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Specie concentrations for chemical equilibrium can be found in various ways such as solving a system of al-
gebraic equations or solving a dynamic model to steady state. The algebraic equation system for reacting 
systems consists of multivariate polynomials with multiple solutions. Some traditional and modern methods 
for solving such systems are discussed together with their advantages and disadvantages. The dynamic mod-
el results from ordinary differential equations (ODEs) based on dynamic material balances. It is shown how 
the ODE system contains all the information in the algebraic equation system. Based on the comparison of 
methods, it is suggested that solving the dynamic model to steady state in many ways is the simplest way for 
computing speciation data at the equilibrium of a reacting system. 

Introduction  
Reactive  systems are widely used in the process 
industry, including  the  capturing field. 
Equilibrium concentra- tions of the species available 
in the reactive systems are considered   as an 
important  source of information regarding the 
reaction kinetics. Computation of the equilibrium 
concentrations with known equilibrium  coefficients 
is important for checking the equilibrium with the 
experimental data. Equilibrium  concentrations are 
important also for the modelling of the systems. 

In chemical engineering, the values of the equilibrium 
concentrations are often found by solving a set of 
algebraic equations, [1]. The algebraic equation set 
consists of the relations from setting the reaction rates 
to zero in tandem with the atom or charge balances; 
the latter ensure mass conservation. Alternatively,  a 
method like minimization of Gibbs free energy ([2], 
[3], [4] & [5]) can be used. Usually  such methods 
also result a set of equations to solve for the equi- 
librium compositions. The set of equations to be 
solved is usually  a set of non-linear polynomials in 
several variables. A number of methods are applicable 
for solving such systems of non-linear polynomials 
with their own advantages and disadvantages.  The 
use of some of these methods  for solving for the 
equilibrium  concentrations  are discussed in this 
paper. 

Alternatively, the dynamic mole balances (ODEs) can 
be solved until the steady state is reached. This gives 
the equi- librium concentrations. 

 
The relationship between the algebraic equation 
system and the ODEs is discussed, including  
advantages and disadvantages of the two approaches. 

The paper is organized as follows: first, the algebraic 
equations for chemical equilibrium are discussed, 
together with the possibility of multiple solutions. 
Methods for solving such algebraic equations are then 
briefly covered. Next, it is shown how dynamic 
models for concentrations are related to the algebraic 
equations, with examples. The methods are illustrated 
through computing a speciation curve which is 
relevant for post combustion   capturing.  Fi- 
nally, some conclusions are drawn and further work is 
discussed. 

Nomenclature 
   Concentration             

   Monoethanolamine     
  Protonated MEA      

   Rate of reation       
  Time         
  Stoichiometric matrix       

 

1 Equilibrium Concentrations with 
Algebraic Equations 

In chemical engineering, the equilibrium concentra-
tions are often specified as the solution of 
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  (1) 
  (2) 

where  indicates a linear combination of the ele-
ments of . Here  is a nonlinear set of 
equations, while the linear equations typi-
cally are based on the idea of conservation of mass.  

The use of minimization of Gibbs free energy is one 
of the alternative methods to find the equilibrium 
compositions in a reactive mixture. The numerical 
value of the standard state Gibbs energy of reaction 

 is used to determine the reaction coordinate 
(  at equilibrium [3]. The Eq. 3 provides the relation 
between the equilibrium coef_cient, the  term and 
the component fugacities 

  (3) 

The reaction coordinates can be found by represent-
ing the component fugacities in terms of the mole 
fractions. With use of the known Ka's and simplifica-
tions to the Eq. 3 a set of polynomials as presented by 
Eq. 4 will be resulted  

  (4) 

where  is a non-linear combination of the reaction 
co- ordinates when . Ultimately, the Gibbs free 
energy method can also result a set of non-linear 
polynomials to solve for the equilibrium composi-
tions.  
In either case, numerical methods should be used if 
the situation is complicated for normal hand calcula-
tions. Only the  case will be used 
for the analysis in the rest of the paper while stating 
that the facts are common for all the similar cases.  

Use of an iterative method like Newton's method is 
an option for solving a system of algebraic equations, 
[6]. A drawback of this method is that it gives only 
one possible solution among all possible solutions 
satisfying  or . The solu-
tion is dependent on the initial guess used to start the 
iterations.  

Having a good guess will not always guarantee the 
expected results as systems of polynomials can have 
both stable and unstable solutions, as well as physi-
cally unrealistic solutions (negative concentrations or 
complex roots).  

 

Sup-pose the reaction is a third order polynomial in 
the concentration of specie , leading to the ODE  

  (5) 

The possible solutions are ,   and  for , 
which can be depicted as in Figure 1.  
Since  is negative between  and  the 
value of the concentration should decrease providing 
that any initial guesses between and  will 
converge to .  

All the initial guesses between   and will 
settle due to the positive values of , leav-
ing  as an unstable solution. In general it is viable 
that the steady state solution of a dynamic model with 
polynomial reaction rate ),  

 

is either complex (not physical), real and negative 
(not physically realizable), or real and positive. In the 
latter case, the solution may be stable or unstable. 
Only stable solutions are of interest.  

Alternatively to Newton's method, a method such as 
Buchberger's algorithm for the Gröbner basis [7] can 
be used to solve the algebraic equation system. The 
Gröbner basis forms a “triangular“ set of polynomial 
“bases“ similar to triangular result of Gaussian elimi-
nation. As an illustrative example, consider the am-
monia synthesis reaction, Eq. 6  

  (6) 

 

 
Figure 1. Possible solutions of the polynomial  

given by  Eq. 5:  
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The equilibrium coefficient ( ) is found 
in [3].  

 
Figure 2. Calculation of Gröbner basis using Maple.  

 

The initial  and  concentrations in the reactor are 
taken as  and . The system of algebraic equations 
to solve for the equilibrium concentrations is given 
below, where Eq. 7 gives the equilibrium coefficient 
relating the concentrations. Nitrogen and hydrogen 
atom balances are given in Eqs. 8 and 9  

  (7) 

  (7) 

  (9) 

where  is the total concentration given by Eq. 10  

  (10) 

The Gröbner bases can be found using Maple [8]; 
Figure 2 shows the steps in Maple when  and 

are denoted  and , respectively. In Figure 
2, concentrations of ,  and NH3 are represented 
by the symbols ,  and , respectively.  

The resulting equations imply that  

 

 

 

From the equations above,  is found by solving a 
fourth order polynomial in , which yields 4 solu-
tions in the complex field; the solutions may be real 
positive or negative, or complex. The two subsequent 
equations give  and  directly from .  

In conclusion, there are 4 triples ( , , ) of 
solutions. In order to be a physically realistic solu-
tion, every element in a triple must be real and posi-
tive. Furthermore, it is necessary to check whether the 
remaining physically realistic solutions are stable or 
unstable.  

Finally, it must be determined which of the physically 
realistic and stable solutions belong to realistic initial 
concentrations .  

The disadvantages of the Gröbner basis method are: 
(i) much computer memory is required, (ii) the com-
putational time is high, (iii) the method is numerically 
ill-posed with current algorithms, and (iv) some post 
treatment is required to select the physically correct 
solution. The advantage is that all solutions are found, 
and it is not necessary to “guess“ any initial value in 
an iteration procedure.  

In [9], it is recommended to instead use ideas from 
continuation/homotopy to find all solutions; continua-
tion has better numerical properties than current im-
plementations of the Gröbner basis method.  

2 ODEs for Generating Equilibrium 
Concentrations 

Solving an ODE system until steady state is reached, 
is an alternative to solving a set of polynomials to get 
the equilibrium compositions. Additional information 
such as forward and backward reaction rates are re-
quired, but as long as their ratio equals the equilibri-
um constant, the steady state equation should be cor-
rect.  

As long as only the steady state solution is required, 
exists, and is unique, and ODE solver can be looked 
upon as a special kind of root finder.  

Many other such methods exist, in addition to stand-
ard solvers such as the Newton method, see e.g. [10].  
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Batch reactors with perfect mixing and a constant 
volume have concentrations given by  

  (11) 

where  is a vector of concentrations with ele-
ments ,  is a vector of overall reaction 
rates for the m reactions with elements , and 

is the stoichiometric matrix.  

With a given initial condition , and assuming the 
existence of a steady state, the steady state can be 
found by solving this set of ODEs until , or for 
a sufSciently large time. The concentrations at the 
steady state gives the equilibrium concentrations and 
is easily found with known realistic initial conditions.  

It is simple to show that these ODEs contain the same 
information as in the system of algebraic equations 
being discussed earlier.  

2.1 Partitioning into Reaction Invariants and 
Reaction Variants  

The following partitioning into reaction invariants 
and variants is discussed in [11]. Let us introduce 
fictitious species with concentration  which are 
linear combinations of the real species with concen-
tration  . Stacking the concentrations  into vector 
,  can then be written as  

 

We can then formulate the dynamic model for  as  

 

As long as  is invertible, this differential equation 
for s holds exactly the same information as the differ-
ential equation for c in the previous subsection. 

Let us now choose matrix  in a particular way: let 
 be composed of submatrices  and  ,  

 

where the columns of  lie in the nullspace  
of ,  while the columns of  lie in the column 
space  of  ; the nullspace   of  consists 
of all possible vectors  such that . 

 

The the column space of contains all the linear 
combinations of the columns of  [12].  

Linear algebra tells us that it is possible to choose 
columns in  and   such that  is invertible 
[12]. With this structure of  , the differential equation 
for s becomes  

 

 

 

 

Here, are the reaction invariant Sctitious concentra-
tions, while  are the reaction variant fictitious con-
centrations.  

Since the columns of , . 
 , we have  

 

Thus,  

 

Furthermore  

 

is square and invertible with rank  when  is of 
full rank; when  is not of full rank, superfluous reac-
tions can be removed to ensure full rank of . Since 

 is invertible, it follows that in steady state  

 

In conclusion, this shows that the steady state solu-
tion of the differential equation Eq. 11 for c is equiva-
lent to the solution found by simultaneously setting  

 

 

Here,  corresponds to  in Eq. 2, while the con-
stant corresponds to .  

 



+++ Comparison of  Computat ional  Methods for  Reaction Equi l ibr ium +++  T

79

N
SN

E 20/3-4, D
ecem

ber 2010

Using linear algebra software such as Matlab, Maple, 
etc.,   can easily be computed, while the constant 
is given from the initial conditions  But finding 
the solutions of this set of equations can be difficult 
as already explained.  

2.2 Case Study 

This example will illustrate how the ODEs are related 
with the algebraic equations using an example found 
in  capturing systems [13]:  

 

 

 

 

where  

 

Here ; and  are the equilibrium coefficient, 
forward reaction coefficient and backward reaction 
coefficient of reaction , respectively. For the set of 
reactions considered, the stoichiometric matrix  is  
 

 

when the species are considered in the order , 
 , , , , , 

 and  The overall reaction rates  of the 
system are given as  

 

 

 

 

 

In order to solve the dynamic model based on the 
mole balances, the forward and backward reaction 
coefficients are required. The values of the forward 
reaction coefficients can either be found in the litera-
ture (e.g. in [14]), or fixed at some chosen value.  

With given forward rates, the backward reaction 
coefficients are chosen in such a way that the equilib-
rium coefficients are correct. The mass conservation 
of each specie contributes with an ODE to be solved 
in time. Since the reactor contains nine species, the 
ODE system consists of nine equations which can be 
stacked into a vector-matrix formulation as in Eq. 11.  

The nullspace  of  and the column space 
 of  are found using the computer algebra 

system MuPAD within the word processor Scientific 
Workplace, and are given by the following basis vec-
tors  and  respectively:  
 

 

 

Using the linear combinations of basis vectors in the 
nullspace  of  the columns in   can be cho-
sen.  
The following column vectors of  are used here: 

, 
, 
 

. 



+++ Comparison of  Computat ional  Methods for  Reaction Equi l ibr ium +++  

 

SN
E 

20
/3

-4
, 

D
ec

em
be

r 
20

10
 

T N 

80 

Hence,  

   

The columns of   are chosen to be the basis vectors 
of , i.e.  . 

   

The reaction invariant set of equations if found for 
the fictitious species  

 

  

 

 

Since , this shows that constant, or 
. 

The reaction variant equation set is found for the 
fictitious species : 

 

where matrix is an invertible matrix, hence in 
steady state the condition  is also satisfied.  

This example shows that the ODEs,  con-
tains all the information available from the system the 
system of algebraic equations, . 

3 Results of the ODEs 
A dynamic model of the case study is simulated to 
steady state to find the equilibrium concentrations. 
The equilibrium coefficients for this reacting system 
can be found in e.g. [13], [15], and [16].  

The dynamic model is simulated for a sufficiently 
long time and the steady state solution is taken as the 
equilibrium concentrations.  

It can be shown that the equilibrium results depend 
on the initial concentrations of  and , 

and , respectively. It is of interest to 
construct a so called speciation diagram, see Figure 3.  

The speciation diagram shows the equilibrium mole 
fractions of the various species, as a function of the 
so called  loading, i.e. as a function of the frac-
tion  .  

In the speciation diagram of Figure 3, a temperature 
of 40° C is assumed, and the results are in good 
agreement with the reference work [13].  

4 Conclusions 

The equilibrium concentrations of a reactor can be 
found by solving a set of algebraic equations satisfy-
ing Eqs. 1 and 2. In the case of polynomial algebraic 
equations, the roots lie in the complex field. Howev-
er, only real and positive roots are physically realistic.  
 

 

 
Figure 3. Speciation curves at 40 °C 
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Furthermore, among the real and positive roots, some 
solutions represent unstable steady states, and the 
stable steady state roots are thus the only acceptable 
equilibrium concentrations.  

A basic method for solving algebraic equations is 
Newton's method; this method only finds one root, 
and the root that is found depends on the chosen ini-
tial guess . There is no guarantee that the chosen  

leads to the most physically realistic solution. To 
study all solutions using Newton's method, it is nec-
essary to use the method repeatedly, each time using 
a different value of .  

When the algebraic equations are polynomials in 
several variables, the algebraic equations can be 
transformed to Gröbner bases using Buchberger's 
algorithm. Thereafter, all possible sets of solutions 
can be found using a standard solver for single varia-
ble polynomials.  

Finally, it is necessary to postprocess the solutions in 
order to find the physically acceptable equilibrium 
concentrations. However, Buchberger's algorithm is 
quite demanding when it comes to computer memory 
and computation time. Thus, it may be better to use 
continuation/homotopy methods to find all solutions.  

Another alternative is to solve the dynamic model of 
a batch reactor to steady state. Comparing the dynam-
ic model  with the algebraic equations, it is 
easily shown that the dynamic model contains all the 
information from the algebraic equation system 

. Additionally, dynamics of the 
reaction system is included in the dynamic model.  

Clearly, simulating an ODE to steady state where we 
do not care about the transient behavior, is similar to 
using e.g. Newton's method; the ODE solver can be 
considered as just another root solver. Ensuring that 
steady state is reached with the ODE solver, is com-
parable to ensuring that the Newton solver has con-
verged to the root. In both cases, we iterate on 

 such that . 

The advantage of using a physically realistic dynamic 
model with an ODE solver, is that we know that the 
dynamic model has the equilibrium solution as the 
steady state solution, and that we can choose a realis-
tic initial value for the ODEs such that the equilibri-
um solution is found.  
 

Clearly, ODEs exists with complex dynamics such as 
limit cycle behavior where no steady state solution 
exist, or with bifurcations where the steady state 
solution is extremely sensitive to the chosen initial 
value or numerical inaccuracies. But these complex 
dynamic cases will also be difficult to solve with 
alternative methods.  

The above factors indicate that both solving the alge-
braic equations using Newton's method, and solving 
the ODEs using an ODE solver should be equally 
accurate in steady state.  

Since it is just as simple to formulate the ODEs as 
formulating the algebraic equations, since it is sim-
pler to suggest physically reasonable initial values 
than guessing an initial iterate for the Newton solver, 
and since the ODE solver automatically will lead to a 
stable steady state, we suggest that using an ODE 
solver is favorable.  

Using an ODE solver to find the equilibrium concen-
trations has been illustrated through computing the 
speciation diagram relevant for post combustion CO2 
capturing using MEA.  
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