
+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++ T

49

N
SN

E 20/3-4, D
ecem

ber 2010

The Proposal of the Alternately Evolving
Genetic Algorithm and its Application

Zhanghui Chen, Kangrui Zhou, Yingtao Liu, Wenbin Zhan
Huazhong University of Science and Technology, China

SNE Simulation Notes Europe SNE 20(3-4), 2010, 49-54, doi: 10.11128/sne.20.tn.09993

In view of the shortcomings of the usual genetic algorithm when solving multi-objective combinatorial op-
timization problems, the paper proposes an alternately evolving genetic algorithm. It adopts alternate strate-
gy and optimizes multiple objectives one by one circularly. The solving results of the Sudoku puzzle indicate
that this strategy can make the excellent patterns of different objectives all grow rapidly, and the results’
comparison verify its feasibility and excellence in the general convergence. The sensitivity of the algorithm’s
parameter is also analyzed.

Introduction
A genetic algorithm (GA) is a random searching algo-
rithm based on biological evolution and natural selec-
tion. It follows the “survival of the fittest” principles
of the Darwinian evolution to implement probabilistic
optimization of particular objectives. Due to its paral-
lelism and globally searching ability, GA has been
widely applied to function optimization, combinatori-
al optimization, artificial intelligence and some other
fields. Especially in some multi-objective combinato-
rial optimization problems, GA is usually better than
other algorithms.

When dealing with multi-objective combinatorial
optimization problems, the usual genetic algorithm
usually employs a comprehensive weighed objective

to replace multiple objectives through constructing an
evaluation function, and then uses unified genetic
operators to optimize the weighted objective in a
unified coding scheme. This method is effective in
many cases. But for some combinational problems,
the objectives may conflict with one another in the
evolutionary process. That is to say, when one target
gets met, others may deviate from the requirements
very much. In these cases, the efficiency of the gen-
eral evolution will be very low and the evolutionary
process may be trapped in a state of random wander.
By way of contrast, this paper puts forward an alter-
nately evolving genetic algorithm from the opposite
direction, which adopts alternate strategy to optimize
multiple objectives one by one circularly. The solving
results of the Sudoku puzzle verify the strategy’s
reasonableness and excellence.

1 The proposal of the alternately
evolving genetic algorithm

1.1 Multi-objective combinatorial optimization
Multi-objective combinational optimization refers to
the optimization of multiple objective functions of
combinational variables in order to achieve the glob-
ally optimal solution or satisfactory solution. It is
widely used in many fields, such as the university
timetable, train schedules, Latin square, Sudoku and
some other scheduling problems. Generally it can be
modelled by the following expression:

 (1)
Figure 1. The flow char of alternately evolving GA.

+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++

SN
E

20
/3

-4
,

D
ec

em
be

r
20

10

T N

50

Where are combinational varia-
bles; is the -th objective function; and
is the -th combinational constraint condition.

1.2 The proposal of the alternately evolving
genetic algorithm

It can be seen from formula (1) that multi-objective
combinatorial optimization problems will become
very complex with the increase of the number of
objective functions and constraint conditions. It has
been proved in theory that most of combinational
optimization problems belong to NP complete prob-
lem, whose searching space will increase exponen-
tially and even explode as the problem scale increas-
es. The NP complete character of combinatorial opti-
mization and the complexity of multi-objective opti-
mization cause many classical algorithms not appli-
cable any more. But GA can afford very well for its
good parallelism and heuristic, and has been widely
applied to most of combinational optimization prob-
lems. When solving these problems, GA usually
changes multiple objectives into a comprehensive
weighed objective, namely:

 (2)

where () refers to the weighted coef-
ficient of the -th objective function.

By doing this, it then adopts a unified coding scheme
to transform solution space into genetic space, and
then promote individuals to a better state by a unified
fitness evaluating operator, selection operator, cross-
over and mutation operator. This method that changes
multiple objectives into a single objective is not ap-
plicable to some cases, such as problems with con-
flicting objectives. If we employ a comprehensive
objective to evolve these problems, the evolutionary
process may enter a state of random wander because
of conflicts. From the point of view of Pattern Theo-
rem, different objectives have different excellent
patterns in a unified coding scheme.

But the genetic operators especially the crossover
operator can only consider patterns of one objective,
and make the objective’s excellent patterns grow
exponentially, while other objectives stay in a state of
random evolution.

Consequently, the overall evolutionary efficiency will
be very low and multiple objectives cannot get rapid-
ly optimized at the same time.

In view of the shortcomings of the usual GA, the
paper proposes an alternately evolving strategy from
another standpoint. It adopts alternate method to
optimize multiple objectives one by one circularly.
Take the problem in formula 1 for example, and its
detailed implementing steps are the following:

1. Take as the only objective function to
evolve, and turn to step 2 when the evolutional
process arrives at a certain depth.

2. Take as the only objective function to
evolve, and turn to step 3 when the evolutional
process arrives at a certain depth.
…

 . Take as the only objective function to
evolve, and turn to step when the evolu-
tional process arrives at a certain depth.

 . Determine whether the m objective func-
tions all achieve optimum or meet requirement.
If so, terminate the procedure; if not, turn to step
1 and start the next alternate evolution.

In the above evolutionary process, every goal’s evolu-
tion can have its own coding scheme and genetic
operators. And it may be needed to transform coding
scheme when the step turn to the next one. In order to
describe each step’s evolutionary depth, we can de-
fine alternate step length , which refers to the itera-
tion times when the -th objective evolves inde-
pendently in the step . Similarly, we can define the
process of evolving all the objectives one time as
an alternate cycle.

The advantage in the foregoing alternate strategy is
that every step is single-objective optimization, and
when proper genetic operators are adopted for every
objective, the convergent speed will be very fast. But
every step doesn’t consider other objectives, so these
objectives’ evolution will be in a random state in the
step; that is, may converge or may diverge. In order to
make the overall evolutionary trend be convergent, it
is very important to control each step’s evolutionary
depth . If evolve too deeply, the divergent trend
will be greater than the convergent one; but if too
shallowly, the evolutionary process will be very slow
and be similar to the usual GA. Therefore, it is need-
ed to adjust enough times to search for a better
one. The flow char of alternately evolving GA is
shown in Figure 1.

+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++ T

51

N
SN

E 20/3-4, D
ecem

ber 2010

2 Experiments
In order to verify the feasibility and high efficiency of
the alternately evolving GA, take Sudoku as an ex-
ample which the algorithm is used to solve. Sudoku is
a numbers game popular in Japan, the UK and the
USA. In essence, it is a special kind of Latin square
and can be modelled by multi-objective combination-
al optimization.

Because of Latin square’s NP complete character, the
solution space of Sudoku is quite huge, which causes
many conventional algorithms to be ineffective. In
the following paragraphs, we firstly give a brief in-
troduction to Sudoku, and then adopt the usual GA
and the alternately evolving GA to solve it respective-
ly, and verify the excellence of the alternately evolv-
ing GA through the experimental results.

2.1 Sudoku
The most common Sudoku puzzle consists of
grid and blocks for a total of cells. One
example of Sudoku puzzle is shown in Fig-
ure 2, in which different blocks are marked up by
different colours.

When a puzzle with a set of pre-filled numbers is
designed, the task is to place the numbers 1 through 9
in each cell, such that the following rules hold:

1. Constraints on rows: each row must contain the
numbers once and only once;

2. Constraints on columns: each column must con-
tain the numbers once and only once;

3. Constraints on blocks: each block must contain
the numbers once and only once.

As can been seen, the objective of the puzzle is to
make the nine groups of the numbers , totally 81
digits, rationally arrange on the board, such that
each row, column and block have no repeated digits.

2.2 The specific design of the alternately
evolving GA for Sudoku

Considering Sudoku’s characteristics, the following
algorithm can be designed to solve it.

The coding scheme
Adopt the symbolic matrix coding scheme, which
directly maps the grid into a matrix
shown as follows: The matrix element refers to
the number filled in the row and column of the

 grid.

 (3)

The comprehensive objective function
For each individual in the population, its fitness can
be obtained in the following way:

1. Determine the candidate set of every empty cell
on the 9 × 9 board.

2. For each individual, each cell’s value can be de-
termined this way: if the cell has been pre-filled,
then its value is the pre-filled one; if the cell is
empty, its value must be randomly chosen from
its candidate set. By doing this, all the cells’ val-
ues can be determined and an initial individual is
generated.

3. Repeat step 2 to generate more individuals until
the initial population has been yielded.

Optimization on rows
1. Fitness function. The optimization on rows

means only considering the constraints on rows
without taking into account the other two types
of constraints. The optimization’s goal is to meet
the rows’ constraints as much as possible. There-
fore, the fitness function is:
 (5)

where refers to the total punishment on
rows.

2. Selection operator. Adopt the combined strategy
of roulette wheel selection and preserving the fit-
test individuals to the next generation.

Figure 2. 9 × 9 grid

+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++

SN
E

20
/3

-4
,

D
ec

em
be

r
20

10

T N

52

3. Crossover operator. Adopt one-point crossover,
which treats each row of two-dimensional matrix
as a point, and treats multi-row as multi-point,
and then randomly determines a point to imple-
ment crossover operation.

4. Mutation operator. Adopt simple mutation and
the mutated cell’s new value is randomly gener-
ated from its candidate set.

Optimization on columns
Compared with optimization on rows, optimization
on columns means only considering the constraints
on columns without taking into account the other two
types of constraints. The optimization’s goal is to
meet the columns’ constraints as much as possible. Its
fitness function is:

 (6)

where refers to the total punishment on the
columns.

The genetic operators of the columns’ optimization
are similar to the rows’. Simply, it only needs to treat
each column of two-dimensional matrix as a point
when implementing crossover.

Optimization on blocks
Compared with the two optimizations above, the
fitness function of optimization on blocks is:

 (7)

where refers to the total punishment on the
blocks.

The genetic operators of blocks’ optimization are
similar to the foregoing. Simply, it only needs to treat
each block as a point and line up these points when
implementing crossover.

Genetic parameters
All of the genetic parameters need debugging repeat-
edly to obtain proper values. Through many experi-
ments, some parameters are set as follows:

Number of the population’s individuals 300
Preserving probability of the fittest
individuals

0.10

Crossover probability 0.85
Mutation probability 0.03
Number of possible mutated points 81
Three kinds of alternate step length for the
three objectives

10, 10, 10

2.3 Experiment results and their comparison
For the Sudoku puzzle in Figure 2, adopt the usual GA
and the alternately evolving GA to solve it respective-
ly. Their solving results are shown in Figure 3.

By comparing Figures 3 – 6, it can be known that:
1. In the solving process of the alternately evolving

GA, although every evolution’s alternation al-
ways makes punishment fluctuate, the general
trend of the three kinds of punishment is conver-
gent and the population will evolve to optimal
state in the end when all of the genetic parame-
ters are set properly. These show that the alter-
nately evolving GA is feasible.

2. The evolution of the usual GA falls into local op-
timum at about 30 generations, while the one of
the alternately evolving GA can converge to
global optimum. Therefore, the convergent capa-
bility of the alternately evolving GA is better
than the one of the usual GA.

Figure 3. The result of the usual GA. The cells marked up

by other colours indicate there are repeated numbers.

Figure 4. The result of the alternately evolving GA.

+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++ T

53

N
SN

E 20/3-4, D
ecem

ber 2010

3. The alternately evolving GA
need to evolve every objective
one by one circularly, so for
some simple or small-scale
problems, its convergent time
will be longer than the usual
GA’s. But for some complex
and large-scale problems, the
usual GA always converges
slowly and even falls into local
optimum, so at this moment
the advantage of the alternate-
ly evolving GA in convergent
time will present gradually as
problems’ complexity increas-
es.

4. Sudoku is a typical multi-
objective combinatorial opti-
mization problem. It can be
predicted that the alternately
evolving GA is also effective
for other multi-objective com-
binatorial optimization prob-
lems.

2.4 Sensitivity analysis
To confirm the effect of each ob-
jective’s evolutionary depth to the
general convergent performance, set
step length to 3 and 30 respectively
and other parameters keep constant.
The results of the two kinds of
experiment are shown in Figures 7
and 8.

As can be seen from the two fig-
ures, when the three kinds of alter-
nate steplength are all set to 3,
each objective’s evolutionary de-
gree is so shallow that the general
evolution stays in a state of ran-
dom shake, and the general per-
formance is similar to the usual
GA’s.

When the three kinds of alternate
steplength are all set to 30, each
objective’s evolutionary degree is
so deep that the population may
fall into local optimum at the first
evolution and all of individuals
may be exactly the same, and the

Figure 5. The comprehensive punishment’s change in the solving process of the
usual GA. The graph’s abscissa refers to evolving generations, and the ordinate

refers to comprehensive punishment. It can be seen from the graph that the
population’s evolution falls into local optimum at about 30 generations.

Figure 6. The change of each objective’s punishment in the solving process of the
alternately evolving GA. The graph’s abscissa refers to evolving generations, and
the ordinate refers to row objective’s punishment, column objective’s punishment
or block objective’s punishment. The curve’s fluctuation in the graph is the very

result of alternate evolution, in which the red curve represents the row objective’s
evolution and its corresponding ordinate refers to row objective’s punishment; the

green curve represents the column objective’s evolution and its corresponding
ordinate refers to column objective’s punishment; the black curve represents the

block objective’s evolution and its corresponding ordinate refers to block
objective’s punishment. As can be seen from the graph, although every evolution’s

alternation always makes punishment fluctuate, the general trend of the three
kinds of punishment is convergent. And when the three kinds of alternate step
length are all set to 10, the three kinds of punishment all converge to 0 at about

150 generations, that is to say, the population arrives at optimum.

Figure 7. The change of each objective’s punishment in the solving process of the

alternately evolving GA when the three kinds of alternate steplength are all set to 3.

+++ Proposal of the Alternately Evolv ing Genetic Algor ithm +++

SN
E

20
/3

-4
,

D
ec

em
be

r
20

10

T N

54

later evolution is a uniform
shake. These indicate that each
objective’s evolutionary depth
has a great effect to the general
convergent performance, so it is
necessary to experiment enough
times to find the best steplength.

3 Conclusions
This paper considering the shortcomings of the usual
genetic algorithm when solving multi-objective com-
binatorial optimization problems, proposes an alter-
nately evolving strategy.

The solving results of the Sudoku puzzle indicate that
the alternately evolving GA’s general convergent
capability is better than the usual GA’s, and the ad-
vantage of the former in convergent speed will pre-
sent gradually as problems’ complexity increases.
These show that the alternately evolving GA is feasi-
ble and excellent.

The alternately evolving GA adopted in solving Su-
doku, is just an easy model of the alternately evolving
GA, and there is much room for improvement, such
as:

1. Adopt adaptive steplengths, which can change
with objectives and evolving state;

2. Adopt different coding schemes and genetic op-
erators for different objectives.

These measures can improve general convergent
capability and speed.

References
[1] Timo Mantere, Janne Koljonen. Solving, rating and

generating Sudoku puzzles with GA. IEEE Congress
on Evolutionary Computation, 2007, 1382-1389.

[2] Miguel Nicolau, Conor Ryan. Solving Sudoku with
the GAuGE system. Springer Verlag, 2006, 213-224.

[3] Rhydian Lewis. On the combination of constraint pro-
gramming and stochastic search: the Sudoku case.
Springer-Verlag, 2007, 96-107.

[4] Alberto Moraglio, Julian Togelius. Geometric particle
swarm optimization for the Sudoku puzzle. GEC-
CO’07, July 7–11, 2007, 118-125.

[5] Zong Woo Geem. Harmony Search Algorithm for
Solving Sudoku. Springer Verlag, 2007, 371-378.

[6] Zhanghui Chen, Xiaohui Huang, Wenyi Ren, Lie
Kang. The diploid code genetic algorithm used to
solve UTP. Unpublished.

Corresponding Author: Zhanghui Chen,
Huazhong University of Science and Technology
Center for Computational Materials Science and
Measurement Simulation, ZS3#507, Huazhong
Univ. of Science and Technology, Wuhan, China
l1k2j3p4o5i6@163.com

Received & Accepted: MATHMOD 2009 -
Revised: September 10, 2009 -
Accepted: July 10, 2010 -

Figure 8. The change of each objective’s punishment in the solving process of the

alternately evolving GA when the three kinds of alternate steplength are all set to 30.

