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Discovering linear dependencies in data sets is discussed in the paper as a part of data mining approach [1]. 
The proposed method is based on the minimization of a special type of convex and piecewise linear (CPL) 
criterion functions defined on a given data set  [2]. The division of the set  into a family of linearly de-
pendent clusters  allows to form a family of local regression type models. As a result, each subset  can 
be characterized  by its own linear model. The K-plans algorithm which is similar to the K-means algo-
rithm can be used for dividing the set  into a family of linearly dependent clusters . Also a different ap-
proach to this problem, based on the CPL criterion functions is discussed here. 

Introduction 
Data mining is a process of extracting hidden patterns 
from data [1]. Generally, data mining techniques can 
be useful in transformation of data sets into needed 
information. Such techniques are commonly used in a 
wide range of applications, such as marketing, fraud 
detection and scientific discovery. The term patterns 
could stand for regularities, trends, association rules 
or clusters in the explored data set. 

A fundamental role in the cluster analysis is played 
by the K-means algorithm [2]. The -means algo-
rithm can be used for the purpose of dividing set  
into a family of a priori given number  of clusters 

. The central points  can be iden-
tified for each subset  during the -means proce-
dure through thee minimization of convex and piece-
wise linear (CPL) criterion functions [3]. Modifica-
tion of the -means algorithm into the K-plans algo-
rithm has been proposed recently [4].  

The proposed method is based on the minimization of 
a special type of the CPL criterion functions defined 
on a given data set  [2]. The basis exchange algo-
rithms which are similar to linear programming allow 
one to find the minimum of these CPL function effi-
ciently, even in the case of large multidimensional 
data sets [3]. The minimization of the CPL criterion 
function during the -plans procedure allows to iden-
tify the actual values of the parameters  and  of 
the central hyperplane 

 

for each subset . In the next step of the -plans 
algorithm the division of the set  into the subsets  
is modified and adopted to the actual central hyper-
plane .  

The central hyperplane  defines the local, 
linear dependency characteristic for a given subset 

. As a result, each subset  can be characterized 
by its own linear model of dependencies. 

The procedure of hidden linear dependencies extrac-
tion from data set different from the -plans is also 
described and analysed in the presented paper. The 
presented procedure is based on monotonicity proper-
ties of the CPL criterion function.  

This procedure allows to identify a family of  sub-
sets  and local, linear dependencies without assum-
ing a priori the value of the number . The number  
of linear models results from a structure of the ex-
plored data set . 

The proposed approach can be used for solving a 
variety of data mining problems. One of them is dis-
covering and analysing linearly dependent patterns 
(models) in data sets Data aggregation into linearly 
dependent subsets  can be combined in this ap-
proach with feature selection 

1 Feature vectors and central points 
Let us take into considerations the set  of  feature 
vectors  belonging to a given n-
dimensional feature space : 

  (1) 

Components  of the vector  could be the nu-
merical results of  standardized examinations of 
given objects .  

Each vector  can be treated as a point of the n-
dimensional feature space  
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In accordance with the -means algorithm, feature 
vectors  are divided into subsets  on the basis 
of actual central points (means) 

 ( ): 

  
  (2) 
      

where  is the distance between the 
feature vector  and the central point , and 

 is the set of indices  of those vectors  which 
have been allocated into the subset . 

The subsets  generated in accordance with the rule 
(2) allow to redefine new central points . The 
central points  of the subset  are computed 
through the minimization of the criterion function 

 defined on the elements  of the sub-
sets : 

   (3) 

where  is the norm of the vector 
 with the price  ( ), and  

is the minimum point of the function : 

  (4) 

The new central points  allow to define new 
subsets  in accordance with the rule (2). The -
means procedure stops when the difference between 
two successive central points  and  is 
sufficiently small (in accordance with a given param-
eter ): 

  (5) 

The minimization procedure of the function 
 (eq. 3) depends on the choice of the norm 

. Commonly used is the Euclidean 
norm  [3]: 

  

       (6) 

The  and  norms are also used in the -means 
algorithm: 

  (7) 

  (8) 

where . 

The minimum point  (4) of the function 
 can be found analytically in the case the 

Euclidean norm . The criterion function  
is convex and piecewise linear (CPL) in the case the 
norms  (7) and  (8). The basis exchange algorithms 
allow one to find the minimum (4) in this case [3]. 

In accordance with the -plans algorithm, feature 
vectors  are divided into subsets  on the basis 
of actual central hyperplanes : 

  (9) 

where the parameters  and  can be found 
through the minimization of the convex and piece-
wise linear (CPL) criterion function  
(which is described later). 

The distance  of the feature 
vectors  from the hyperplanes  can be 
computed in accordance with the following formula: 

  

          (10) 

The distance function  can be 
used for the division of feature vectors  into 
subsets  in accordance with the formula (2). 

2 Convex and piecewise linear (CPL) 
criterion functions  

Let us consider convex and piecewise linear (CPL) 
penalty functions  defined on the feature vec-
tors  from the set  (1) [4]: 

 ( ) 

  (11) 

where  is some parameter (margin) ( ). 

 
Figure 1. The penalty function  (11) 



+++ CPL Clustering Based on L inear  Dependencies  +++  T

45

N
SN

E 20/3-4, D
ecem

ber 2010

The penalty functions  are equal to the absolute 
values  (Figure 1). 

The criterion function  is defined as the 
weighted sum of the penalty functions  (11) 
related to the vectors  from the subset : 

  (12) 

The positive parameters  in the function  
can be treated as the prices of particular vectors  . 

The criterion function  (12) is convex and 
piecewise linear as the sums of such type of functions 

. 

Each feature vector  from the set  defines the 
hyperplane  in the parameter (weight) space : 

  (13) 

The hyperplanes  (13) are linked to the penalty 
functions  (11). The function  is equal 
to zero if and only if, the vector  is situated on 
the hyperplane . 

Any set of  linearly independent feature vectors 
 can be used for designing the non-

singular matrix  with the 
columns composed from these vectors.  

The non- singular matrix  is called the -th 
basis of the feature space . The vectors 

 from this set define those  hyperplanes  which 
pass through the below point (vertex) : 

  
                         (14) 

or 

  (15) 

In the case of “short” vectors , when the number 
 of the vectors  is much greater than the vec-

tors’ dimensionality  ( ), there may exist many 
bases  (14) and many vertices  (15).  

It can be proved that the minimal value  of the 
criterion functions  is situated in one of the 
vertices  [6]: 

  
        (16) 

 

The optimal parameter vector  is used for the 
definition of the below hyperplane  
(Eq. 9) in the feature space : 

  (17) 

Theorem 1. 
The minimal value  (16) of the criterion 
function  (12) with  is equal to zero 
( ), if and only if all the feature vec-
tors  from the subset  are situated on some 
hyperplane  (Eq. 9), with . 

Proof:  Let assume that the feature vectors  from 
the subset  are situated on some hyperplane 

 with . In this case, the following 
equations are fulfilled: 

  

 T  (18) 

thus 

  (19) 

On the other hand, if the conditions  (8) 
are fulfilled for all the feature vectors  from the 
subset , then these vectors have to be situated on 
the hyperplane . 

If all the feature vectors  from the subset  are 
situated on some hyperplane  with , 
then the minimal value  of the criterion 
function  is equal to zero ( ) 
only if .   

It has been proved that the minimal value  
of the criterion function  does not depend 
on linear, non-singular data transformations (the in-
variance property) [4]: 

  (20) 

where  is the minimal value (16) of the 
criterion functions  (12) defined on the 
transformed feature vectors : 

  (21) 

where  is a non-singular matrix of dimension 
( ) (  exists). 
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The minimal value  of the criterion func-
tion  defined on the centred vectors 

 does not depend on transla-
tions  of the centred vectors , 
where  is an arbitrary vector and  is the 
mean vector in the subset . 

The minimal value  of the criterion func-
tion  is characterised by two below mono-
tonicity properties: 

Property I (monotonicity with respect to reduction of 
the subset ): Reducing the subset  to  by ne-
glecting some feature vectors  can not result in 
an increase of the minimal value  of the 
criterion function : 

  (22) 

where the symbol  means the minimal value 
(16) of the criterion function  defined on 
the elements  of the subset . 

The relation (22) can be justified by the remark that 
neglecting some feature vectors  results in ne-
glecting some non-negative components  in 
the criterion function . 

Property II (monotonicity with respect to reduction 
of the feature space ): Reducing the feature 
space  to  by neglecting some features  
can not result in a decrease of the minimal value 

 of the criterion function : 

  (23) 

where the symbol  means the minimal value 
(16) of the criterion function  defined on 
the vectors  from the feature space . 

The relation (23) results from the fact that the ne-
glecting of some features  is equivalent to imposing 
an additional constraints in the form of the condition 

 on the parameter space . 

The monotonicity properties (22) and (23) constitute 
the basis for the proposed procedure of hidden linear 
dependencies extracting from data set. 

 

3 CPL criterion functions  with 
feature costs 

Reduction of unimportant features  in the cost sen-
sitive manner can be supported by the modified CPL 
criterion function  in the below form [4]: 

  (24) 

where  is given by (12),  is the feature cost 
level ( ),  is the cost of the feature  ( ), 

, and the cost functions  are de-
fined by the unit vectors : 

  

          (25) 

The criterion function  is the convex and 
piecewise linear (CPL) as the sum of the CPL func-
tions  (12) and . The optimal 
point  constitutes the minimal value of the 
criterion function : 

  (26) 

Each CPL cost function  tends to reach the 
condition  (24) through the minimization of 
the function  and to reducing the feature . 
The influence of the cost functions  increas-
es with the value of the parameter . The increase of 
the cost level  can lead to reducing additional fea-
tures . 

Each unit vector  defines the below hyperplane 
 in the parameter space : 

  (27) 

The minimum point  of the function  
is situated in one of the vertices  (

) defined by the equation of the below type (14): 

  (28) 

In this case, the columns of the matrix  can be 
composed partly of some feature vectors  and 
partly of some unit vectors . The vertex  
(15) is the point of intersection of hyperplanes  (13) 
defined by some feature vectors  and hyper-
planes  (27) defined by unit vectors . The 
minimum point  of the function  (24) 
is situated in one of such vertices , which is the 
intersection point of  hyperplanes  and . 
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The features , which are linked to the unit vectors 
 in the optimal basis  fulfil the below 

equation and can be reduced without changing of the 
minimal value : 

  
           (29) 
where  is the -th unit vec-
tor, and . 

The number of the reduced features  can be in-
creased by an increasing the feature cost level  in the 
criterion function . 

4 Extracting hidden linear dependencies 
The procedure of hidden linear dependencies extract-
ing from data set  (1) can be based on the CPL crite-
rion functions  (12) and  (24). 
The monotonicity properties (22) and (23) are partic-
ularly important in the proposed procedure. These 
monotonicity properties (22) and (23) are valid not 
only for the minimal value  (16) of the 
function  but also for the minimal value 

 (26) of the function . 

Algorithm 1.   The multistage procedure of extract-
ing of hidden linear dependency is described by the 
below successive steps: 

1. Two small, positive parameters (margins of pre-
cision)  and  are defined ( ), the 
value  and the initial set  (1) of all 
the feature vectors  are fixed. 

2. There is the computed minimal value  
(16) of the criterion function  (12). The 
function  is defined on all the feature 
vectors  from the set . 

3. The minimal number of the feature vectors  
is omitted from the set  in order to reach the 
condition . Such vectors  
are reduced which caused the smallest increase 
of the value . The remaining feature 
vectors  form the -th linearly dependent 
cluster . 

4. The maximal number of the features  is omit-
ted from the feature space , while preserving 
the condition  in the new feature 
subspace  ( ). The vector 

 constitutes the minimum (26) of the func-
tion ………………………………… 

The dimensionality of the feature vectors  
from the cluster  is reduced from  to  by a 
successive increase of feature cost level  (24). 

5. The below linear relation between features xi 
from the feature subspace  ( ) is 
formed on this basis: 
  (30) 

where  is the feature 
vector ( ) reduced during the pre-
vious stage, and  
is the optimal vector with all the components  
different from zero ( ). 

6. The set  is reduced by neglecting such feature 
vectors  which constitute linearly dependent 
cluster . If the set  is not empty ( ), 
then the value of the parameter  is increased by 
one ( ) and the next stage is started 
from the step 2. 

The above procedure allows to extract K linearly 
dependent clusters  from the data set . Each clus-
ter  is represented by  linear relations (30). As 
opposed to the -means algorithm, the number  is 
not fixed at the beginning of this procedure. The 
number  of the clusters  reflects the structure of 
the data set . Let us remark that the relation (30) 
allows to form  regression type models. Each com-
ponent  can represent dependent variable (fea-
ture)  and the remaining  components 

 can represent dependent variables. Such re-
gression type models have local properties. This 
means that each model represents feature vectors 

 from one particular cluster . 

5 Concluding remarks 
The problem of extracting linearly dependent patterns 
from data sets is considered in the paper. The pro-
posed approach is based on the minimization of two 
convex and piecewise linear (CPL) criterion functions 

 and . 

Extraction of hidden, linearly dependent patterns is 
considered here as a problem of cluster analysis. The 

-plans algorithm, similarly to the -means algo-
rithm has been proposed as one of the tools for solv-
ing this problem. In this approach each linearly de-
pendent cluster  is represented by some central 
hyperplane . 
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The alternative approach is based on what is de-
scribed in Section 4 as a sequence of the functions 

 and  minimizations. In this ap-
proach there is no need to fix the number  of clus-
ters  beforehand. The extraction of linearly de-
pendent clusters  is linked here to designing the 
regression type models (30). As a result, the data set 

 is represented by the family of  linear models 
(30). Such representation allows to expose the inter-
nal linear structure hidden in the set . 

The usefulness of the extracted linearly dependent 
patterns and models should be verified in many ways. 
In accordance with data mining or exploratory analy-
sis standards, experts in the fields should have the 
final judgments concerning the extracted patterns. 
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