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The paper describes a Markov model for multi-criteria and multi-person decision making. The motivation 
results from a demand observed in the early stages of an innovation process. Here, many alternatives need to 
be evaluated by several decision makers with respect to several criteria. The model derivation and descrip-
tion can be split into the evaluation process and the decision process. The pair wise comparisons can be 
combined by weighting them according to the importance of the criteria and decision makers, resulting in a 
discrete-time Markov chain. A random walk on this DTMC models the decision process, where a longer state 
sojourn time implies a better alternative. We believe that this model meets the demands in the early stages of 
an innovation process. 

1 Description of the problem 
We consider the problem of evaluating alternatives in 
the early stages of an innovation process. In this ap-
plication area alternatives need to be evaluated by 
several decision makers with respect to different 
criteria. There are possibly many alternatives that 
need to be considered; therefore it is necessary to 
make the evaluation process fast and simple. The 
problem parameters are the following: 

• A possibly large number of alternatives may be 
involved 

• Several decision makers may be involved 
• Several evaluation criteria (both quantifiable and 

soft) may be involved 
• The evaluation criteria may be weighted accord-

ing to relevance 
• The opinions of the decision makers may be 

weighted according to expertise 
• Little or no information is available about the 

alternatives; the decision makers base their eval-
uations on intuition or guesswork 

• The decision makers have to decide fast due to 
the possibly large number of alternatives 

The following example describes the intended appli-
cation. During an innovation workshop a large num-
ber of ideas are produced. Each idea is described only 
with a title and a short characterisation. An innova-
tion team must identify the top ten ideas to bring 
them forward to the first stage of a stage-gate process 
[4]. Little or no quantifiable information is available 

about the ideas, therefore it is not possible to rank the 
ideas based on objective criteria. Instead, only subjec-
tive impressions are available at this stage, enabling 
decisions of the form “A is better than B” with re-
spect to a given criterion. Each member of the team 
might have a different area of expertise or compe-
tence, and to each of them can be assigned a different 
weight for different criteria. For each pair wise com-
parison the decision maker and the criteria is noted. 

The following questions need to be addressed: How 
to model an evaluation process and a decision process 
with the specified parameters? How to deal with 
inconsistent or non-transitive evaluations, which can 
occur due to the subjective nature of the evaluations? 
How to determine the top alternatives? 

2 State of the art 
In the field of multi-criteria decision making 
(MCDM) many methods have been developed for 
specialised applications. Detailed information about 
MCDM can be found, for example in [10], [8] and 
[1]. Thirty available methods are discussed in [7]. 
Two more general methods which can be used in the 
early stages of an innovation process are AHP (the 
Analytic Hierarchy Process) [2, 11] and cost-benefit 
analysis (CBA) [3]. 

However, AHP and CBA are not directly applicable to 
the intended application. AHP does not support mul-
tiple decision makers, unless additional aggregation 
strategies are applied to merge the individual evalua-
tion result [9, 13, 6].  
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Furthermore, AHP requires consistent transitive eval-
uations in order to compute a valid result. CBA needs 
measurable and quantifiable criteria to compute a 
valid result. 

However, inconsistent evaluations and soft criteria 
are often present in the early stages of an innovation 
process. Accordingly, AHP and CBA cannot be the 
preferred methods to evaluate alternatives under these 
circumstances. 

3 A DTMC-based model for evaluation 
and decision process 

This section describes how to model both the evalua-
tion process and the decision process. The evaluation 
process is similar that in AHP but with only one level 
of “is better than”. In the given application it is not 
applicable to use more than one level of difference, 
because there is no strict differentiation possible to 
get more detailed decisions for two reasons. Firstly, 
little or no information about the alternatives may be 
available and secondly the use of soft criteria. 

The model of the decision process is described using 
an analogue situation. 

3.1 Evaluation process 
Based on the assumption that little or no information 
about the alternatives is available, the evaluation 
process is implemented as pair wise comparisons 
between all alternatives, concerning all criteria. These 
comparisons only ask for a decision of the following 
form “is better than”. This solution allows compari-
sons according to non-measurable evaluation criteria, 
such as taste or preference. 

We assign weights to the decision makers according 
to their expertise and to the evaluation criteria accord-
ing to their relevance, and scale these weights to sum 
up to one. We build a weighted directed graph, where 
each comparison adds an edge from the less preferred 
alternative to the better one. The edge weight results 
from the weight of the criterion and the decision 
maker. After adding the edges corresponding to the 
comparisons to the graph, we can scale the edge 
weights such that the sum of all outgoing edges of a 
node is one. The resulting graph is a discrete-time 
Markov chain, where the edges lead from the less 
preferred to the better alternatives. 

A detailed description of the mathematics behind the 
evaluation process can be found in [4]. 

In the evaluation process we have participants  
with , criteria  with  and alter-
natives am with . Each participant  
makes pair wise comparisons between two alterna-
tives  and  with respect to criterion . We 
denote this as follows: . 

Next we need the coefficient  to assign weights to 
each evaluation made by the participants. Each coef-
ficient  contains information about the relevance 
of participant  with respect to criterion  and de-
scribes the importance of criteria  where larger 
values imply greater importance. In the matrix  of 
dimension  we store the coefficients that satisfy 

 . 

Each evaluation of the participant  with respect to 
criterion  is represented in the matrix  of dimen-
sion . We build the matrix as follows: 

 , 

where  represents the number of non-zero entries 
in the -th row of matrix . The main diagonal 
coefficients are set as follows: 

 . 

Finally, we need a matrix  of dimension .  
contains the complete set of evaluations and is com-
puted from the weighted sum of all .  is also a 
stochastic matrix and computed by 

 . 

The result of the evaluation process is a DTMC con-
taining all evaluations of the participants as weighted 
edges. 

3.2 Decision process 
We believe that after having built this DTMC from 
the decision makers' evaluations, the decision process 
corresponds to a random walk on this resulting Mar-
kov chain. We assume that the sojourn time of better 
alternatives is larger than for inferior ones. To deter-
mine the preferred alternatives, the DTMC is solved, 
resulting in the steady state probability vector. The 
more incoming edges with large weights one node 
has, the more comparisons were made preferring that 
alternative. The more outgoing edges with large 
weights one node has, the fewer comparisons pre-
ferred that alternative.  
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Consequently the better alternatives with more in-
coming edges have a larger probability in the result. 
The resulting probability vector is then interpreted as 
a ranking of the alternatives, where larger probabili-
ties show a higher rank. 

To obtain the best alternative we take a look to an 
analogue situation: Assumed all students from a uni-
versity meet after summer and evaluate impressions 
from their holiday trips in Europe with respect to 
several criteria. As a result they designed a visitor 
guide from statements like “I’ve visited Berlin for its 
museum and then I’ve visited Paris. Paris was even 
better than Berlin.” This result could be visualized 
like shown in Figure 1. 

Furthermore we assume a bus company with special 
travel offers for students. This company may use the 
visitor guide to adjust the connection frequencies 
between the capitals in Europe. In our example (see 
Figure 2), the connection frequency from Berlin to 
Paris is higher than the other way, if Paris gets more 
positive evaluations in comparison with Berlin (all 
criteria merged): 

Finally we have a student who makes a tour in Eu-
rope. In every capital he takes the first bus which is 
departing to another capital on his arrival at the bus 
station. Now, some friends of the student want to join 
his tour. In which capital do they have the highest 
possibility to meet the student? 

Because the student decides on each bus station ran-
domly, we believe the student acts like a “random 
walker” in a directed graph. With the different bus 
departure frequencies the solution is to meet the stu-
dent in the capital with the highest sojourn time of the 
random walker. 

Since the sojourn time of a random walker corre-
sponds to the values in a steady state probability 
vector of a discrete-time Markov chain (DTMC) his 
friends should build and solve a DTMC. DTMCs are 
well-researched mathematical models with many 
applications in Science and Engineering. A DTMC is 
described by a stochastic matrix  and a probability 
vector . The steady-state solution of the DTMC 
contains the probabilities of each of the system states 
and is given by the solution of the linear system of 
equations    . Markov chains are drawn as 
weighted directed graphs, where the nodes represent 
the states and the edges represents the possible state 
transitions. The weights associated with the edges 
describe the one-step probabilities for each state tran-
sition. A state or set of states of a Markov chain is called 
absorbing, if it contains only incoming edges [12]. 

The capitals are represented as nodes and the bus 
connections as directed edges. The weight of each 
edge corresponds to the departure frequency of the 
buses for each connection (Figure 3). Figure 3 also 
contains nodes with self-pointing edges. A self-
pointing edge with value 1 means, no bus will depart 
from this capital (consequently the student will stay 
there). Self-pointing edges with values lower than one 
represent the probability for the student to spend 
another day in the capital (in this example, the value 
is assumed to be five per cent for each capital). 

Before computing the ranking vector , we need to 
consider one case that distinguishes our approach 
from a genuine random walker: The student decides 
to pick a capital randomly and not to decide using the 
bus station. In this case we assume the probability to 
travel to a certain capital is equal for all capitals (see 
Figure 4). To solve this problem we build a new ma-
trix  of dimension  with interconnections to 
all capitals with the weights : 

 
Figure 1. 1000 students evaluated Paris better than Berlin 

for the museums. 

 
Figure 3. DTMC with normalized weights (corresponding 

to the departure frequency) 
 

Figure 2. Example bus departure frequencies 
(  times a week) 
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Now we can compute matrix  
using the parameter  with  which de-
scribes the probability that student picks the next 
capital at random not using the buses. The matrix  is 
stochastic and irreducible. Furthermore R defines a 
Markov chain without absorbing states (Figure 5). 
The algorithm to compute the ranking vector  con-
tains both, the evaluation process and the decision pro-
cess. The algorithm is given by a sequence of five steps: 

1. Choose the coefficients . 
2. Choose the value for . 
3. Enter the values for the pair wise comparisons 

 and  into  and calculate the values for 
the main diagonal of . 

4. Compute  by adding all  weighted by the 
coefficients. 

5. Solve the DTMC, computing the steady state so-
lution  . 

After termination of the algorithm the result of each 
alternative  is equivalent to the value . The 
larger the value  is, the higher is the rank of . 
Starting with the initial probabilities 

 and  the solution vector of 
the example is 

.  

Consequently the friends of the travelling student 
have the highest possibility to meet the student in 
Paris. 

Even though  changes the values for , this influ-
ence can be neglected as experiments have shown. A 
large value of  only dampens the vector solutions, 
but does not influence the ranking positions. Experi-
ments have shown that the larger the value of , the 
less the gap between the values in  (see Figure 6). 

The same approach we illustrated for the travelling 
student, we chose to determine the ranking of alterna-
tives in the early stages of an innovation process. 
Therefore we built a Markov chain  based on the 
weighted pair wise comparisons made by the partici-
pants. Afterwards we send the random walker through 
the Markov chain who wants to visit all preferred 
alternatives. To avoid to be caught in a local maxi-
mum he can choose his next randomly, not using 
recommendations. Therefore we use the matrix  
with entries of size . The parameter  now con-
tains the probability that the random walker decides 
to continue his journey on a randomly chosen alterna-
tive. After computing matrix , we compute the so-
journ time of a random walker for each alternative 
and received the solution vector . 

Finally, the steady state solution of the DTMC then 
yields the ranking of the alternatives. 

4 Discussion of the advantages in our 
approach 

We believe that using our DTMC based decision 
process we can solve the following problems. The top 
alternatives are identified by their larger values in the 
probability vector, which correspond to the sojourn 
time of a random walker.  

 

 
Figure 4. Graph representing matrix  with the weight  

( : number of capitals)  
Figure 5. DTMC from Matrix  with  

 

 
Figure 6. Influence of  on the values in the solution vector . 
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A DTMC can also handle contradicting and intransi-
tive comparison results; it can contain edges running 
in opposite directions. By using the weights assigned 
to the decision makers and criteria to weight the edg-
es, we can easily combine their comparisons made 
into one DTMC. The steady state solution of the 
DTMC then yields the ranking of the alternatives. 

Furthermore, our approach has the following ad-
vantages. The method allows quantifiable and soft 
evaluation criteria. The method enables decision 
makers to evaluate alternatives with little or no in-
formation available. The method combines a decision 
making problem with an established mathematical 
method (discrete-time Markov chains). By combining 
only some of the comparisons made, it is possible to 
compute intermediate results during the evaluation 
process. The method is simple to use, because we 
only ask for “better than” decisions. The method can 
easily represent levels of competence of the decision 
makers with respect to the criteria. 

We will now discuss all of these points one by one 
and show why they apply to our method. 

The model can handle contradicting and intransitive 
comparisons. This statement we can confirm because 
a DTMC can handle contradicting and intransitive 
comparison results; it can contain edges running in 
opposite directions. This case can occur when evalua-
tions concerning different criteria are made. E.g.: Car 
1 is cheaper than car 2 and car 2 is more comfortable 
than car 1. This will lead to edges in opposite direc-
tions in the DTMC. However the weight of the edges 
will be different depending on the weights assigned to 
each of the criteria. 

The model can handle inconsistent evaluations. This 
statement can also be confirmed, because a DTMC 
can handle these evaluations. Two inconsistent evalu-
ations can occur, when decision makers have contra-
dicting opinions concerning soft criteria. For exam-
ple: Expert 1 thinks, car 1 is more comfortable than 
car 2 because of a better driving seat. Expert 2 prefers 
car 2 over car 1, concerning comfort, because he likes 
the more spacious backseat. This again results in two 
edges running in opposite directions, but having dif-
ferent weights according to the decision makers’ 
expertise. 

The model can handle soft and quantifiable evalua-
tion criteria. This statement can be confirmed as well. 
“Better than” comparisons allow soft as well as 
measurable evaluation criteria.  

The advantage of this simple decision is that they can 
be done much easier within a short period of time. 
“Wrong” decisions should be cancelled out by the 
mass of other evaluators, criteria and transitive rela-
tionships. 

The model can handle multiple decision makers. To 
achieve that, we add up weighted decision matrices of 
each decision maker. The more we value the opinion 
of a decision maker, the more weight we can give his 
evaluations. This results in more expertise or more 
influence in the decision process. Therefore this 
statement was confirmed as well. 

Intermediate results during the evaluation process are 
available. We can confirm this statement, because 
adding one decision of a decision maker keeps the 
properties of a DTMC intact. Therefore it can be 
solved having added only some of the edges corre-
sponding to the evaluations. The remainder of the 
probability of one node stays in that node itself. This 
implies the initialization of all the matrices to the 
Identity matrix. These intermediate results allow us to 
stop the evaluation process before all pair wise com-
parisons have been made, and getting a ranking. The 
quality of that ranking has to be determined otherwise 
(discussed in Section 5). 

In some of our experiments we observed the so-called 
rank reversal effect. One case where it occurs is, 
when we insert a new node similar to an existent node 
(e.g. two equal cars in different colours). In this case 
the new rank of both nodes can be smaller than the 
original node’s rank. This occurs because the incom-
ing edges probabilities are divided between the simi-
lar nodes. In our opinion, when adding or removing 
alternatives and their respective evaluations, we 
change the nature of the problem. We found an ana-
logue case which can be explained by the following 
example: The ranking of the German Football League 
is also obtained by pair wise comparisons, the games. 
Assuming, we remove Hoffenheim and all the games 
they played from the evaluations, the following phe-
nomena can occur. Teams that won against Hoffen-
heim loose points and teams that lost against Hoffen-
heimdo not loose points. This can change the ranking. 
When removing a contestant without removing their 
games or other teams’ points, the global ranking is 
not affected. For a DTMC this removal would mean 
adding edges which correspond to evaluations that 
were not made, but that were implicitly there because 
of transitivity.  
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Since we do not want to add evaluations, which were 
not actually entered by a decision maker, rank rever-
sal is a property of our model. 

5 Conclusion and outlook 
In this paper we described a model for the decision 
process in the early stages of an innovation process. 
We used pair wise comparisons and weights for deci-
sion makers and criteria to combine them to form a 
discrete-time Markov chain. A random walk on this 
chain models the actual decision process. The solu-
tion of the Markov chain yields the probability vector, 
which gives us a ranking of the alternatives. In con-
trast to existing methods, our model can easily handle 
inconsistent evaluations, soft criteria and multiple 
decision makers. 
Since intermediate rankings can also be computed, 
we see improvement potential in the model by reduc-
ing the number of comparisons necessary to reach a 
certain goal. As far as our experience goes the most 
interesting goals in the early stages of an innovation 
process are the following: 

• Identify the best alternative: Due to limited re-
sources or project type only the best alternative is 
needed. 

• Identify the top  alternatives: This comes direct-
ly from the properties of the stage gate process in 
innovation management. Limited resources re-
strict the number to only some innovation pro-
jects. Here the ranking of these top  among each 
other is unimportant. 

In these cases the evaluation process can be aborted if 
the evaluation goal is reached. To be able to imple-
ment this, we need to find heuristics to decide which 
comparison should be asked for next. This might 
involve ordering the possible judgements according 
to their effect on the ranking vector. Then, the algo-
rithm can prompt the decision makers to input the 
more influential judgements first. Our assumption is 
that the more judgements are made, the less effect on 
the ranking vector is measurable. That means that the 
probability of a rank exchange decreases. As first 
experiments showed, the number of necessary 
judgements to reach one of these evaluation goals 
decreases considerable in comparison to obtaining an 
accurate ranking result by entering all possible pair-
wise comparisons. 
We think that our method can be applied to many 
other applications with equal conditions, also beyond 
the innovation management. 
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