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Mathematical models have been proven to be a key factor in optimizing production processes in recent years. 
However, in the case of biochemical processes the design is usually done using heuristics, since these sys-
tems show complex internal regulation mechanisms and strongly nonlinear behavior. This makes it difficult 
to find an appropriate model. In those cases, where a structured biochemical model has been successfully 
identified, the yield of the process can be increased significantly. Obtaining a suitable production model is 
usually a difficult and time consuming task, especially for biochemical systems. In this contribution the con-
cept for an automation tool is presented which starts with the few noisy measurements of initial experiments 
to perform a model evolution from run to run. Thereby, the first unstructured model candidates are used for 
an optimal production-orientated process design whose realization will provide additional information about 
the dynamic behavior within the production area, thus, leading to new and improved model candidates. Due 
to the difficult measurement situation in biochemical processes many different model candidates may show a 
similar fit to the data why it is unwise to focus on one model candidate for process design, only. Further-
more, the use of more than one model candidate for the design procedure represents a kind of robustness for 
the planning. This cyclic procedure enables an optimal production design corresponding to the available 
measurement information at any time. 

Introduction 
Mathematical models of biological productions play 
an important role for process planning and optimiza-
tion [1]. Here, the main task of a model is the predic-
tion of optimal substrate feeds in order to maximize 
the economical yield. Usually a human modeler will 
plan a number of experiments using his or her experi-
ence and heuristics. To obtain a mathematical descrip-
tion of the system the trends of the measurements are 
analyzed manually and the most important state vari-
ables and reaction schemes are postulated. Then a 
mathematical model is formulated using balance 
equations and conservation laws. The velocity of each 
reaction step has to be described using empirical 
kinetic equations. After the model implementation the 
values of the model parameters have to be determined 
in a time consuming optimization-based numerical 
identification. In an iterative way, the human modeler 
changes the reaction schemes and the kinetic terms 
until the model shows an appropriate fit to the exper-
imental data. Because of this tedious procedure not 
all promising reaction kinetics will be tested.  

Thus, there might exist many other different model 
structures which would fit the few existing measure-
ments similarly well or even better. After the identi-
fied model was used to plan new feeding profiles, 
often a significant extrapolation outside the domain 
of identification experiments takes place. Here, this 
model is often no longer valid. Therefore, the model-
ing procedure has to be repeated. The result of this 
error-prone and time consuming scheme is highly 
depending on the expertise of the human modeler. 

In the last decade many software tools have been 
presented to simplify the modeling procedure [2]. 
Commercial tools like AspenPlusTM, ChemCADTM or 
gPromsTM are usually highly specialized on a certain 
field of application and rely on established methods, 
while academic institutions rather use prototypic 
realizations of new approaches. They often focus on 
the automation of major modeling steps [3, 4, 5, 6, 8, 
9, 10, 11]. Besides balance equations with reaction 
kinetics, many recent tools like Simpathica [12, 13], 
TAM-B [9, 11], ProMoT [14, 7] and BioChem [20, 
19] also consider temporal logic in order to integrate 
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information from heuristic ob-
servations in the mathematical 
model. While TAM-B uses this 
information to refine the reaction 
scheme of an ODE system, Bio-
Chem uses the temporal logic to 
describe additional constraints 
for a canonical S-System [21]. 
The tool ProMoT is based on 
network theory and provides a 
graphical interface with drag-
and-drop functionality, which 
allows to quickly build a model 
out of standard elements stored 
in a library. It offers different 
input and output standards, 
providing a wide variety of in-
terfaces for further processing. 
The software tool RapOpt [22] 
presented in this paper focuses 
on a data-driven continuous 
model evolution starting with the 
measurements from the first 
experiments. In order to test the 
fitting of different models, 
RapOpt will interchange indi-
vidual kinetics within a given 
basic structure, automatically code and compile the mod-
el files and thus create a multi-model system environ-
ment. The refinement of each model in every iteration 
cycle is orientated towards product maximization. 
The paper is organized as follows. In section 1 the 
progress of the run-to-run model evolution will be 
introduced in general, whereas only the central func-
tionalities are described in this contribution. The final 
section is devoted to an example of a multi model 
process design and its experimental realization is 
presented. 

1 Run-to-Run model evolution with 
RapOpt 

1.1 Definition of a model family 
In order to initialize RapOpt, the user has to define 
the system’s states that should be considered. For the 
first crude, unstructured model it is assumed that all 
substrates may influence the reaction rates of the 
specified states. Additionally, measured data is re-
quired which can either be obtained from initial ex-
periments in Erlenmeyer flasks and/or from the data-
base of a process control system of a fermenter.  

Furthermore, the user has to define those dependen-
cies in the reaction rates which are supposed to be 
interchanged by RapOpt as well as the permitted 
kinetics for this process (see Figure 1). Choosing all 
dependencies as changeable will cause a huge num-
ber of model candidates as it will be explained later in 
this section. At this point, the model family is com-
pletely defined and the investigation of its individual 
members concerning the available data will follow. 
To clarify the definition of a model family, a short 
example is introduced. 
The growth of the biomass  is an autocatalytic 
process whose specific growth rate  is influenced 
by three substrate concentrations ,  and . The 
balance equation of a (fed-)batch fermentation with-
out cell death then reads 

  (1) 

In this basic structure of the model family, the reac-
tion rate  is a product of the three kinetics ,  
and  depending on the different substrates ,  
and . The a priori unknown kinetics for the specif-
ic growth rate - and analogously of every other un-
known reaction rate - can be described using empiri-

 
Figure 1. Examples of commonly used rate equations for biological systems that are 
stored in the kinetic library without the corresponding maximal specific growth rate 

. The library also contains information about the parameter bounds and the initial 
parameter values. To the right, a set of curves is shown to illustrate the shape of the 

kinetic when varying its parameter(s). 
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cal kinetic expressions as shown in Figure 1. Besides 
the name of the kinetic and the mathematical expres-
sion, the library also contains meaningful initial val-
ues for the parameters in order to guarantee a typical 
behavior during simulation. Moreover, minimal and 
maximal values are given. These avoid the degenera-
tion of kinetics. To create all members of a model 
family, all interchangeable kinetic terms will be per-
mutated automatically by RapOpt using the list of the 
permitted kinetics, beginning with the least parame-
terized terms. In order not to create senseless models, 
a simple logic is implemented that for example avoids 
the use of strictly inhibiting kinetics in a growth rate 
when substrate is the dependency. Methods from 
TAM-B [9, 18, 11] shall be used to eliminate inap-
propriate models in future. Nevertheless, the kinetic 
library contains more than 50 different empirical 
expressions to describe building rates, which can lead 
to a huge number of models. In the example, see 
Eq. (1),  candidates for  can be 
generated, which have to be identified. 

In the case that only very few measurements are 
available initially, the tool just activates the three 
most often used kinetic terms which contain at most 
two parameters to create different initial model can-
didates. In most cases the few initial measurements 
can be fitted similarly well with different kinetics, 
even if some reaction rates contain only one parame-
ter. All created models constructing the model family 
and their corresponding parameter files will be coded 
automatically by RapOpt in a MATLAB m-file for 
easy interpretable documentation as well as coded 
and compiled in C for accelerated simulation. A short 
select_model command allows the user to change 
between different models, whereby a multi-model 
environment can be easily embedded in existing 
MATLAB programs which will be detailed below.  

1.2 Parameter identification for all members of 
a model family 

As pointed out in the previous section, the permuta-
tion of kinetics can lead to a large number of model 
candidates, for each of which the parameters have to 
be identified in a nonlinear optimization procedure. 
The numerical burden for a nonlinear parameter iden-
tification depends on the degree of the nonlinear 
couplings, the optimization algorithm, and on the 
quality of the initial values and measured data. In 
RapOpt, the time-consuming calculations for all 
model candidates are accelerated using three short-cut 
methods beside a multiple shooting approach [17]. 

Sequential Parameter Identification   The depend-
encies among the design parameters can be cut off 
with a sequential identification procedure. Normally 
in an identification, the ODE system has to be simu-
lated to calculate the value of the maximum likeli-
hood (ML)-objective. In a nonlinear system, each 
equation of the ODE system is usually coupled to 
many other equations. By using interpolated meas-
urements instead of the simulations for all measured 
states, these equations can be decoupled, such that a 
parameter in one equation does not affect the results 
of other equations. Thus, the identification problem is 
partitioned in a series of identifications. The first 
problem of this sequence only contains a few design 
parameters. By replacing the data interpolations with 
the model simulations step by step, the forthcoming 
identifications grow piecewise until the original iden-
tification problem is solved. 

Determination of Initial Values   The sequential 
identification is used for the first model candidate 
only and provides a well fitted initial model. For all 
further model candidates the similarity between the 
different models is used to generate initial parameter 
values for the next identification. This presumes a 
designated order, in which consecutive models only 
differ in one kinetic term. The parameters of the cur-
rent identification are initialized with the optimal 
parameters of the former model which ensures a con-
verging identification procedure. The new parameters 
of the changed expression (e.g. Figure 1) are deter-
mined within the given bounds such that the kinetic 
term is as close as possible to that of the former can-
didate. For this process no time-consuming simula-
tion of the ODE system is necessary. 
As an example, Figure 2 shows how some kinetics 
from Figure 1 are equalized to a Monod equation 
with given parameter  within the given range 

. In RapOpt this range will be determined 
according to the experimental data used for parameter 
identification. The kinetic Moser is not shown in this 
figure, because by setting  it can be exactly 
transformed in a Monod kinetic. As a result of this 
kinetic equalization, the initial simulation of the new 
model is very close to the final simulation of the 
previous model candidate. 

Sequence of Identification   Depending on the num-
ber of model candidates, there might not be enough 
time to identify all of them. Therefore, most promis-
ing models have to be identified first. In RapOpt this 
is achieved using a hierarchical tree structure.  
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The top level consists of the model candidate with the 
most simple kinetic terms (usually all Monod) as a 
parent for further variations. The second layer is de-
rived from the first by replacing one dependency with 
each of the activated reaction equations and thus 
creating several children. Therefore, in the appearing 
tree structure, adjoining models along the branch 
differ in one term only. Moreover, all children of a 
model only differ in one term as well. The following 
heuristic is used to choose the most promising model 
candidates for the next identifications. After the iden-
tification of the first model, all of its direct children 
will be identified. The child with the best fit to the 
measured data will be the new parent, whose children 
will then be tested. This identification procedure 
continues until all leaves of one branch of this sys-
tematic tree have been reached. At this point, every 
dependency was interchanged with all activated ki-
netics from the library even though not all permuta-
tion have been identified yet. Then, the procedure 
continues with the model in the data tree which 
shows the second best fit to the measurements, and so 
on. This strategy is based on the assumption, that a 
better model always arises from a good model by 
further changes in individual dependencies and there-
fore many promising models are identified at an early 
stage. However, the best model can be located some-
where in the tree. Still a process design with appro-
priate model candidates can be started already as 
explained next while the identification procedure con-
tinues to find even better models. 

1.3 Multi-model trajectory planning 
At an early stage of process development only few 
measurement information is available. Many of the 
model candidates created in Section 1.1 and 1.2 will 
fit the measurements similarly well with differences 
in the objective values in the order of the measure-
ment noise. Nevertheless, they all have different 
structures, with different parameter sensitivities ac-
cording to the measurements given. A design proce-
dure that is based on the best model only, runs the 
risk of showing a bad extrapolation of the model 
behavior around the planned trajectory either caused 
by a wrong mathematical structure or by parameters 
that had been insensitive during identification and 
have now a significant effect in process design. 
Moreover, judging a model by its objective value is 
delusive, due to the fact that a gradient-based optimi-
zation could have stopped in a local minimum.  

Not rarely, a better objective can be found if the op-
timization is restarted at the last minimum, because of 
an untrained Hessian matrix. By considering more 
than one model in the planning procedure, these prob-
lems can be addressed. The extrapolation to an ex-
treme dynamical behavior, that a single model could 
predict, is now partly covered by the others.  

Moreover, the difficulty of finding the best model is 
circumvented by optimizing the feeding profiles ac-
cording to the yield predicted by all models. The 
simplest objective function for a multi-model trajec-
tory planning would be to maximize the mean or 
median of the product amount. More robust trajecto-
ries can be obtained if the objective is formulated 
using the minimal product yield obtained over all 
models. 

1.4 Preparing the next evolution 
As more measurement information becomes available 
from run to run, two different evolutions can take 
place. At first, an automated data analysis will be 
done in order to investigate whether or not the ODE 
structure has to be refined by intra-cellular storages of 
nutrients and products to slowly obtain a more and 
more structured compartment model. If new states are 
postulated, the procedure will restart using the sim-
plest kinetics. Otherwise, more complex kinetic terms 
will be tried out for the best models of the last cycle. 
The percentage of models that should be carried over 
to the next cycle can be investigated as follows. 

 

Name Parameter 
Monod  
Ming  

Sokol Howell  
Haldane 
Moser  

 

 
Figure 2. Parameters of different kinetics adjusted such that 
they fit the Monod kinetic ( ) in a least squares sense. 
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Let  be the number of permitted kinetics of the last 
cycle and  the number of new kinetics for the forth-
coming. If  is the number of dependencies wherein 
the kinetics are inserted, then md models were for-
merly considered and  would have to be 
identified in the next cycle. Reusing a certain fraction 

 of old structures can reduce the number of models if 

  (2) 

  (3) 

holds. It has to be observed that reusing models will 
lead to several identical models, when new kinetics 
are inserted for terms that formerly distinguished the 
models from each other. Therefore, a routine has to be 
implemented that eliminates all duplicated models. 
Nevertheless, this method promotes the actual evolu-
tion, since further modifications are based on the 
properties of the fittest models only. 

2 Experimental  part 
The development of the RapOpt software-tool for a 
run-to-run optimization was followed in parallel to 
the synthesis of an optimization, based on a multi-
model approach. Therefore, the first experimental 
results obtained from a multi-model planning which 
is presented here, did not make use of all possibilities 
concerning automatic modelling as described above. 
Instead, some modeling steps had been done manual-
ly to describe the growth and production behavior of 
the bacteria Paenibacillus polymyxa, see below. Early 
experiments with this organism have pointed out that 
a simple unstructured model has to be refined by a 
storage term for phosphate, giving rise to the follow-
ing low-structured model family. 

   (4) 
   (5) 

   

    (6) 

   

    (7) 

   (8) 

   (9) 

   (10) 

   (11) 
   (12) 

   (13) 
   (14) 

The balance equations for biomass  and the prod-
uct macrolactin  contain variable unknown kinet-
ics ,  that depend on the concentrations of the 
substrates glucose (index ’c’), ammonium (’am’), 
phosphate (’ph’) and polyphosphate (’pp’). For each 
of these variable kinetics one of the three allowed 
kinetics Monod, Moser, Ming for the growth and 
Monod, Haldane, Ming for the production from Fig-
ure 1 was inserted by RapOpt to define an individual 
member of the model family. Since there are 6 varia-
ble kinetic terms in the model family and three differ-
ent permitted kinetic terms,  different mod-
els had been set up automatically. After the automatic 
computational implementation of all models had been 
completed as described in the previous section, a 
parameter identification for every single model had 
been carried out. The result of these identifications 
are shown in Figure 3 as a histogram, where the 
number of models with a certain amount of the objec-
tive  is given. 

The histogram clearly illustrates that many models 
can describe the measurements with similar quality. 
As argued in the previous section, using the model 
with the best objective value ignores the fact that the 
measured data might not be informative enough to 
clearly discriminate one model from the others as 
well as the problem of local minima in the objective 
of the parameter identification. Nevertheless, it is 
obvious that a lot of model structures are not able to 
fit the underlying measurement information. The 
question remains how many of the suitable model 
candidates should be used for the upcoming process 
design. In this case, the best 4 model structures ac-
cording to the objective value were added to the 5 
manually built models that already existed.  

 
Figure 3. Histogram of the final ML-objective for the 

parameter identifications of all 729 models. 
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Hence, in this point we left the route given in Section 
1, as RapOpt missed some functionalities when the 
experiment was scheduled. In Table 1 the kinetics and 
their corresponding parameter values for the inter-
changed dependencies of these models as well as its 
objective value after parameter identification are 
listed. Table 2 shows the yield coefficients and the 
parameters of the kinetics that had not been inter-
changed. 
During the identification of the parameters these 9 
models showed a very similar outcome as shown in 
Figure 4 for one of the experiments used in the identi-
fication process.  

It points out that different model structures show a 
similar fit to the measurements after parameter identi-
fication. When using these models for a multi-model 
trajectory planning, the individual trajectories differ a 
lot, as can be seen in Figure 5 as grey solid lines. The 
underlying process design is based on an objective 
that maximizes the mean of all nine predicted prod-
ucts, shown by the black solid line. When the process 
was run (measurements shown as open circles) none 
of the models at this early state could fully describe 
the behavior. Especially the predicted yield, here the 
antibiotic macrolactin, differs among the candidates. 

no. 
growth production 

       
1 m. 

0.249 
Ming Moser Ming 

0.005 
Monod Ming Sokol Howell 

51.9 k = 0.0158 k = 0.088  = 0.909 k = 0.0059 k = 0.0413 k = 0.037 k = 0.897 
361 

0.347 
Monod Moser Monod 

0.115 
Monod Monod Haldane 

52.5 k = 0.786 k = 0.095  = 0.783 k = 0.012 k = 0.025 k = 0.031 km = 12.06 ki = 0.018
316 

0.335 
Monod Moser Monod 

0.095 
Ming Monod Haldane 

52.7 k = 0.724 k = 0.091  = 0.812 k = 0.007 k = 0.003 k = 0.037 km = 6.717 ki = 0.018
2 m. 

0.403 
Monod Haldane Monod 

0.110 
Ming Monod Haldane 

54.2 k = 0.470 km = 0.078 ki = 1.150 k = 0.003 k = 0.002 k = 0.041 km = 9.433 ki = 0.018
3 m. 

0.410 
Monod Haldane Monod 

0.099 
Monod Monod Haldane 

55.8 k = 0.398 km = 0.068 ki = 0.940 k = 0.002 k = 0.010 k = 0.043 km = 9.592 ki = 0.020
4 m. 

0.326 
Monod Moser Monod 

0.057 
Ming Monod Sokol Howell 

56.6 k = 0.594 k = 0.100  = 0.867 k = 0.004 k = 0.001 k = 0.040 k = 14.477 
5 m. 

0.398 
Monod Haldane Ming 

0.099 
Ming Monod Haldane 

57.9 k = 0.379 km = 0.068 ki = 0.970 k = 0.001 k = 0.001 k = 0.051 km = 10.75 ki = 0.021
568 

0.262 
Ming Moser Monod 

0.090 
Ming Monod Haldane 

59.0 k = 0.376 k = 0.087  = 0.544 k = 0.001 k = 0.019 k = 0.041 km = 10.27 ki = 0.030
424 

0.317 
Monod Moser Monod 

0.105 
Ming Ming Haldane 

60.3 k = 0.469 k = 0.082  = 0.826 k = 0.004 k = 0.005 k = 0.048 km = 11.06 ki = 0.019

Table 1. Inserted kinetic terms of nine model candidates that were used for multi-model trajectory planning. For the 
mathematical expressions of the kinetic terms see Figure 1. Model numbers denoted by . had been built manually. 

no. 

  yield coefficients 

           
1m. 0.2503 4.340 1.9254 2.9309 0.1848 0.0228 12.936 1.7753 0.0782 15.232 0.3716 
361 0.0500 0.005 0.1090 22.095 0.1891 0.0468 10.237 1.9250 0.0626 19.048 0.1401 
316 0.0883 0.025 0.1183 21.638 0.1897 0.0471 8.0091 1.8984 0.0642 19.104 0.1442 
2m. 0.0624 0.048 0.1113 22.034 0.1932 0.0475 10.753 1.6069 0.0642 21.728 0.1445 
3m. 0.0573 0.005 0.1099 22.450 0.1969 0.0484 11.778 1.8260 0.0702 18.953 0.1419 
4m. 0.0728 0.061 0.0834 19.965 0.1892 0.0467 13.746 1.6376 0.0639 21.134 0.1306 
5m. 0.0561 0.054 0.1104 22.682 0.1958 0.0487 11.705 1.8195 0.0700 19.046 0.1395 
568 0.0616 0.061 0.0892 22.752 0.1868 0.0476 11.223 1.7779 0.0636 20.289 0.1318 
424 0.0534 0.049 0.0940 22.308 0.1940 0.0488 12.344 1.6834 0.0701 20.000 0.1442 

Table 2. Parameter values of those kinetics that had not been interchanged (Eq. (13) and (14)) as well as the identified yield 
coefficients of all nine models. Model numbers denoted by  had been build manually. 
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However, the obtained yield of macrolactin was high-
er than the one obtained by our partners of the biolog-
ical department in first tests and taking into account 
that macrolactin is a secondary metabolized product 
these first results are promising. Moreover, these data 
are now used in the aforementioned model evolution. 

Furthermore it is noticeable that the simulated phos-
phate concentrations show differences between the 
individual model and a bad fit in the first part of the 
experiment. The range can be partly explained by the 
obviously different implementations of the assumed 
polyphosphate reactions which cannot be fitted since 
there are no measurements available. Beside of that it 
is reasonable to assume that phosphate is involved in 
a reaction not covered by these early model candi-
dates. The model evolution will take care of that later 
on. The difference between planned trajectories of 

 and the measurements at the end of the experi-
ment can be explained by the violation of the glucose 
concentration constraint; the models were not able to 
cope with this condition. It has to be noted that the 
feeding container for the glucose substrate run dry 
during the last 10 hours of the experiment.  

 

This explains the feeding profile of  in Figure 5 and 
theviolation of the lower boundary of . The last part 
of the experiment was re-calculated in this Figure to 
reflect the realized feeding profile to allow a better 
comparison between planned trajectories and meas-
urements. 

3 Conclusion 
In this contribution, it was shown how RapOpt ena-
bles an automatic modeling based on a multi-model 
approach. Moreover, by connecting this automated 
modeling procedure with a multi-model process de-
sign an evolutionary model development was estab-
lished that focuses from the beginning on the product 
output of the process. Therefore, the modeling proce-
dure can be performed in parallel to the actual pro-
duction process leading quickly to a certain amount of 
product while the model will be continuously refined. 
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Figure 4. Simulation run of all nine models 

for one of the experiments used for 
parameter identification. Measurements of 

the concentration of biomass , 
macrolactin , ammonium , glucose 

 and phosphate  are given by open 
circles, the different model simulations by 

grey solid lines. 

 
Figure 5. Optimized trajectories of the different models in a process design that 

considers all nine models. First and second row as in Figure 4. Third row: optimal 
feeding profiles used for ammonium, phosphate and glucose feed. Constraints are 

shown as lines with triangulars. 
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