
+++ MATLAB-based Robot Control Design Environment +++ E

55

N
SN

E 20/2, A
ugust 2010

MATLAB-based Robot Control Design Environment
for Research and Education

L. Žlajpah, B. Nemec, D. Omr en, "Jožef Stefan" Institute, Ljubljana, Slovenia

SNE Simulation Notes Europe SNE 20(3-4), 2010, 55-66, doi: 10.11128/sne.20.en.09995

Research in the field of robotics is tightly connected to simulation tools for many reasons. On one side,
simulation supports the development of new advanced control algorithms and on the other side it is always
not feasible to build a whole robot system to test some algorithms or it is not safe to perform tests on a real
system (at least in the first design stages). In the paper we present an integrated environment for the design
and testing of advanced robot control schemes, including visual tracking, force feedback on a single robot or
in multi-robot applications. The kernel of our simulation environment is MATLAB/Simulink. The main capa-
bilities are: the simulation of the kinematics and dynamics of manipulators, the integration of different sensor
systems like vision and force sensors, scenarios for complex robot tasks, the visualization of robots and their
environment and the integration of real robots in the simulation loop. The advantage of our system is the
simplicity, which allows easy integration of different robots, sensors and other devices. Some of these can be
easier simulated by using other tools. Hence, other simulation tools can be used for the simulation of differ-
ent parts of the system and then these subsystems are integrated in out simulation environment. The other
important feature is easy final testing of developed control algorithms. Namely, for final testing of the con-
trol algorithms the models in the simulation scheme are just replaced by interface blocks for real system and
the user does not need to consider implementation details. Finally, to show the efficiency and usability of our
control design environment we outline some typical experimental examples using our robots. We explain
some typical control design procedures from the “pure” simulation to the testing of algorithms on real robots.

Introduction
The ways and methods in robotics research and de-
velopment have always been influenced by the tools
used. This is especially true when one considers the
profound impact of recent technologies on robotics,
especially the development of computers which be-
come indispensable when designing the complex
systems like robots. Not many years ago, computing
cost was still a significant factor to consider when
deriving algorithms and new modeling techniques [1,
2, 3]. Nowadays, distributed computing, network tech-
nology and the computing power developed by com-
mercial equipment open new possibilities for doing
systems design and implementation. However, in spite of
all that the creativity of a human designer cannot be
left out in the design process. The best solution seems
to be to provide the designer with proper tools which
significantly increase his efficiency. Among them, the
simulation has been recognized as an important tool
in designing the new products, investigating their
performances and also in designing applications of
these products. For complex systems as robots the
simulation tools can certainly enhance the design,
development, and even the operation of the robotic
systems. Augmenting the simulation with visualiza-
tion tools and interfaces, one can simulate the opera-
tion of the robotic systems in a very realistic way.

Currently, many different simulation tools for robotic
systems are available. They differ from each other
depending on which aspect of the robot research they
support, how open they are or on which platforms
they work. However, many tools are not always ful-
filling all the requirements of the research and teach-
ing activities in robotic laboratories like reconfigura-
bility, openness and ease of use, etc.

Reconfigurability and openness are features already
recognized by many as essential in the development
of advanced robot control algorithms [4, 5, 6]. Not
only is it important to have easy access to the system
at all levels (e.g. from high-level supervisory control
all the way down to fast servo loops at the lowest
level), but it is a necessity to have open control archi-
tectures where software modules can be modified and
exteroceptive sensors like force/torque sensors and
vision systems can be easily integrated. Reconfigura-
bility should also be reflected when more fundamen-
tal changes to the controller architecture are required,
in the necessity of quickly being able to make modi-
fications in the original design and verify the effect of
these modifications on the system. In other words, the
user should be able to quickly modify the structure of
the control without having to alter the simulation
system itself.

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

56

In the last decade the software has become more and
more easy to use. This is still one of the main major
issues when selecting a software tool. First of all, the
tools are used by many users in a laboratory and not
all of them have the same expertise. To boost the
knowledge exchange, it is of benefit that they work
with the same tools. Next, testing of different control
algorithms on real robotic systems is in general not
very user friendly: the algorithms usually have to be
rewritten for the real-time execution and the different
implementation details have to be considered [4, 7].
This forces the user to devote a large part of the de-
sign time to topics not connected with the main issues
of the control design, especially when he is not inter-
ested in software implementation issues. The ease of
use becomes even more important when students are
working with robots. In most cases they work in a
laboratory for a shorter period, they are focused on
their projects and they could become frustrated if they
have to learn a lot of things not directly connected to
their tasks. Finally, in research laboratories different
robot systems are used equipped with more or less
open proprietary hardware and software architecture.
Therefore, it is much desired that the control design
environment is unified, i.e. the same tools can be used
for all robot systems.

The simulation tools for robotic systems can be di-
vided into two major groups: tools based on general
simulation systems and special tools for robot sys-
tems [8]. Tools based on general simulation systems
are usually represented as special modules, libraries
or user interfaces which simplify the building of robot
systems and environments within these general simu-
lation systems (e.g. SolidWorks [9]). On the other
hand, special simulation tools for robots cover one or
more tasks in robotics like off-line programming and
design of robot work cells (e.g. Robcad [10]) or kin-
ematic and dynamic analysis [11, 12]. They can be
specialized for special types of robots like mobile robots,
underwater robots, parallel mechanisms, or they are
assigned to predefined robot family. Depending on
the particular application different structural attributes
and functional parameters have to be modelled.

For the use in research and teaching laboratories,
robot simulation tools focused on the motion of the
robotic manipulator in different environments are
important, especially those for the design of robot
control systems [13, 11, 12, 14]. Recently, Microsoft
Robotics Studio (MSRS) [13] has been launched with
a general aim to unify robot programming for hobby-

ist, academic and commercial developers and to cre-
ate robot applications for a variety of hardware plat-
forms. The system enables both remotely connected
and robot-based scenarios using .NET and XML
protocols. Simulation engine enables real-time phys-
ics simulation and interaction between simulated
entities. Each part of control loop can be substituted
with the real or simulated hardware. Although the
system is still under the development, it is not easy to
add new entity, for example a new robot or a new
sensor. One of the major drawbacks seems to be the
low data throughput rate, which does not allow the
realization of complex control laws at high sampling
frequency. Therefore, it is not clear yet if MSRS is
appropriate for research robotics, especially for com-
plex systems. Real time requirements are better
solved in another programming/simulation frame-
work, MCA2 [15]. MCA is a modular, network trans-
parent and realtime capable C/C++ framework for
controlling robots and other hardware. The main
platform is Linux/RTLinux, but support for Win32
and MCA OS/X also exists. However, it is still a
complex system and therefore less appropriate for
education and students projects.

MATLAB is definitely one of the most used platforms
for the modelling and simulation of various kind of
systems and it is not surprising that it has been used
intensively for the simulation of robot systems. “The
Robotics Toolbox” [11] provides many functions that
are required in robotics and addresses areas such as
kinematics, dynamics, and trajectory generation. The
Toolbox is useful for simulation as well as for analyz-
ing the results from experiments with real robots, and
can be a powerful tool for education. However, it is
not very good for the simulation in Simulink and for
the hardware-in-the-loop simulation “SimMechanics
Toolbox” [12] extends Simulink with the tools for
modelling and simulating mechanical systems. With
SimMechanics, one can model and simulate mechan-
ical systems with a suite of tools to specify bodies
and their mass properties, their possible motions,
kinematic constraints, and coordinate systems and to
initiate and measure body motions.

In the following, we present our approach to the inte-
grated environment for the design and testing of robot
control systems. Our framework is not intended as an
alternative to the MSRS or MCA2. It is not as com-
plex as MSRS and it does not possess physic simula-
tion capabilities. On the other hand, real time capabil-
ities cannot be compared to the MCA2.

+++ MATLAB-based Robot Control Design Environment +++ E

57

N
SN

E 20/2, A
ugust 2010

The advantage of our system is the simplicity, which
allows easy integration of new entities and is also
very appropriate for the education and research robot-
ics. First we present our concept of the use of simula-
tion tools in the control design for research and edu-
cation. Next, the experimental setup in our laboratory
is described. Finally, to show the efficiency and usabil-
ity of our control design environment we outline some
typical experimental examples using our service robot.

1 The concept
The importance of simulation tools in the develop-
ment of robot control systems has been recognized by
our team very early. We have been using different
simulation tools for over 20 years and many of them
have been developed in our laboratory. In the last
decade we have been using for the control design
MATLAB/Simulink based integrated environment
based on Planar Manipulators Toolbox for dynamic
simulation of redundant planar manipulators [7]. It
enables the use of different sensors in the control loop
and also the real-time implementation of the control-
ler and hardware-in-the-loop simulation. Figure 1
shows the general simulation scheme in this envi-
ronment.
A crucial feature inherited in this scheme is indicated
by the mode switches. Namely, the user can easy
switch between using model or a real system in the
simulation loop. This is one of the main features
which we need for development of robot control
systems. The Planar Manipulators Toolbox has
proved to be a very useful and effective tool for many
purposes, but is has been primary designed for kine-
matic and dynamic simulation of planar manipulators
and to develop and test control algorithms on the
lower control level, especially for redundant manipu-
lators. In the last years, the scope of our research is
oriented more in the development of control systems
for humanoid and service robots.

These robots have in general a more complex me-
chanical structure with many degrees-of-freedom.

So, complex kinematic and dynamic models are nec-
essary to simulate them.
Furthermore, the control methods and algorithms we
are developing are now usually a part of the higher
robot control levels and the low level close-loop con-
trol algorithms are assumed to be a solved issue.
These high level control algorithms can become very
complex and may even require parallel computation
distributed over more computers.

Considering all new requirements, which are:
• to simulate the kinematics and dynamics of arbi-

trary chosen kinematic chain describing different
manipulators,

• to enable integration of different sensor systems
like vision and force sensors,

• to enable simulation of scenarios for complex
robot tasks,

• to include the model the robots’ environments,
• to visualize the robots and their environment and
• to enable integration of real robots in the simula-

tion loop,
we had to reconsider the concept of the control design
environment we will use in future. Based on our good
experience with MATLAB/Simulink we have decided
that this environment will be the kernel of our simula-
tion tools. However, some of the above requirements
can be easier fulfilled by using other tools. For exam-
ple, the visualization of the robot and the environ-
ment can be easily done by dedicated graphics tools.
Furthermore, advanced robot control strategies rely
intensively on feedback sensor information. The most
complex sensor system is the vision system, which
can have several configurations and can be imple-
mented on a single computer or on a computer cluster
composed of many computers running different oper-
ating systems.

To integrate such a diversity of hardware components
in unique framework we have decided to use the
Ethernet communication and the UDP protocol. In
this way, we have maximal possible "degree-of-
openness" of the system. Figure 2 shows a typical
scheme of our robot integrated environment.

In this scheme, each block can represent a real system
or a model of that system.

Note that because we are using ethernet communica-
tion between the blocks, different software tools on
different platforms can be used to simulate specific
parts of the system.

Figure 1. A block diagram of the integrated environment.

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

58

Consequently, the simulation environment can consist
of several interacting applications, each representing
a part of the system.

2 The experimental setup
The experimental setup in our Robotics Laboratory
consists of several robots: the Mitsubishi PA10 robot
which can be mounted on the Nomad XR 4000 mo-
bile platform, humanoid robot Fujitsu HOAP3 and a
7 DOF humanoid head. They serve to research new
approaches in the service and humanoid robotics.

In the following examples we use the Mitsubishi
PA10 robot (see Figure 3). The PA10 robot is a gen-
eral purpose seven degrees of freedom robot arm with
brushless AC Motors and harmonic drive transmis-
sion in each joint.

The robot has an open architecture as well as in the
hardware as in the software, and this provides the
possibility to control and modify any aspect of the
robot’s behavior and to include new sensor infor-
mation to the control system. The MHI controller is a
four layer controller based on ARCNET which allows
to control the robot in velocity mode at 100Hz. In
same applications, it turned out that the MHI robot
controller is not appropriate due to the limited sam-
pling frequency, speed and acceleration limits and
redundancy resolution algorithms used for the robot
control. Therefore, we have developed an interface
which communicates with the robot power system via
ARCNET, which enables direct access to the velocity
and torque motor inputs with sampling rates up to
700 Hz.

Figure 4. Simulink Robot systems library

Figure 3. Experimental setup (Mitsubishi PA10, vision

system and force sensor)

Figure 2. A functional block diagram of the robot integrated environment in Robotics Laboratory including

the robot PA10, mobile platform Nomad XR 4000 and sensor systems

+++ MATLAB-based Robot Control Design Environment +++ E

59

N
SN

E 20/2, A
ugust 2010

3 Simulink block library
In Simulink, a system is modelled by combining
input-output blocks. To gain the transparency we try
to represent a system by the block structure with
several hierarchical levels, i.e. by combining different
basic blocks subsystems are built which become a
single block at the higher level.

In Figure 1 typical robot subsystems can
be seen: the trajectory generation, the
controller, the model of the manipulator
and the environment and the animation of
manipulator motion.

Figure 4 shows the Robot systems block
library. The goal of the library is to pro-
vide blocks which are needed to simulate
robotic systems and cannot be modelled
with standard blocks.

First of all, this are the blocks for robot
kinematic and dynamic models, the blocks
for sensors systems, the typical transfor-
mations present in robot
systems and the special
interface blocks for ro-
bots, sensors and all other
communications.

Additionally, the library
includes some blocks with
standard subsystems like
task space controllers,
trajectory generation mo-
dules, etc.

3.1 Robot models
Let the configuration of the manip-
ulator be represented by the vector

 of joint positions, and the end-
effector position (and orientation)
by -dimensional vector of task
positions. The joint and task coor-
dinates are related by the following
expressions

 (1)
where is the Jacobian matrix, and
the overall dynamic behaviour of
the manipulator is described by the
following equation

 (2)

where is the vector of control torques, is the
symmetric positive-definite inertia matrix, is the
vector of Coriolis and centrifugal forces, is the
vector of gravity forces, and vector represents the
torques due to the external forces acting on the ma-
nipulator.

Figure 6. The dynamic model of the PA10 robot

Figure 7. A block diagram representing the task space controller.

Figure 5. PA10 robot blocks

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

60

The robot model blocks in the library (see Figure 5)
represent the basic terms of the system as given in the
above equations. Hence, the modelling of the robot is
actually only the transformation of the model equa-
tions into block diagrams. In the library there are
model blocks for all robots we are using. For exam-
ple, the dynamic model described by the Eq. (2) for
the PA10 robot, i.e. the block PA10 Dyn Mod in the
library, is built using the basic block PA10 Inv Dyn
Mod as shown on Figure 6, where the model matrices

, hand of the robot mechanism are calculated.
The same principle is used for other robots and model
types. Therefore, if one wants to use a dynamic model
for another robot, he has only to substitute the block
PA10 Inv Dyn Mod with an adequate block for the
desired robot. In the same way, the other common
subsystem which includes models is built. Figure 7
shows the task space controller for PA10 robot used
later in examples. Here, a kinematic model of a robot
is used to obtain direct kinematic transformation
(end-effector position vector and rotational matrix)
and the Jacobian matrix of the robot, which are need-
ed in the control algorithm.

For hardware-in-the-loop simulation, it is necessary
to use hardware interfaces with corresponding soft-
ware drivers to include a real robots into the control
loop. Usually, in case of robotic manipulators inter-
faces for actuators and sensors are needed. In the
past, it was common to use D/A convertors for con-
trolling the actuators and joint positions were meas-
ured via incremental encoders. However, contempo-
rary robot controllers and sensor systems enable the
communication via different networks protocols like
ethernet, Profibus, CAN, etc. In the Robot systems
library, each robot has special interface blocks which
allow simple integration of them into the simulation
loop. For example, for the PA10 robot we have pre-
pared drivers to control the robot using the MHI con-
troller and using the Ethernet and UDP protocol.

Additionally, we have developed external applica-
tions for the simulation of our robots, which have the
same interface as real robots. Using this applications,
the control system realized in Matlab/Simulink is the
same for the model or the real robot, i.e. the same
interface blocks are used when a model or a real robot
is included in the simulation loop. This enables easy
and safe testing of control algorithms and the tests
can be made even if the real robot is not available.
When animation and visualization are also included,
the simulation is even more realistic.

3.2 Integration of sensors
Advanced robotics is characterized by the variety of
complex sensory system, e.g. vision sensors, force
sensors, acoustic sensors, laser scanners, proximity
sensor, etc. Therefore it is extremely important to
apply as accurate as possible sensor models into the
simulation environment. Models of sensors are com-
pletely transparent to the design environment, i.e. real
sensor can be substituted with the simulated one and
vice versa in the control loop.

The integration of sensors depends on their character-
istics. Complex sensor systems like vision and acous-
tic sensors, or more advanced laser proximity sensors
require relatively high computational power for signal
processing. In many cases, it is difficult to accom-
plish all required data processing on the local com-
puter. Often we have to apply a remote computer or
even a remote computer cluster in order to obtain
required computational power.

In such a case, the subsystems are connected through
ethernet with UDP protocol. We have developed a
special protocol classes for different sensors, actua-
tors and other subsystems. However, the performance
is also affected by the communication delays. There-
fore, it is favourable to process signals of high frame-
rate sensor, such as joint encoders, tachometers, force
sensors, etc. on the local computer.

3.3 MATLAB robot language interpreter
When designing and testing complex robot tasks, it
has turned out that standard Simulink blocks which
can generate arbitrary trajectory cannot provide all
the flexibility needed for complex robot tasks, espe-
cially for experimental work in service and humanoid
robotics where the desired motion depends on the
system/environment states. Commonly used solution
for the definition of robot tasks are robot languages.
Therefore, we have developed a MATLAB/Simulink
block which can interpret the robot language. Includ-
ed in the simulation it serves as the robot motion
generator and supervisor. The developed interpreter
module for Matlab Robot Language (MatRoL) is
BASIC-like programming language extended with
special commands for the robot control and supports
all MATLAB interpreter commands.

In this way we have the advantage of a simple robot
task definition and access to comprehensive MATLAB
computation capabilities. The usage of the robot lan-
guage is also favourable for the education.

+++ MATLAB-based Robot Control Design Environment +++ E

61

N
SN

E 20/2, A
ugust 2010

Students can learn and accomplish their laboratory
exercises much faster using robot language and the
integrated environment allows safe testing of their
algorithms on models and final tests on the real ro-
bots.

MatRoL is entirely written in Matlab. It has common
instructions for the program flow (IF THEN ELSE,
FOR NEXT, REPEAT UNTIL, GOTO <label>, GOSUB

<procedure_name> RETURN) and special commands
for the robot control (FRAME, MOVE, APPROACH,
DEPART, SPEED, ACCELERATION, FORCE, NULLMOVE,

TRAJECTORY). Additionally, all Matlab commands can
be executed within a MatRoL program as an instruc-
tion. In this way we can use powerful Matlab matrix
computation capability for controlling robot pose and
for complex computation generally needed when
vision and force sensors are applied. MatRoL sup-
ports various interpolation modes in Cartesian and
task space, and supports also redundant robot sys-
tems, e.g. a special command NULLMOVE is used to
define self-movement when kinematically redundant
mechanisms are used.

Each robot in the simulation environment has its own
MatRoL block, i.e. a special program. Program syn-
chronization is done by assigning global variables,
which can be signals, vectors, frames, or other. The
MatRoL supports frame the orientation definition in
roll-pitch-yaw angles, Euler angles and quaternions,
while the interpolation is accomplished using the
quaternions. The script in Listing 1 has been used for
the vision based manipulation as explained later in
Section 4.2.

1 % Case: Visual servo
2 TRACE 1
3 ! points(1).d=[0.0,0.0,1.1,0,-pi/2,0]';
4 ! points(10).d=[0,0,0,0,0,0]';
5 ! mat(10).d=eye(3);
6 SPEED 0.5
7 ACC 0.5
8 MOVE 1
9 ! ATK_Send('LetterA');

10 GRIP 1
11 GOSUB vservo
12 GOSUB grip
13 STOP
14 % ------------------------
15 LABEL vservo
16 ! disp('VISUAL SERVO');
17 LABEL loop
18 ![xc,var(1)]=Vis_Ser(points(10).d,mat(10.d);
19 IF (var(1) < 0.005)
20 GOTO exit
21 ENDIF
22 GOTO loop
23 LABEL exit
24 ! disp('DONE');
25 RETURN
26 % -----------------------
27 LABEL grip
28 SPEED 0.1
29 DELAY 1
30 SPEED 0.1
31 TDEPART 0 0.03 0
32 DELAY 0.5
33 TDEPART 0 0 0.15
34 DELAY 0.5
35 GRIP 0
36 DELAY 0.5
37 TDEPART 0 0 -0.01
38 SPEED 1
39 move 1

40 TDEPART 0 0.04 0
41 GRIP 1
42 RETURN
43 END

Listing 1. MatRoL script for the vision-based
manipulation

3.4 Visualization and animation
It is very important to visualize the simulation results.
Especially in robotics it is necessary to “see” the
motion of the robot and objects in the working envi-
ronment. In our system we rely on external software
for the visualization and animation of robots. In gen-
eral, joint angles of robotic manipulators as well as
the position and orientation of the other simulated
objects in the scene are passed to the visualization
tools using TCP/IP or UDP protocol.

Figure 9. Animation of the HOAP 3 humanoid

robot using RoboWorks.

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

62

Currently, we have integrated into our simulation
environment two visualization software packages -
RoboWorks [16] and Blender[17].

Roboworks incorporates simple, but efficient model-
er. Because of its simplicity RoboWorks package is
the favourable tool for the visualization of simpler
systems, i.e. one or two robots in non-complex envi-
ronment. Figure 9 shows the animation of our HOAP
3 humanoid robot and also in the following examples
the RoboWorks environment has been used for the
visualization.

For more complex scenes we use Blender, an open
source multi-platform 3D computer animation pro-
gram, which has a lot of features that are potentially
interesting for engineering purposes, such as the sim-
ulation and programming of robots, machine tools,
humans and animals, and the visualization and post-
processing of all sorts of data that come out of such
biological or artificial “devices”.

Blender supports also scripts (via Python interfaces to
the core C/C++ code), hence it can be extended in
many different ways. Among others, Blender has the
capability of placing moving cameras at any link of
the kinematic chain, it supports the real time photo
realistic rendering for the virtual reality simulation
and has also a physics engine for the simulation of the
interactions between entities.

3.5 Real-time simulation
The real-time performance of the control algorithm is
very important when dealing with low-level control.
However, when developing higher level control algo-
rithms real-time may be also important especially
when high sample frequency improves the perfor-
mance of the system. Therefore, when manipulator-
in-the loop simulation is performed, the simulation
system which controls the robot system has to pro-
vide real-time capabilities and enable high sample
frequencies. There are many real-time operating sys-
tems as Real Time Linux, QNX, EYRX, SMX, etc.
Disadvantages of these operational systems are time-
consuming software development and incompatibility
with other systems. The algorithms are usually writ-
ten in C or some other low-level programming lan-
guage, where more sophisticated control algorithms
requires more time and increase the chance of error.
Due to the above mentioned disadvantages of some
real-time operation systems, we use the MATLAB/
Simulink and the xPC Target operation system when-
ever possible [18]. xPC Target enables real-time sim-
ulation and hardware-in-the-loop simulation using
corresponding interfaces. It is a good prototyping tool
that enables to connect MATLAB/Simulink models to
physical systems and to execute simulation in real-
time on PC-compatible hardware. As xPC Target
supports also UDP communication, this was also one
of the reasons to select the UDP for the communica-
tion between different applications in the simulation
environment. Nevertheless, using MATLAB/Simulink
and xPC Target environment brings some disad-
vantages. Most of the hardware used for a robot con-
trol, which is available on the market, does not pro-
vide drivers for xPC Target. Therefore, we had to
develop drivers for our robots and sensors.

4 Case studies
To show the efficiency, flexibility and usability of our
control design environment we outline some typical
experimental examples using the Mitsubishi PA robot
and the mobile platform. We explain the complete
design of the control system different simulation
schemes used in this procedure from the "pure" Sim-
ulink simulation schemes, where the complete system
is simulated in MATLAB/Simulink, to the hardware-in-
the-loop schemes, where a real robot and sensor sys-
tems are part of the simulation loop and only the
controller is realized in MATLAB/Simulink.

Figure 10. Animation of the PA10 robot in Blender.

Figure 11. Yoyo simulation: top level block scheme in
Simulink and animation of the PA10 robot and yo-yo.

+++ MATLAB-based Robot Control Design Environment +++ E

63

N
SN

E 20/2, A
ugust 2010

4.1 Playing yo-yo
In the first example we use the Mitsubishi PA10 robot
arm to play yo-yo. The objective of playing the yo-yo
is to keep the amplitude of the yo-yo at a desired
level. The yo-yo is tied to the tip of the robot. To be
able to play the yo-
yo it is necessary to
know the position of
the yo-yo and the
force in the string or
the velocity of the
yo-yo (depending on
the control algo-
rithm). A webcam
has been used to
measure the position
of the yo-yo.

To measure the
string force a JR3
force/torque sensor
mounted on the end-
effector of the robot
was used. The exper-
imental setup is
shown in Fig. 3.

The control should be implemented on PC’s in
MATLAB/Simulink environment and we wanted to use
the PA10 motion control board which allows to con-
trol the end-effector positions of the robot. In the first
step of the control design when different control
strategies have to be tested, we simulated the whole
system in Simulink. We used the PA10 kinematic
model and we had to develop a Simulink model of the
yo-yo. The top level simulation scheme is shown in
Figure 11. The main three blocks are the controller,
the robot model and a special model of the yo-yo
[19]. As we want to move the robot end-effector only
in the vertical direction the -axis motion (and posi-
tions are fixed to the initial values), we have to use a
kinematic task space controller. This subsystem can be
easily composed by combining blocks in our Simulink
library as it is shown in Figure 12.

After the best control strategy has been verified using
this simulation scheme, the next step is to test the
control when the sensor systems information is ob-
tained via Ethernet connection. Therefore, we have
developed a special yo-yo simulator, which receives
the hand position and sends the position of the yo-yo
and the string force via Ethernet connection using
UDP protocol (see Figure 15). The simulation scheme
is the same except that instead of yo-yo Simulink
model the corresponding UDP interface blocks are
used (see Figures 13 and 14).

As the external yo-yo simulator is a real time simula-
tor, also in Simulink real-time simulation should be
used.

Figure 13. The case with kinematic PA10 robot model and

external yo-yo simulator.

Figure 15. External yo-yo

simulator.

Figure 16. Swinging yo-yo motion - Simulation results

Figure 14. Interface for external yo-yo simulator (Yoyo

model block)

Figure 12. PA10 model with kinematic task space position

controller

Figure 17. Hardware-in-the-loop simulation

(real PA10 robot, force sensor and vision systems are
in the simulation loop)

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

64

As the sampling frequency in this case is rather low
(100 Hz for robot control and 25 Hz for vision sys-
tem) and the computation time of the Simulink model
is small enough, we can use a special block for real-
time synchronization. After tuning the controller pa-
rameters the simulation results for the yo-yo swinging
height as shown on Figure 16 have been obtained.

Finally, when the designed control algorithms give
satisfactory simulation results, we can test the control
strategy on a real system. In manipulator-in-the-loop
simulation, the model of the PA10 robot is replaced
by the corresponding interface blocks. The position of
the yo-yo is now obtained from the vision system and
the force sensor via the same interface blocks as
when the yo-yo simulator has been used. Figure 19
shows the user interface of the webcam based vision
system.

Figure 22. Vision based manipulation: Simulink block scheme

Figure 21. Experimental setup for vision based

manipulation of objects

Figure 19. Capturing and identification of the yo-yo

position with the webcam.

Figure 18. The interface block for PA10 task space

position control

Figure 20. Swinging yo-yo motion

- Experimental results.

+++ MATLAB-based Robot Control Design Environment +++ E

65

N
SN

E 20/2, A
ugust 2010

As explained before, special Simulink drivers for
interfacing the PA10 robot control board, the JR3
force sensor and the webcam based vision system are
already part of our Simulink library. Therefore, the
user just replaces the model blocks. The correspond-
ing scheme is shown in Figures 17 and 18.

From the top level scheme it can easily be seen that
the controller part of the system has not been changed
and is the same as in the previous simulation
schemes. The final experimental results are shown on
Figure 20. By comparing them with the simulation
results on Figure 16 one can see that they are very
similar. This confirms that simulation tools can be an
important tool when designing control system.

4.2 Vision-based manipulation
In the second example we show the visual tracking
experiment. The task for the robot has been to com-
pose a text using cubes marked with letters.

The cubes have been randomly dispersed on the table.
The robot has to identify a cube with the desired letter
using vision, to grasp this cube and to place it on the
table in order to compose the desired text. Note that
cubes were arbitrary rotated in all three axes. There-
fore, the visual tracking algorithm has to track not
only the position of a cube but also the object orienta-
tion. Figure 23 shows the experimental setup.

To detect the object position
and orientation we have used
a USB webcam and the “Ar-
ToolKit” - an open source
software library for building
Augmented Reality (AR)
applications [20]. These are
applications that involve the
overlay of virtual imagery on
the real world.
Although, augmented reality
is generally not needed in
robotics, ArToolKot was
chosen because of its object
recognition capabilities. Ar-
ToolKit is capable of calcu-
lating 3D object position and
orientation using single cam-
era. The pose estimation is
based on exact knowledge of
the observed object geometry
and its projection in the cam-
era.

4.3 Playing
“Power®Ball”
In the third exam-
ple the robot should
perform the spin-
ning of a Pow-
er®Ball – a hand
held gyroscopic toy
or exerciser. To
accelerate the rotor
of the device with a

robot, we first measured the way a human does it.
Using the results from the motion capture, we trans-
ferred the movement of the wrist to the end-effector
movement of the robot. For a successful spin-up a
synchronization of the exerted torque with the control
velocity of the circular motion is necessary. Figure 25
shows the experimental setup. Different control ap-
proaches using feedback information from the veloci-
ty counter and force/torque sensor were applied.

First, they have been tested using SimMechanics
model of the PA10 and the model of the Power®Ball.
Figure 24 shows the block scheme and the animation
of the system in RoboWorks. Finally, the experiment
with a real robot in the loop has been done

Figure 25. Experimental setup for
spinning up the Power®Ball with

PA10 robot

Figure 23. Vision based manipulation experiment: Robot is picking cube “A”

Figure 24. Power®Ball simulation: top level block scheme in Simulink and

animation of the PA10 robot on Nomad platform and the Power®Ball

+++ MATLAB-based Robot Control Design Environment +++

SN
E

20
/2

, A
ug

us
t

20
10

E N

66

The model of the robot and the Power®Ball has been
replaced with the interface blocks as explained be-
fore. Figure 25 shows the experimental setup.

5 Conclusions
The concept of the presented control design environ-
ment is a result of our experience in the use of robots
inresearch and education. It has proved to be a very
useful and effective tool for fast and safe develop-
ment and testing of advanced control schemes and
task planning algorithms, including force control and
visual feedback. The main part is implemented in
MATLAB/Simulink and we have developed models for
the robots and sensors used in our laboratory. To
integrate the variety of components in an unique
framework we have decided to allow the use of dif-
ferent tools for their simulation. So, the simulation
environment can be composed of more than one ap-
plication and the Ethernet is used for the communica-
tion between them. In this way, our environment is
very open and can be very easily extended and
adapted to different requirements and applied to any
types of robotic manipulators. We have augmented
the simulation with the animation and we show the
importance of the possibilities offered by the simula-
tion in the “virtual” world. One of the most important
features of our simulation environment is that the
testing on real robots is made very easy — the model
real systems is simply replaced in the simulation loop
by proper interface blocks. For that purpose, we have
developed interfaces for the robots and sensors. Addi-
tionally, we have developed external applications
which simulate certain robot subsystem and use the
same interface as a real system. In this way, the user
can test algorithms using the final control system but
on a system on models which is very easy. Last but
not least, it is an efficient tool for educational purpos-
es. Thus, it should be of interest to the researchers
involved in the development of advanced robot sys-
tems, and for teaching laboratories.

References
[1] Yehong Zh., R.P. Paul. Robot Manipulator Control

and Computational Cost. Technical Report MS-CIS-
88-10, University of Pennsylvania Department of
Computer and Information Science, 1988.
http://repository.upenn.edu/cis reports/621.

[2] R.G. Fenton, F. Xi. Computational analysis of robot
kinematics, dynamics, and controlusing the algebra of
rotations. IEEE Trans. on Systems, Man, Cybernetics,
(6):936 – 942, June 1994.

[3] J.-C. Latombe. Controllability, recognizability, and
complexity issues in robot motion planning. In Proc.
36th Ann. Symp. on Foundations of Computer Sci-
ence, pp. 484 – 500, Los Alamitos, CA, USA, 1995.

[4] J.M. Lambert, B. Moore, M. Ahmadi. Essential Real-
Time and Modeling tools for Robot Rapid Prototyp-
ing. In Proc. 6th Int. Symp. on Artificial Intelligence
and Robotics & Automation in Space i-SAIRAS 2001,
Quebec, Canada, 2001.

[5] G. Alotto, B. Bona, T. Calvelli. Prototyping Advanced
Real-Time Robotic Controllers on Linux RTAI Sys-
tems with Automatic Code Generation. In Proc. Int.
Conf. Mechatronics and Robotics 2004, Aachen,
Germany, 2004.

[6] V. Lippiello, L. Villani, B. Siciliano. An open archi-
tecture for sensory feedback control of a dual-arm in-
dustrial robotic cell. An International Journal Indus-
trial Robot, 34(1):46–53, 2007.

[7] L. Žlajpah. Integrated environment for modelling,
simulation and control design for robotic manipula-
tors. Journal of Intelligent and Robotic Systems,
32(2):219 – 234, 2001.

[8] L: Žlajpah. Simulation in robotics. Math. comput.
simul., doi:10.1016/j.matcom.2008.02.017, 2008.

[9] RobotWorks – A Robotics Interface and Trajectory
generator for SolidWorks, www.robotworkseu.com.

[10] Tecnomatix. ROBCAD/Workcell, User’s manual, 1988.
[11] P. I. Corke. A Robotics Toolbox for MATLAB. IEEE

Robotics & Automation Magazine, 3(1):24–32, 1996.
[12] The Mathworks. SimMechanics, User’s Guide, 2005.
[13] Microsoft Robotics Studio. MSDN. http://msdn2

.microsoft.com/en-us/robotics/default.aspx.
[14] Cyberbotics Ltd. Webots User Guide, 2005.
[15] Modular Controller Architecture 2 - MCA2:

http://mca2.org/
[16] Roboworks: http://www.newtonium.com/public_html

/Products/RoboWorks/RoboWorks.htm.
[17] Blender: http://www.blender.org/.
[18] D. Omrcen. Developing Matlab/Simulink and XPC

target real-time control environment for humanoid
jumping robot. In 16th Int. Workshop on Robotics in
Alpe-Adria-Danube Region - RAAD 2007, pp. 18–23,
Ljubljana, Slovenia, 2007.

[19] L. Žlajpah. Robotic yo-yo: modelling and control
strategies. Robotica, 24(2):211 – 220, 2006.

[20] ARToolKit: http://www.hitl.washington.edu/artoolkit.

Corresponding author: L. Žlajpah,
"Jožef Stefan" Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia
leon.zlajpah@ijs.si

Received & Accepted: MATHMOD 2009: -
Revised: January 2010 -
Accepted:may 22, 2010

