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In view of the shortcomings of the usual genetic algorithm when solving multi-objective combinatorial op-
timization problems, the paper proposes an alternately evolving genetic algorithm. It adopts alternate strate-
gy and optimizes multiple objectives one by one circularly. The solving results of the Sudoku puzzle indicate 
that this strategy can make the excellent patterns of different objectives all grow rapidly, and the results’ 
comparison verify its feasibility and excellence in the general convergence. The sensitivity of the algorithm’s 
parameter is also analyzed. 

Introduction 
A genetic algorithm (GA) is a random searching algo-
rithm based on biological evolution and natural selec-
tion. It follows the “survival of the fittest” principles 
of the Darwinian evolution to implement probabilistic 
optimization of particular objectives. Due to its paral-
lelism and globally searching ability, GA has been 
widely applied to function optimization, combinatori-
al optimization, artificial intelligence and some other 
fields. Especially in some multi-objective combinato-
rial optimization problems, GA is usually better than 
other algorithms. 

When dealing with multi-objective combinatorial 
optimization problems, the usual genetic algorithm 
usually employs a comprehensive weighed objective 

to replace multiple objectives through constructing an 
evaluation function, and then uses unified genetic 
operators to optimize the weighted objective in a 
unified coding scheme. This method is effective in 
many cases. But for some combinational problems, 
the objectives may conflict with one another in the 
evolutionary process. That is to say, when one target 
gets met, others may deviate from the requirements 
very much. In these cases, the efficiency of the gen-
eral evolution will be very low and the evolutionary 
process may be trapped in a state of random wander. 
By way of contrast, this paper puts forward an alter-
nately evolving genetic algorithm from the opposite 
direction, which adopts alternate strategy to optimize 
multiple objectives one by one circularly. The solving 
results of the Sudoku puzzle verify the strategy’s 
reasonableness and excellence. 

1 The proposal of the alternately 
evolving genetic algorithm 

1.1 Multi-objective combinatorial optimization 
Multi-objective combinational optimization refers to 
the optimization of multiple objective functions of 
combinational variables in order to achieve the glob-
ally optimal solution or satisfactory solution. It is 
widely used in many fields, such as the university 
timetable, train schedules, Latin square, Sudoku and 
some other scheduling problems. Generally it can be 
modelled by the following expression: 

  

  (1)  
Figure 1. The flow char of alternately evolving GA. 
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Where  are combinational varia-
bles;  is the -th objective function; and  
is the -th combinational constraint condition. 

1.2 The proposal of the alternately evolving 
genetic algorithm 

It can be seen from formula (1) that multi-objective 
combinatorial optimization problems will become 
very complex with the increase of the number of 
objective functions and constraint conditions. It has 
been proved in theory that most of combinational 
optimization problems belong to NP complete prob-
lem, whose searching space will increase exponen-
tially and even explode as the problem scale increas-
es. The NP complete character of combinatorial opti-
mization and the complexity of multi-objective opti-
mization cause many classical algorithms not appli-
cable any more. But GA can afford very well for its 
good parallelism and heuristic, and has been widely 
applied to most of combinational optimization prob-
lems. When solving these problems, GA usually 
changes multiple objectives into a comprehensive 
weighed objective, namely: 

  (2) 

where  ( ) refers to the weighted coef-
ficient of the -th objective function. 

By doing this, it then adopts a unified coding scheme 
to transform solution space into genetic space, and 
then promote individuals to a better state by a unified 
fitness evaluating operator, selection operator, cross-
over and mutation operator. This method that changes 
multiple objectives into a single objective is not ap-
plicable to some cases, such as problems with con-
flicting objectives. If we employ a comprehensive 
objective to evolve these problems, the evolutionary 
process may enter a state of random wander because 
of conflicts. From the point of view of Pattern Theo-
rem, different objectives have different excellent 
patterns in a unified coding scheme.  

But the genetic operators especially the crossover 
operator can only consider patterns of one objective, 
and make the objective’s excellent patterns grow 
exponentially, while other objectives stay in a state of 
random evolution.  

Consequently, the overall evolutionary efficiency will 
be very low and multiple objectives cannot get rapid-
ly optimized at the same time. 

 

In view of the shortcomings of the usual GA, the 
paper proposes an alternately evolving strategy from 
another standpoint. It adopts alternate method to 
optimize multiple objectives one by one circularly. 
Take the problem in formula 1 for example, and its 
detailed implementing steps are the following: 

1. Take  as the only objective function to 
evolve, and turn to step 2 when the evolutional 
process arrives at a certain depth. 

2. Take  as the only objective function to 
evolve, and turn to step 3 when the evolutional 
process arrives at a certain depth. 
… 

 . Take  as the only objective function to 
evolve, and turn to step  when the evolu-
tional process arrives at a certain depth. 

 .  Determine whether the m objective func-
tions all achieve optimum or meet requirement. 
If so, terminate the procedure; if not, turn to step 
1 and start the next alternate evolution. 

In the above evolutionary process, every goal’s evolu-
tion can have its own coding scheme and genetic 
operators. And it may be needed to transform coding 
scheme when the step turn to the next one. In order to 
describe each step’s evolutionary depth, we can de-
fine alternate step length , which refers to the itera-
tion times when the -th objective evolves inde-
pendently in the step . Similarly, we can define the 
process of evolving all the  objectives one time as 
an alternate cycle. 

The advantage in the foregoing alternate strategy is 
that every step is single-objective optimization, and 
when proper genetic operators are adopted for every 
objective, the convergent speed will be very fast. But 
every step doesn’t consider other objectives, so these 
objectives’ evolution will be in a random state in the 
step; that is, may converge or may diverge. In order to 
make the overall evolutionary trend be convergent, it 
is very important to control each step’s evolutionary 
depth . If evolve too deeply, the divergent trend 
will be greater than the convergent one; but if too 
shallowly, the evolutionary process will be very slow 
and be similar to the usual GA. Therefore, it is need-
ed to adjust  enough times to search for a better 
one. The flow char of alternately evolving GA is 
shown in Figure 1. 



+++ Proposal  of  the Alternately  Evolv ing Genetic  Algor ithm +++  T

51

N
SN

E 20/3-4, D
ecem

ber 2010

2 Experiments 
In order to verify the feasibility and high efficiency of 
the alternately evolving GA, take Sudoku as an ex-
ample which the algorithm is used to solve. Sudoku is 
a numbers game popular in Japan, the UK and the 
USA. In essence, it is a special kind of Latin square 
and can be modelled by multi-objective combination-
al optimization.  

Because of Latin square’s NP complete character, the 
solution space of Sudoku is quite huge, which causes 
many conventional algorithms to be ineffective. In 
the following paragraphs, we firstly give a brief in-
troduction to Sudoku, and then adopt the usual GA 
and the alternately evolving GA to solve it respective-
ly, and verify the excellence of the alternately evolv-
ing GA through the experimental results. 

2.1 Sudoku 
The most common Sudoku puzzle consists of  
grid and  blocks for a total of  cells. One 
example of  Sudoku puzzle is shown in Fig-
ure 2, in which different blocks are marked up by 
different colours.  

When a puzzle with a set of pre-filled numbers is 
designed, the task is to place the numbers 1 through 9 
in each cell, such that the following rules hold: 

1. Constraints on rows: each row must contain the 
numbers  once and only once; 

2. Constraints on columns: each column must con-
tain the numbers  once and only once; 

3. Constraints on blocks: each block must contain 
the numbers  once and only once. 

 

As can been seen, the objective of the puzzle is to 
make the nine groups of the numbers , totally 81 
digits, rationally arrange on the  board, such that 
each row, column and block have no repeated digits. 

2.2 The specific design of the alternately 
evolving GA for Sudoku 

Considering Sudoku’s characteristics, the following 
algorithm can be designed to solve it. 

The coding scheme 
Adopt the symbolic matrix coding scheme, which 
directly maps the  grid into a  matrix 
shown as follows: The matrix element  refers to 
the number filled in the row  and column  of the 

 grid. 

  (3) 

The comprehensive objective function 
For each individual in the population, its fitness can 
be obtained in the following way: 

1. Determine the candidate set of every empty cell 
on the 9 × 9 board. 

2. For each individual, each cell’s value can be de-
termined this way: if the cell has been pre-filled, 
then its value is the pre-filled one; if the cell is 
empty, its value must be randomly chosen from 
its candidate set. By doing this, all the cells’ val-
ues can be determined and an initial individual is 
generated. 

3. Repeat step 2 to generate more individuals until 
the initial population has been yielded. 

Optimization on rows 
1. Fitness function. The optimization on rows 

means only considering the constraints on rows 
without taking into account the other two types 
of constraints. The optimization’s goal is to meet 
the rows’ constraints as much as possible. There-
fore, the fitness function is: 
  (5) 

where  refers to the total punishment on 
rows. 

2. Selection operator. Adopt the combined strategy 
of roulette wheel selection and preserving the fit-
test individuals to the next generation. 

 
Figure 2. 9 × 9 grid 
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3. Crossover operator. Adopt one-point crossover, 
which treats each row of two-dimensional matrix 
as a point, and treats multi-row as multi-point, 
and then randomly determines a point to imple-
ment crossover operation. 

4. Mutation operator. Adopt simple mutation and 
the mutated cell’s new value is randomly gener-
ated from its candidate set. 

Optimization on columns 
Compared with optimization on rows, optimization 
on columns means only considering the constraints 
on columns without taking into account the other two 
types of constraints. The optimization’s goal is to  
meet the columns’ constraints as much as possible. Its 
fitness function is: 

  (6)  

where  refers to the total punishment on the 
columns. 

The genetic operators of the columns’ optimization 
are similar to the rows’. Simply, it only needs to treat 
each column of two-dimensional matrix as a point 
when implementing crossover. 

Optimization on blocks 
Compared with the two optimizations above, the 
fitness function of optimization on blocks is: 

  (7) 

where  refers to the total punishment on the 
blocks. 

The genetic operators of blocks’ optimization are 
similar to the foregoing. Simply, it only needs to treat 
each block as a point and line up these points when 
implementing crossover. 

Genetic parameters 
All of the genetic parameters need debugging repeat-
edly to obtain proper values. Through many experi-
ments, some parameters are set as follows: 

Number of the population’s individuals 300
Preserving probability of the fittest  
individuals 

0.10

Crossover probability 0.85
Mutation probability 0.03
Number of possible mutated points 81
Three kinds of alternate step length for the 
three objectives 

10, 10, 10

2.3 Experiment results and their comparison 
For the Sudoku puzzle in Figure 2, adopt the usual GA 
and the alternately evolving GA to solve it respective-
ly. Their solving results are shown in Figure 3. 

By comparing Figures 3 – 6, it can be known that: 
1. In the solving process of the alternately evolving 

GA, although every evolution’s alternation al-
ways makes punishment fluctuate, the general 
trend of the three kinds of punishment is conver-
gent and the population will evolve to optimal 
state in the end when all of the genetic parame-
ters are set properly. These show that the alter-
nately evolving GA is feasible. 

2. The evolution of the usual GA falls into local op-
timum at about 30 generations, while the one of 
the alternately evolving GA can converge to 
global optimum. Therefore, the convergent capa-
bility of the alternately evolving GA is better 
than the one of the usual GA. 

 
Figure 3. The result of the usual GA. The cells marked up 

by other colours indicate there are repeated numbers. 

 
Figure 4. The result of the alternately evolving GA. 
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3. The alternately evolving GA 
need to evolve every objective 
one by one circularly, so for 
some simple or small-scale 
problems, its convergent time 
will be longer than the usual 
GA’s. But for some complex 
and large-scale problems, the 
usual GA always converges 
slowly and even falls into local 
optimum, so at this moment 
the advantage of the alternate-
ly evolving GA in convergent 
time will present gradually as 
problems’ complexity increas-
es. 

4. Sudoku is a typical multi-
objective combinatorial opti-
mization problem. It can be 
predicted that the alternately 
evolving GA is also effective 
for other multi-objective com-
binatorial optimization prob-
lems. 

2.4 Sensitivity analysis 
To confirm the effect of each ob-
jective’s evolutionary depth to the 
general convergent performance, set 
step length to 3 and 30 respectively 
and other parameters keep constant. 
The results of the two kinds of 
experiment are shown in Figures 7 
and 8. 

As can be seen from the two fig-
ures, when the three kinds of alter-
nate steplength are all set to 3, 
each objective’s evolutionary de-
gree is so shallow that the general 
evolution stays in a state of ran-
dom shake, and the general per-
formance is similar to the usual 
GA’s.  

When the three kinds of alternate 
steplength are all set to 30, each 
objective’s evolutionary degree is 
so deep that the population may 
fall into local optimum at the first 
evolution and all of individuals 
may be exactly the same, and the 

 
Figure 5. The comprehensive punishment’s change in the solving process of the 
usual GA. The graph’s abscissa refers to evolving generations, and the ordinate 

refers to comprehensive punishment. It can be seen from the graph that the 
population’s evolution falls into local optimum at about 30 generations. 

 
Figure 6. The change of each objective’s punishment in the solving process of the 
alternately evolving GA. The graph’s abscissa refers to evolving generations, and 
the ordinate refers to row objective’s punishment, column objective’s punishment 
or block objective’s punishment. The curve’s fluctuation in the graph is the very 

result of alternate evolution, in which the red curve represents the row objective’s 
evolution and its corresponding ordinate refers to row objective’s punishment; the 

green curve represents the column objective’s evolution and its corresponding 
ordinate refers to column objective’s punishment; the black curve represents the 

block objective’s evolution and its corresponding ordinate refers to block 
objective’s punishment. As can be seen from the graph, although every evolution’s 

alternation always makes punishment fluctuate, the general trend of the three 
kinds of punishment is convergent. And when the three kinds of alternate step 
length are all set to 10, the three kinds of punishment all converge to 0 at about 

150 generations, that is to say, the population arrives at optimum. 

 
Figure 7. The change of each objective’s punishment in the solving process of the 

alternately evolving GA when the three kinds of alternate steplength are all set to 3. 



+++ Proposal  of  the Alternately  Evolv ing Genetic  Algor ithm +++  

 

SN
E 

20
/3

-4
, 

D
ec

em
be

r 
20

10
 

T N 

54 

later evolution is a uniform 
shake. These indicate that each 
objective’s evolutionary depth 
has a great effect to the general 
convergent performance, so it is 
necessary to experiment enough 
times to find the best steplength. 

3 Conclusions 
This paper considering the shortcomings of the usual 
genetic algorithm when solving multi-objective com-
binatorial optimization problems, proposes an alter-
nately evolving strategy.  

The solving results of the Sudoku puzzle indicate that 
the alternately evolving GA’s general convergent 
capability is better than the usual GA’s, and the ad-
vantage of the former in convergent speed will pre-
sent gradually as problems’ complexity increases. 
These show that the alternately evolving GA is feasi-
ble and excellent. 

The alternately evolving GA adopted in solving Su-
doku, is just an easy model of the alternately evolving 
GA, and there is much room for improvement, such 
as: 

1. Adopt adaptive steplengths, which can change 
with objectives and evolving state; 

2. Adopt different coding schemes and genetic op-
erators for different objectives. 

These measures can improve general convergent 
capability and speed. 
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Figure 8. The change of each objective’s punishment in the solving process of the 

alternately evolving GA when the three kinds of alternate steplength are all set to 30. 


