing through the
adapter. The timer then periodically calculates the value
of the traffic flow and to resets the counter to zero.
Traffic density is defined as the number of vehicles per
a unit of length, which is a little bit more problematic to
measure.

The reason is that adapters do not represent a road
segment or any other piece of road topology and are
thus dimensionless. Fortunately, traffic density can be
calculated from the traffic flow and the mean speed,
which is measurable much more easily. It shall be obvi-
ous that during this conversion, a lot of information,
such as the classes of traffic participants or their param-
eters, is lost.

 P Zelenka Software Components to Road Traffic Modeling

 SNE 21(1) – 4/2011 25

T N
However, it does not constitute a problem, because

this conversion is only done in the direction to the areas
out of interest and the lost information will not be need-
ed anymore (see Figure 4). Conversely, adapters from
macroscopic to microscopic models need to generate the
individual traffic participants according to the values of
traffic flow and traffic density. This can be done using a
pseudorandom generator parametrized by these values.

The additional information about the traffic partici-

pants that either has been lost during the reverse conver-
sion or has never existed needs to be generated at this
moment. As a consequence, these adapters need addi-
tional sources of information, such as the probability of
each class of traffic participants in the system. For an
example of a boundary between macroscopic and mi-
croscopic models, see Figure 5.

At first glance, it may seem that the process of

adapting between microscopic and macroscopic models
can affect significantly the results of the simulation. But
this is not necessarily true. In an effort to reduce the
amount of information transferred between microscopic
road traffic models in a distributed computing environ-
ment, Potužak (see [6], p. 3 ff.) has studied the process
of extracting the macroscopic quantities and using them
for generating the traffic participants again. He showed
that the statistical deviation caused by this process can
be kept under 5 %.

Figure 4. An example of a hybrid simulation model. The area
of interest (dark grey) is simulated using a microscopic

simulation model, whereas the area out of interest (light
grey) is simulated using a macroscopic simulation model.
The arrows show the direction in which the information

is lost in microscopic-to-macroscopic adapters.

2.4 Transparent Distributability Using Component
Adapters

Even if the areas out of interest are simulated using a
macroscopic model, the overall computational intensity
may still be too high for a single computer. In such
situations, a distributed computing environment may be
necessary to get the simulation results in a reasonable
time. But this also means that the simulation model
needs to be adapted for a distributed environment. In
particular, the model must be divided into parts (in this
case, disjoint subsets of structural components), it must
be decided which part will be assigned to which node,
and remote connections between the parts must be es-
tablished.

This is another situation where software components

can help. The remote connections can be made transpar-
ent to the components using remoting adapters, that is,
connectors that encapsulate the additional logic needed
for remote communication. In remote procedure call
technologies, they are typically called stubs and skele-
tons. Because adapters can be placed between any two
components in general, there are many places where the
simulation model can be divided into parts (see Section
2.2). This fact could be utilized to implement some
load-balancing mechanism.

Figure 5. An example of a boundary between macroscopic
and microscopic models. Here, the boundary lies within a

road segment consisting of one lane in each direction. In the
top half of the figure, the microscopic structural component

(right) is connected to the macroscopic structural component
(left) through an microscopic-to-macroscopic adapter (uM).

Conversely, in the bottom half of the figure, the macroscopic
structural component (left) is connected to the microscopic

structural component (right) through an macroscopic-
to-microscopic adapter (Mu).

 P Zelenka Software Components to Road Traffic Modeling

 26 SNE 21(1) – 4/2011

TN
3 Summary
In this paper, we dealt with the possibility of using
software components in the area of road traffic model-
ing and simulation. We showed that building road traf-
fic models from individual components can be of a great
advantage and can lead to development of a single mul-
ti-adjustable simulation model. First, we introduced the
concept of structural components and outlined how their
substitution can be used to change the topology of the
simulated traffic system. Then, we applied the same
principle to the behavior of the model and showed that
by introducing behavioral components, several different
models can be used at the same time, each modeling a
specific task.

Further, we outlined adapters between microscopic

and macroscopic models and their use for simulating
different parts of the traffic systems at a different level
of detail. Finally, we showed that component approach
in connection with remoting adapters provide for an
easy adaptation of the model for a distributed environ-
ment, possibly with some load-balancing mechanism.

The experience gained from this research and the
still ongoing research of structural components will be
used to develop an experimental multi-adjustable road
traffic model.

Acknowledgment
This work was supported by the Grant Agency of the

Czech Republic (project number 201/08/0266).

References

[1] E. Gamma, et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1994.

[2] A. Hamalainen. Studies of Traffic Situations Using Cel-
lular Automata. PhD dissertation, Helsinki University of
Technology, Espoo, Finland, 2006.

[3] D. Hartman. Switching Scalability of Hybrid Model for
Complex Traffic Simulation. PhD dissertation, University
of West Bohemia, Plzen, Czech Republic, 2008.

[4] B. Meyer. Design by Contract. In Advances in Object-
Oriented Software Engineering, Prentice Hall, Eng-
lewood Cliffs, NJ, USA, 1991.

[5] J. J. Olstam, A. Tapani. Comparison of Car-Following
Models. Swedish National Road and Transport Research
Institute, Linkoping, Sweden, 2004.

[6] T. Potužak. Distributed Traffic Simulation and the Re-
duction of Inter-Process Communication Using Traffic
Flow Characteristics Transfer. In Proceedings of the
Tenth International Conference on Computer Modelling
and Simulation, Cambridge, UK, 2008.

[7] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Second Edition. Addison-
Wesley, Reading, MA, USA, 2002.

[8] Y. Zhang. Scalability of Car-Following and Lane-
Changing Models in Microscopic Traffic Simulation Sys-
tems. Master’s thesis, Louisiana State University, Baton
Rouge, LA, USA 2004.

Submitted: March, 2010
Accepted: December 10, 2010

