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Research in the field of robotics is tightly connected to simulation tools for many reasons. On one side, 
simulation supports the development of new advanced control algorithms and on the other side it is always 
not feasible to build a whole robot system to test some algorithms or it is not safe to perform tests on a real 
system (at least in the first design stages). In the paper we present an integrated environment for the design 
and testing of advanced robot control schemes, including visual tracking, force feedback on a single robot or 
in multi-robot applications. The kernel of our simulation environment is MATLAB/Simulink. The main capa-
bilities are: the simulation of the kinematics and dynamics of manipulators, the integration of different sensor 
systems like vision and force sensors, scenarios for complex robot tasks, the visualization of robots and their 
environment and the integration of real robots in the simulation loop. The advantage of our system is the 
simplicity, which allows easy integration of different robots, sensors and other devices. Some of these can be 
easier simulated by using other tools. Hence, other simulation tools can be used for the simulation of differ-
ent parts of the system and then these subsystems are integrated in out simulation environment. The other 
important feature is easy final testing of developed control algorithms. Namely, for final testing of the con-
trol algorithms the models in the simulation scheme are just replaced by interface blocks for real system and 
the user does not need to consider implementation details. Finally, to show the efficiency and usability of our 
control design environment we outline some typical experimental examples using our robots. We explain 
some typical control design procedures from the “pure” simulation to the testing of algorithms on real robots. 

Introduction 
The ways and methods in robotics research and de-
velopment have always been influenced by the tools 
used. This is especially true when one considers the 
profound impact of recent technologies on robotics, 
especially the development of computers which be-
come indispensable when designing the complex 
systems like robots. Not many years ago, computing 
cost was still a significant factor to consider when 
deriving algorithms and new modeling techniques [1, 
2, 3]. Nowadays, distributed computing, network tech-
nology and the computing power developed by com-
mercial equipment open new possibilities for doing 
systems design and implementation. However, in spite of 
all that the creativity of a human designer cannot be 
left out in the design process. The best solution seems 
to be to provide the designer with proper tools which 
significantly increase his efficiency. Among them, the 
simulation has been recognized as an important tool 
in designing the new products, investigating their 
performances and also in designing applications of 
these products. For complex systems as robots the 
simulation tools can certainly enhance the design, 
development, and even the operation of the robotic 
systems. Augmenting the simulation with visualiza-
tion tools and interfaces, one can simulate the opera-
tion of the robotic systems in a very realistic way.  

Currently, many different simulation tools for robotic 
systems are available. They differ from each other 
depending on which aspect of the robot research they 
support, how open they are or on which platforms 
they work. However, many tools are not always ful-
filling all the requirements of the research and teach-
ing activities in robotic laboratories like reconfigura-
bility, openness and ease of use, etc. 

Reconfigurability and openness are features already 
recognized by many as essential in the development 
of advanced robot control algorithms [4, 5, 6]. Not 
only is it important to have easy access to the system 
at all levels (e.g. from high-level supervisory control 
all the way down to fast servo loops at the lowest 
level), but it is a necessity to have open control archi-
tectures where software modules can be modified and 
exteroceptive sensors like force/torque sensors and 
vision systems can be easily integrated. Reconfigura-
bility should also be reflected when more fundamen-
tal changes to the controller architecture are required, 
in the necessity of quickly being able to make modi-
fications in the original design and verify the effect of 
these modifications on the system. In other words, the 
user should be able to quickly modify the structure of 
the control without having to alter the simulation 
system itself.  
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In the last decade the software has become more and 
more easy to use. This is still one of the main major 
issues when selecting a software tool. First of all, the 
tools are used by many users in a laboratory and not 
all of them have the same expertise. To boost the 
knowledge exchange, it is of benefit that they work 
with the same tools. Next, testing of different control 
algorithms on real robotic systems is in general not 
very user friendly: the algorithms usually have to be 
rewritten for the real-time execution and the different 
implementation details have to be considered [4, 7]. 
This forces the user to devote a large part of the de-
sign time to topics not connected with the main issues 
of the control design, especially when he is not inter-
ested in software implementation issues. The ease of 
use becomes even more important when students are 
working with robots. In most cases they work in a 
laboratory for a shorter period, they are focused on 
their projects and they could become frustrated if they 
have to learn a lot of things not directly connected to 
their tasks. Finally, in research laboratories different 
robot systems are used equipped with more or less 
open proprietary hardware and software architecture. 
Therefore, it is much desired that the control design 
environment is unified, i.e. the same tools can be used 
for all robot systems. 

The simulation tools for robotic systems can be di-
vided into two major groups: tools based on general 
simulation systems and special tools for robot sys-
tems [8]. Tools based on general simulation systems 
are usually represented as special modules, libraries 
or user interfaces which simplify the building of robot 
systems and environments within these general simu-
lation systems (e.g. SolidWorks [9]). On the other 
hand, special simulation tools for robots cover one or 
more tasks in robotics like off-line programming and 
design of robot work cells (e.g. Robcad [10]) or kin-
ematic and dynamic analysis [11, 12]. They can be 
specialized for special types of robots like mobile robots, 
underwater robots, parallel mechanisms, or they are 
assigned to predefined robot family. Depending on 
the particular application different structural attributes 
and functional parameters have to be modelled. 

For the use in research and teaching laboratories, 
robot simulation tools focused on the motion of the 
robotic manipulator in different environments are 
important, especially those for the design of robot 
control systems [13, 11, 12, 14]. Recently, Microsoft 
Robotics Studio (MSRS) [13] has been launched with 
a general aim to unify robot programming for hobby-

ist, academic and commercial developers and to cre-
ate robot applications for a variety of hardware plat-
forms. The system enables both remotely connected 
and robot-based scenarios using .NET and XML 
protocols. Simulation engine enables real-time phys-
ics simulation and interaction between simulated 
entities. Each part of control loop can be substituted 
with the real or simulated hardware. Although the 
system is still under the development, it is not easy to 
add new entity, for example a new robot or a new 
sensor. One of the major drawbacks seems to be the 
low data throughput rate, which does not allow the 
realization of complex control laws at high sampling 
frequency. Therefore, it is not clear yet if MSRS is 
appropriate for research robotics, especially for com-
plex systems. Real time requirements are better 
solved in another programming/simulation frame-
work, MCA2 [15]. MCA is a modular, network trans-
parent and realtime capable C/C++ framework for 
controlling robots and other hardware. The main 
platform is Linux/RTLinux, but support for Win32 
and MCA OS/X also exists. However, it is still a 
complex system and therefore less appropriate for 
education and students projects. 

MATLAB is definitely one of the most used platforms 
for the modelling and simulation of various kind of 
systems and it is not surprising that it has been used 
intensively for the simulation of robot systems. “The 
Robotics Toolbox” [11] provides many functions that 
are required in robotics and addresses areas such as 
kinematics, dynamics, and trajectory generation. The 
Toolbox is useful for simulation as well as for analyz-
ing the results from experiments with real robots, and 
can be a powerful tool for education. However, it is 
not very good for the simulation in Simulink and for 
the hardware-in-the-loop simulation “SimMechanics 
Toolbox” [12] extends Simulink with the tools for 
modelling and simulating mechanical systems. With 
SimMechanics, one can model and simulate mechan-
ical systems with a suite of tools to specify bodies 
and their mass properties, their possible motions, 
kinematic constraints, and coordinate systems and to 
initiate and measure body motions. 

In the following, we present our approach to the inte-
grated environment for the design and testing of robot 
control systems. Our framework is not intended as an 
alternative to the MSRS or MCA2. It is not as com-
plex as MSRS and it does not possess physic simula-
tion capabilities. On the other hand, real time capabil-
ities cannot be compared to the MCA2.  
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The advantage of our system is the simplicity, which 
allows easy integration of new entities and is also 
very appropriate for the education and research robot-
ics. First we present our concept of the use of simula-
tion tools in the control design for research and edu-
cation. Next, the experimental setup in our laboratory 
is described. Finally, to show the efficiency and usabil-
ity of our control design environment we outline some 
typical experimental examples using our service robot. 

1 The concept 
The importance of simulation tools in the develop-
ment of robot control systems has been recognized by 
our team very early. We have been using different 
simulation tools for over 20 years and many of them 
have been developed in our laboratory. In the last 
decade we have been using for the control design 
MATLAB/Simulink based integrated environment 
based on Planar Manipulators Toolbox for dynamic 
simulation of redundant planar manipulators [7]. It 
enables the use of different sensors in the control loop 
and also the real-time implementation of the control-
ler and hardware-in-the-loop simulation. Figure 1 
shows the general simulation scheme in this envi-
ronment.  
A crucial feature inherited in this scheme is indicated 
by the mode switches. Namely, the user can easy 
switch between using model or a real system in the 
simulation loop. This is one of the main features 
which we need for development of robot control 
systems. The Planar Manipulators Toolbox has 
proved to be a very useful and effective tool for many 
purposes, but is has been primary designed for kine-
matic and dynamic simulation of planar manipulators 
and to develop and test control algorithms on the 
lower control level, especially for redundant manipu-
lators. In the last years, the scope of our research is 
oriented more in the development of control systems 
for humanoid and service robots.  

These robots have in general a more complex me-
chanical structure with many degrees-of-freedom.  

So, complex kinematic and dynamic models are nec-
essary to simulate them.  
Furthermore, the control methods and algorithms we 
are developing are now usually a part of the higher 
robot control levels and the low level close-loop con-
trol algorithms are assumed to be a solved issue. 
These high level control algorithms can become very 
complex and may even require parallel computation 
distributed over more computers. 

Considering all new requirements, which are: 
• to simulate the kinematics and dynamics of arbi-

trary chosen kinematic chain describing different 
manipulators, 

• to enable integration of different sensor systems 
like vision and force sensors, 

• to enable simulation of scenarios for complex 
robot tasks, 

• to include the model the robots’ environments, 
• to visualize the robots and their environment and 
• to enable integration of real robots in the simula-

tion loop, 
we had to reconsider the concept of the control design 
environment we will use in future. Based on our good 
experience with MATLAB/Simulink we have decided 
that this environment will be the kernel of our simula-
tion tools. However, some of the above requirements 
can be easier fulfilled by using other tools. For exam-
ple, the visualization of the robot and the environ-
ment can be easily done by dedicated graphics tools. 
Furthermore, advanced robot control strategies rely 
intensively on feedback sensor information. The most 
complex sensor system is the vision system, which 
can have several configurations and can be imple-
mented on a single computer or on a computer cluster 
composed of many computers running different oper-
ating systems.  

To integrate such a diversity of hardware components 
in unique framework we have decided to use the 
Ethernet communication and the UDP protocol. In 
this way, we have maximal possible "degree-of-
openness" of the system. Figure 2 shows a typical 
scheme of our robot integrated environment. 

In this scheme, each block can represent a real system 
or a model of that system.  

Note that because we are using ethernet communica-
tion between the blocks, different software tools on 
different platforms can be used to simulate specific 
parts of the system.  

 
Figure 1. A block diagram of the integrated environment. 
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Consequently, the simulation environment can consist 
of several interacting applications, each representing 
a part of the system. 

2 The experimental setup 
The experimental setup in our Robotics Laboratory 
consists of several robots: the Mitsubishi PA10 robot 
which can be mounted on the Nomad XR 4000 mo-
bile platform, humanoid robot Fujitsu HOAP3 and a 
7 DOF humanoid head. They serve to research new 
approaches in the service and humanoid robotics. 

In the following examples we use the Mitsubishi 
PA10 robot (see Figure 3). The PA10 robot is a gen-
eral purpose seven degrees of freedom robot arm with 
brushless AC Motors and harmonic drive transmis-
sion in each joint.  

 

 

The robot has an open architecture as well as in the 
hardware as in the software, and this provides the 
possibility to control and modify any aspect of the 
robot’s behavior and to include new sensor infor-
mation to the control system. The MHI controller is a 
four layer controller based on ARCNET which allows 
to control the robot in velocity mode at 100Hz. In 
same applications, it turned out that the MHI robot 
controller is not appropriate due to the limited sam-
pling frequency, speed and acceleration limits and 
redundancy resolution algorithms used for the robot 
control. Therefore, we have developed an interface 
which communicates with the robot power system via 
ARCNET, which enables direct access to the velocity 
and torque motor inputs with sampling rates up to 
700 Hz.  

 
Figure 4. Simulink Robot systems library 

 
Figure 3. Experimental setup (Mitsubishi PA10, vision 

system and force sensor) 

 
Figure 2. A functional block diagram of the robot integrated environment in Robotics Laboratory including  

the robot PA10, mobile platform Nomad XR 4000 and sensor systems  
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3 Simulink block library 
In Simulink, a system is modelled by combining 
input-output blocks. To gain the transparency we try 
to represent a system by the block structure with 
several hierarchical levels, i.e. by combining different 
basic blocks subsystems are built which become a 
single block at the higher level.  

In Figure 1 typical robot subsystems can 
be seen: the trajectory generation, the 
controller, the model of the manipulator 
and the environment and the animation of 
manipulator motion.  

Figure 4 shows the Robot systems block 
library. The goal of the library is to pro-
vide blocks which are needed to simulate 
robotic systems and cannot be modelled 
with standard blocks.  

First of all, this are the blocks for robot 
kinematic and dynamic models, the blocks 
for sensors systems, the typical transfor-
mations present in robot 
systems and the special 
interface blocks for ro-
bots, sensors and all other 
communications. 

Additionally, the library 
includes some blocks with 
standard subsystems like 
task space controllers, 
trajectory generation mo-
dules, etc. 

 

3.1 Robot models 
Let the configuration of the manip-
ulator be represented by the vector 

 of  joint positions, and the end-
effector position (and orientation) 
by -dimensional vector  of task 
positions. The joint and task coor-
dinates are related by the following 
expressions 

    

       (1) 
where  is the Jacobian matrix, and 
the overall dynamic behaviour of 
the manipulator is described by the 
following equation 

             (2) 

where  is the vector of control torques,  is the 
symmetric positive-definite inertia matrix,  is the 
vector of Coriolis and centrifugal forces,  is the 
vector of gravity forces, and vector  represents the 
torques due to the external forces acting on the ma-
nipulator. 

 
Figure 6. The dynamic model of the PA10 robot 

 
Figure 7. A block diagram representing the task space controller. 

 
Figure 5. PA10 robot blocks 
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The robot model blocks in the library (see Figure 5) 
represent the basic terms of the system as given in the 
above equations. Hence, the modelling of the robot is 
actually only the transformation of the model equa-
tions into block diagrams. In the library there are 
model blocks for all robots we are using. For exam-
ple, the dynamic model described by the Eq. (2) for 
the PA10 robot, i.e. the block PA10 Dyn Mod in the 
library, is built using the basic block PA10 Inv Dyn 
Mod as shown on Figure 6, where the model matrices 

, hand  of the robot mechanism are calculated. 
The same principle is used for other robots and model 
types. Therefore, if one wants to use a dynamic model 
for another robot, he has only to substitute the block 
PA10 Inv Dyn Mod with an adequate block for the 
desired robot. In the same way, the other common 
subsystem which includes models is built. Figure 7 
shows the task space controller for PA10 robot used 
later in examples. Here, a kinematic model of a robot 
is used to obtain direct kinematic transformation 
(end-effector position vector and rotational matrix) 
and the Jacobian matrix of the robot, which are need-
ed in the control algorithm. 

For hardware-in-the-loop simulation, it is necessary 
to use hardware interfaces with corresponding soft-
ware drivers to include a real robots into the control 
loop. Usually, in case of robotic manipulators inter-
faces for actuators and sensors are needed. In the 
past, it was common to use D/A convertors for con-
trolling the actuators and joint positions were meas-
ured via incremental encoders. However, contempo-
rary robot controllers and sensor systems enable the 
communication via different networks protocols like 
ethernet, Profibus, CAN, etc. In the Robot systems 
library, each robot has special interface blocks which 
allow simple integration of them into the simulation 
loop. For example, for the PA10 robot we have pre-
pared drivers to control the robot using the MHI con-
troller and using the Ethernet and UDP protocol. 

Additionally, we have developed external applica-
tions for the simulation of our robots, which have the 
same interface as real robots. Using this applications, 
the control system realized in Matlab/Simulink is the 
same for the model or the real robot, i.e. the same 
interface blocks are used when a model or a real robot 
is included in the simulation loop. This enables easy 
and safe testing of control algorithms and the tests 
can be made even if the real robot is not available. 
When animation and visualization are also included, 
the simulation is even more realistic. 

3.2 Integration of sensors 
Advanced robotics is characterized by the variety of 
complex sensory system, e.g. vision sensors, force 
sensors, acoustic sensors, laser scanners, proximity 
sensor, etc. Therefore it is extremely important to 
apply as accurate as possible sensor models into the 
simulation environment. Models of sensors are com-
pletely transparent to the design environment, i.e. real 
sensor can be substituted with the simulated one and 
vice versa in the control loop. 

The integration of sensors depends on their character-
istics. Complex sensor systems like vision and acous-
tic sensors, or more advanced laser proximity sensors 
require relatively high computational power for signal 
processing. In many cases, it is difficult to accom-
plish all required data processing on the local com-
puter. Often we have to apply a remote computer or 
even a remote computer cluster in order to obtain 
required computational power.  

In such a case, the subsystems are connected through 
ethernet with UDP protocol. We have developed a 
special protocol classes for different sensors, actua-
tors and other subsystems. However, the performance 
is also affected by the communication delays. There-
fore, it is favourable to process signals of high frame-
rate sensor, such as joint encoders, tachometers, force 
sensors, etc. on the local computer. 

3.3 MATLAB robot language interpreter 
When designing and testing complex robot tasks, it 
has turned out that standard Simulink blocks which 
can generate arbitrary trajectory cannot provide all 
the flexibility needed for complex robot tasks, espe-
cially for experimental work in service and humanoid 
robotics where the desired motion depends on the 
system/environment states. Commonly used solution 
for the definition of robot tasks are robot languages. 
Therefore, we have developed a MATLAB/Simulink 
block which can interpret the robot language. Includ-
ed in the simulation it serves as the robot motion 
generator and supervisor. The developed interpreter 
module for Matlab Robot Language (MatRoL) is 
BASIC-like programming language extended with 
special commands for the robot control and supports 
all MATLAB interpreter commands.  

In this way we have the advantage of a simple robot 
task definition and access to comprehensive MATLAB 
computation capabilities. The usage of the robot lan-
guage is also favourable for the education.  
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Students can learn and accomplish their laboratory 
exercises much faster using robot language and the 
integrated environment allows safe testing of their 
algorithms on models and final tests on the real ro-
bots. 

MatRoL is entirely written in Matlab. It has common 
instructions for the program flow (IF THEN ELSE, 
FOR NEXT, REPEAT UNTIL, GOTO <label>, GOSUB 

<procedure_name> RETURN) and special commands 
for the robot control (FRAME, MOVE, APPROACH, 
DEPART, SPEED, ACCELERATION, FORCE, NULLMOVE, 

TRAJECTORY). Additionally, all Matlab commands can 
be executed within a MatRoL program as an instruc-
tion. In this way we can use powerful Matlab matrix 
computation capability for controlling robot pose and 
for complex computation generally needed when 
vision and force sensors are applied. MatRoL sup-
ports various interpolation modes in Cartesian and 
task space, and supports also redundant robot sys-
tems, e.g. a special command NULLMOVE is used to 
define self-movement when kinematically redundant 
mechanisms are used.  

Each robot in the simulation environment has its own 
MatRoL block, i.e. a special program. Program syn-
chronization is done by assigning global variables, 
which can be signals, vectors, frames, or other. The 
MatRoL supports frame the orientation definition in 
roll-pitch-yaw angles, Euler angles and quaternions, 
while the interpolation is accomplished using the 
quaternions. The script in Listing 1 has been used for 
the vision based manipulation as explained later in 
Section 4.2. 

1 % Case: Visual servo 
2 TRACE 1 
3 ! points(1).d=[0.0,0.0,1.1,0,-pi/2,0]'; 
4 ! points(10).d=[0,0,0,0,0,0]'; 
5 ! mat(10).d=eye(3); 
6 SPEED 0.5 
7 ACC 0.5 
8 MOVE 1 
9 ! ATK_Send('LetterA'); 

10 GRIP 1 
11 GOSUB vservo 
12 GOSUB grip 
13 STOP 
14 % ------------------------ 
15 LABEL vservo 
16 ! disp('VISUAL SERVO'); 
17 LABEL loop 
18   ![xc,var(1)]=Vis_Ser(points(10).d,mat(10.d); 
19   IF (var(1) < 0.005) 
20      GOTO exit 
21   ENDIF 
22 GOTO loop 
23 LABEL exit 
24 ! disp('DONE'); 
25 RETURN 
26 % ----------------------- 
27 LABEL grip 
28 SPEED 0.1 
29 DELAY 1 
30 SPEED 0.1 
31 TDEPART 0 0.03 0 
32 DELAY 0.5 
33 TDEPART 0 0 0.15 
34 DELAY 0.5 
35 GRIP 0 
36 DELAY 0.5 
37 TDEPART 0 0 -0.01 
38 SPEED 1 
39 move 1 

40 TDEPART 0 0.04 0 
41 GRIP 1 
42 RETURN 
43 END 

Listing 1. MatRoL script for the vision-based  
manipulation 

3.4 Visualization and animation 
It is very important to visualize the simulation results. 
Especially in robotics it is necessary to “see” the 
motion of the robot and objects in the working envi-
ronment. In our system we rely on external software 
for the visualization and animation of robots. In gen-
eral, joint angles of robotic manipulators as well as 
the position and orientation of the other simulated 
objects in the scene are passed to the visualization 
tools using TCP/IP or UDP protocol.  

 

 

 
Figure 9. Animation of the HOAP 3 humanoid 

robot using RoboWorks. 
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Currently, we have integrated into our simulation 
environment two visualization software packages - 
RoboWorks [16] and Blender[17]. 

Roboworks incorporates simple, but efficient model-
er. Because of its simplicity RoboWorks package is 
the favourable tool for the visualization of simpler 
systems, i.e. one or two robots in non-complex envi-
ronment. Figure 9 shows the animation of our HOAP 
3 humanoid robot and also in the following examples 
the RoboWorks environment has been used for the 
visualization. 

For more complex scenes we use Blender, an open 
source multi-platform 3D computer animation pro-
gram, which has a lot of features that are potentially 
interesting for engineering purposes, such as the sim-
ulation and programming of robots, machine tools, 
humans and animals, and the visualization and post-
processing of all sorts of data that come out of such 
biological or artificial “devices”.  

Blender supports also scripts (via Python interfaces to 
the core C/C++ code), hence it can be extended in 
many different ways. Among others, Blender has the 
capability of placing moving cameras at any link of 
the kinematic chain, it supports the real time photo 
realistic rendering for the virtual reality simulation 
and has also a physics engine for the simulation of the 
interactions between entities. 

3.5 Real-time simulation 
The real-time performance of the control algorithm is 
very important when dealing with low-level control. 
However, when developing higher level control algo-
rithms real-time may be also important especially 
when high sample frequency improves the perfor-
mance of the system. Therefore, when manipulator-
in-the loop simulation is performed, the simulation 
system which controls the robot system has to pro-
vide real-time capabilities and enable high sample 
frequencies. There are many real-time operating sys-
tems as Real Time Linux, QNX, EYRX, SMX, etc. 
Disadvantages of these operational systems are time-
consuming software development and incompatibility 
with other systems. The algorithms are usually writ-
ten in C or some other low-level programming lan-
guage, where more sophisticated control algorithms 
requires more time and increase the chance of error. 
Due to the above mentioned disadvantages of some 
real-time operation systems, we use the MATLAB/ 
Simulink and the xPC Target operation system when-
ever possible [18]. xPC Target enables real-time sim-
ulation and hardware-in-the-loop simulation using 
corresponding interfaces. It is a good prototyping tool 
that enables to connect MATLAB/Simulink models to 
physical systems and to execute simulation in real-
time on PC-compatible hardware. As xPC Target 
supports also UDP communication, this was also one 
of the reasons to select the UDP for the communica-
tion between different applications in the simulation 
environment. Nevertheless, using MATLAB/Simulink 
and xPC Target environment brings some disad-
vantages. Most of the hardware used for a robot con-
trol, which is available on the market, does not pro-
vide drivers for xPC Target. Therefore, we had to 
develop drivers for our robots and sensors. 

4 Case studies 
To show the efficiency, flexibility and usability of our 
control design environment we outline some typical 
experimental examples using the Mitsubishi PA robot 
and the mobile platform. We explain the complete 
design of the control system different simulation 
schemes used in this procedure from the "pure" Sim-
ulink simulation schemes, where the complete system 
is simulated in MATLAB/Simulink, to the hardware-in-
the-loop schemes, where a real robot and sensor sys-
tems are part of the simulation loop and only the 
controller is realized in MATLAB/Simulink.  

 

 
Figure 10. Animation of the PA10 robot in Blender. 

    
Figure 11. Yoyo simulation: top level block scheme in 
Simulink and animation of the PA10 robot and yo-yo. 
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4.1 Playing yo-yo 
In the first example we use the Mitsubishi PA10 robot 
arm to play yo-yo. The objective of playing the yo-yo 
is to keep the amplitude of the yo-yo at a desired 
level. The yo-yo is tied to the tip of the robot. To be 
able to play the yo-
yo it is necessary to 
know the position of 
the yo-yo and the 
force in the string or 
the velocity of the 
yo-yo (depending on 
the control algo-
rithm). A webcam 
has been used to 
measure the position 
of the yo-yo.  

To measure the 
string force a JR3 
force/torque sensor 
mounted on the end-
effector of the robot 
was used. The exper-
imental setup is 
shown in Fig. 3.  

 

The control should be implemented on PC’s in 
MATLAB/Simulink environment and we wanted to use 
the PA10 motion control board which allows to con-
trol the end-effector positions of the robot. In the first 
step of the control design when different control 
strategies have to be tested, we simulated the whole 
system in Simulink. We used the PA10 kinematic 
model and we had to develop a Simulink model of the 
yo-yo. The top level simulation scheme is shown in 
Figure 11. The main three blocks are the controller, 
the robot model and a special model of the yo-yo 
[19]. As we want to move the robot end-effector only 
in the vertical direction the -axis motion (  and  posi-
tions are fixed to the initial values), we have to use a 
kinematic task space controller. This subsystem can be 
easily composed by combining blocks in our Simulink 
library as it is shown in Figure 12. 

After the best control strategy has been verified using 
this simulation scheme, the next step is to test the 
control when the sensor systems information is ob-
tained via Ethernet connection. Therefore, we have 
developed a special yo-yo simulator, which receives 
the hand position and sends the position of the yo-yo 
and the string force via Ethernet connection using 
UDP protocol (see Figure 15). The simulation scheme 
is the same except that instead of yo-yo Simulink 
model the corresponding UDP interface blocks are 
used (see Figures 13 and 14). 

As the external yo-yo simulator is a real time simula-
tor, also in Simulink real-time simulation should be 
used.  

 
Figure 13. The case with kinematic PA10 robot model and 

external yo-yo simulator. 

 
Figure 15. External yo-yo 

simulator.  

 
Figure 16. Swinging yo-yo motion - Simulation results 

 
Figure 14. Interface for external yo-yo simulator (Yoyo 

model block) 

 
Figure 12. PA10 model with kinematic task space position 

controller 

 
Figure 17. Hardware-in-the-loop simulation  

(real PA10 robot, force sensor and vision systems are  
in the simulation loop) 
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As the sampling frequency in this case is rather low 
(100 Hz for robot control and 25 Hz for vision sys-
tem) and the computation time of the Simulink model 
is small enough, we can use a special block for real-
time synchronization. After tuning the controller pa-
rameters the simulation results for the yo-yo swinging 
height as shown on Figure 16 have been obtained. 

Finally, when the designed control algorithms give 
satisfactory simulation results, we can test the control 
strategy on a real system. In manipulator-in-the-loop 
simulation, the model of the PA10 robot is replaced 
by the corresponding interface blocks. The position of 
the yo-yo is now obtained from the vision system and 
the force sensor via the same interface blocks as 
when the yo-yo simulator has been used. Figure 19 
shows the user interface of the webcam based vision 
system.  

 
 

Figure 22. Vision based manipulation: Simulink block scheme 

 
Figure 21. Experimental setup for vision based 

manipulation of objects 

 
Figure 19. Capturing and identification of the yo-yo 

position with the webcam. 

 
Figure 18. The interface block for PA10 task space  

position control 

 
Figure 20. Swinging yo-yo motion  

- Experimental results. 
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As explained before, special Simulink drivers for 
interfacing the PA10 robot control board, the JR3 
force sensor and the webcam based vision system are 
already part of our Simulink library. Therefore, the 
user just replaces the model blocks. The correspond-
ing scheme is shown in Figures 17 and 18.  

From the top level scheme it can easily be seen that 
the controller part of the system has not been changed 
and is the same as in the previous simulation 
schemes. The final experimental results are shown on 
Figure 20. By comparing them with the simulation 
results on Figure 16 one can see that they are very 
similar. This confirms that simulation tools can be an 
important tool when designing control system.  

4.2 Vision-based manipulation 
In the second example we show the visual tracking 
experiment. The task for the robot has been to com-
pose a text using cubes marked with letters.  

The cubes have been randomly dispersed on the table. 
The robot has to identify a cube with the desired letter 
using vision, to grasp this cube and to place it on the 
table in order to compose the desired text. Note that 
cubes were arbitrary rotated in all three axes. There-
fore, the visual tracking algorithm has to track not 
only the position of a cube but also the object orienta-
tion. Figure 23 shows the experimental setup.  

To detect the object position 
and orientation we have used 
a USB webcam and the “Ar-
ToolKit” - an open source 
software library for building 
Augmented Reality (AR) 
applications [20]. These are 
applications that involve the 
overlay of virtual imagery on 
the real world.  
Although, augmented reality 
is generally not needed in 
robotics, ArToolKot was 
chosen because of its object 
recognition capabilities. Ar-
ToolKit is capable of calcu-
lating 3D object position and 
orientation using single cam-
era. The pose estimation is 
based on exact knowledge of 
the observed object geometry 
and its projection in the cam-
era. 

 

4.3 Playing 
“Power®Ball” 
In the third exam-
ple the robot should 
perform the spin-
ning of a Pow-
er®Ball – a hand 
held gyroscopic toy 
or exerciser. To 
accelerate the rotor 
of the device with a 

robot, we first measured the way a human does it. 
Using the results from the motion capture, we trans-
ferred the movement of the wrist to the end-effector 
movement of the robot. For a successful spin-up a 
synchronization of the exerted torque with the control 
velocity of the circular motion is necessary. Figure 25 
shows the experimental setup. Different control ap-
proaches using feedback information from the veloci-
ty counter and force/torque sensor were applied.  

First, they have been tested using SimMechanics 
model of the PA10 and the model of the Power®Ball. 
Figure 24 shows the block scheme and the animation 
of the system in RoboWorks. Finally, the experiment 
with a real robot in the loop has been done  

 
Figure 25. Experimental setup for 
spinning up the Power®Ball with 

PA10 robot 

    
Figure 23. Vision based manipulation experiment: Robot is picking cube “A” 

     
Figure 24. Power®Ball simulation: top level block scheme in Simulink and  

animation of the PA10 robot on Nomad platform and the Power®Ball 



+++ MATLAB-based Robot Control  Design Environment +++  

 

SN
E 

20
/2

, A
ug

us
t 

20
10

 

E N 

66 

The model of the robot and the Power®Ball has been 
replaced with the interface blocks as explained be-
fore. Figure 25 shows the experimental setup. 

5 Conclusions 
The concept of the presented control design environ-
ment is a result of our experience in the use of robots 
inresearch and education. It has proved to be a very 
useful and effective tool for fast and safe develop-
ment and testing of advanced control schemes and 
task planning algorithms, including force control and 
visual feedback. The main part is implemented in 
MATLAB/Simulink and we have developed models for 
the robots and sensors used in our laboratory. To 
integrate the variety of components in an unique 
framework we have decided to allow the use of dif-
ferent tools for their simulation. So, the simulation 
environment can be composed of more than one ap-
plication and the Ethernet is used for the communica-
tion between them. In this way, our environment is 
very open and can be very easily extended and 
adapted to different requirements and applied to any 
types of robotic manipulators. We have augmented 
the simulation with the animation and we show the 
importance of the possibilities offered by the simula-
tion in the “virtual” world. One of the most important 
features of our simulation environment is that the 
testing on real robots is made very easy — the model 
real systems is simply replaced in the simulation loop 
by proper interface blocks. For that purpose, we have 
developed interfaces for the robots and sensors. Addi-
tionally, we have developed external applications 
which simulate certain robot subsystem and use the 
same interface as a real system. In this way, the user 
can test algorithms using the final control system but 
on a system on models which is very easy. Last but 
not least, it is an efficient tool for educational purpos-
es. Thus, it should be of interest to the researchers 
involved in the development of advanced robot sys-
tems, and for teaching laboratories. 
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