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Demand forecasting with regard to stock control is a central issue of inventory management. Serious difficul-
ties arise for intermittent demands, that is, if there are slow-moving items demanded only sporadically. Prev-
alent methods then usually perform poorly as they do not properly take the stochastic nature of intermittent 
demand patterns into account. They often rely on theoretically unfounded heuristic assumptions and apply 
inappropriate deterministic smoothing techniques. We overcome these weaknesses by means of systematical-
ly built and validated stochastic models that properly fit to real (industrial) data. Initially, no assumptions are 
made but statistical methods are invoked for model fitting. Reasonable model classes are found by summary 
statistics and correlation analysis. Specific models are obtained by parameter estimation and validated by 
goodness-of-fit tests. Finally, based on the stochastic models, stock control strategies are proposed to facili-
tate service levels guarantees in terms of probability bounds for being out of stock. 

Introduction 
Any organization or company that offers, sells and 
delivers items to others has to take care about proper 
inventory management. Success and efficiency sub-
stantially depend on the ability to provide and deliver 
demanded items within reasonable time. Stock con-
trol is crucial and the inventory policy manages how 
many units of an item must be in stock subject to 
certain constraints. Inventory capacities are limited 
and inventory costs should be as low as possible but 
at the same time a desired level of item availability 
should be assured.  

Typically, in order to be well prepared, stock control 
relies on forecasting future demands by means of 
time series analysis based on past demand patterns. 
Comprehensive treatments of time series analysis and 
forecasting can be found in, e.g., [1, 2, 4, 5, 8]. For 
the broader scope of inventory management we refer 
the reader to [14, 18, 19]. 

In practice, the most common forecasting technique is 
simple exponential smoothing (SES), that is forecasts 
are made by means of a weighted sum of past obser-
vations in that based on given time series data 

 a forecast  for the next data point  
is computed recursively by  and 

 for  where  is a 
smoothing constant that needs to be chosen appropri-
ately. Unfortunately, SES does not provide satisfacto-
ry forecasts for intermittent demands, i.e. in the case 
of so-called slow-moving items or low-demand items 
that are only demanded sporadically.  

Instead, Croston’s method [6] is most widely applied 
to intermittent demands. 

Croston separates the time intervals between succes-
sive demands (interdemand times) and the number of 
units that are demanded (demand sizes). He argues 
that the time periods (measured in days, weeks, or 
months) between successive demands as well as the 
demand sizes are independent and identically distrib-
uted (iid) random variables, which means that inter-
mittent demands essentially appear at random without 
identifiable trends, seasonality, or the like. He heuris-
tically assumes the geometric distribution for the 
interdemand times and the normal distribution for the 
demand sizes.  

If a demand occurs, separate forecasts for both the 
interdemand time and the demand size are updated 
according to SES using the same smoothing constant 
for both forecasts and the current demand per period 
forecast is obtained by the ratio of these two forecasts. 
Obviously, the critical issue of choosing an appropri-
ate smoothing constant remains open. 

A couple of drawbacks such as biased forecasts or 
potential violations of the independence assumptions 
have been reported in the literature and many correc-
tions and modifications, repectively, have been pro-
posed, e.g. [3, 11, 12, 15, 16, 17]. However, though 
specifically targeted to intermittent demands and 
often more accurate than SES, in some cases 
Croston’s method and its various modifications do 
not provide proper forecasts and not even outperform 
pure SES.  
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After all, there is still no satisfactory approach to deal 
with stock control for slow-moving items based on 
forecasting intermittent demands. We argue that the 
problems essentially stem from the application of 
deterministic smoothing techniques to random pat-
terns. Stochastic models appear to be more appropri-
ate and promising for tackling the peculiarities of 
intermittent demands forecasting and stock control. 

1 Stochastic modeling approach 
In order to improve forecasting and stock control for 
slow-moving items we first have to figure out the 
weaknesses of existing methods and the requirements 
for overcoming these weaknesses. The mixture of 
assuming stochastic behavior and applying SES as a 
forecasting technique is inappropriate. The modifica-
tions of Croston’s original version, adopting the inde-
pendence assumptions as well as the assumption of 
geometrically distributed interdemand times, are 
mainly concerned with nonnormal (but still continu-
ous) distributed demand sizes and modified forecasts. 
In particular, they still produce deterministic point 
forecasts though the demand pattern is essentially 
random. Mathematically, they work with determinis-
tic realizations rather than with stochastic processes 
which are supposed to be the data generating mecha-
nism. It has been recently shown by Shenstone & 
Hyndman [13] that the application of these determin-
istic forecasting techniques cannot be consistent with 
stochastic models, because any underlying stochastic 
model must be non-stationary and defined on a con-
tinuous sample space with negative values, which 
both does not match to the real properties of intermit-
tent demand patterns. 

We believe that starting with a forecasting technique 
and building an according underlying model is exact-
ly the reversed order of what is required. In particular, 
the major problem lies in the inappropriate forecast-
ing technique rather than in approaching intermittent 
demands via stochastic models. Additionally, we 
point out that in the previously cited literature specif-
ic probability distributions are heuristically assumed 
and – if at all – checked against artificial simulated 
data. It is often just a matter of luck whether or not 
the assumptions well fit to real intermittent demand 
data. Consequently, we argue that one should first 
build an adequate stochastic model based on real 
data, then validate its goodness of fit and finally de-
rive forecasts and stock control strategies to meet 
certain requirements such as service level guarantees. 

1.1 Stochastic Time Series Models 
A time series is an ordered sequence , inter-
preted as a realization of a stochastic process . 
As we are concerned with discrete time points 
(months), we shall assume that the index set  is a 
subset of the nonnegative integers. Note that, though 
often neglected in the literature, there is an important 
difference between a time series and its "generating" 
stochastic process. Other than a stochastic process, 
which is an ensemble of time series, a single time 
series is just one sequence of deterministic data. 

Time series properties are characterized by corre-
sponding properties of stochastic processes. We brief-
ly present those that are most important with regard 
to stochastic time series models. 

Definition 1 (moment functions of stochastic processes) 
For a stochastic process    its 
• mean function is defined by  
• variance function is defined by , 

 
• autocovariance function is defined by 
Cov ,  

Note that  for all . 

Definition 2 (strict stationarity) 
A stochastic process  is called strictly sta-
tionary if its finite dimensional distributions are 
time invariant. That is, for all , ,  the ran-
dom vectors  and  

 have the same distribution. 

Definition 3 (weak stationarity) 

A stochastic process  is called weakly sta-
tionary if it has constant mean and variance function 
and its autocovariance function does not dependent 
on specific time points but only on the time differ-
ence, the so-called lag .  
That is, for all , : 
 ,  , 
  
Then the autocovariance function for lag  is de-
fined as . 
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It follows for the autocovariance function of a weakly 
stationary stochastic process, that for all : 
  

Definition 4 (autocorrelation function) 

The autocorrelation function of a weakly stationary 
stochastic process  is defined by 
  

It follows for the autocorrelation function of a weakly 
stationary stochastic process, that for all : 

  

Now, being equipped with the most important proper-
ties of stochastic processes, we introduce the most 
important stochastic processes with regard to time 
series analysis and in particular with regard to our 
modeling approach. 

Definition 5 (White noise) 

A white noise is a sequence  of independent 
and identically distributed (iid) random variables. If 
all these random variables are normally distributed 
with expectation  and variance , then 

 is called a Gaussian white noise. 

Obviously, a white noise is a strictly stationary sto-
chastic process. In time series analysis, white noise is 
used for constructing more complex stochastic pro-
cesses. In the following, let  denote a white 
noise with expectation  and variance . 

Definition 6 (Autoregressive process) 
An autoregressive process of order , denoted by 

, is a stochastic process  defined by 
   

where  are constant coefficients. 

Definition 7 (Moving average process) 
A moving average process of order , denoted by 

, is a stochastic process  defined by 
  

where  are constant coefficients. The ran-
dom variables ,  constituting the underlying 
white noise are usually normalized such that . 

Definition 8 (ARMA process) 

An autoregressive moving average process of order 
, denoted by , is a stochastic pro-

cess  defined by 

  

           

where  and  are constant coeffi-
cients. 

Hence, ARMA processes are composed of AR pro-
cesses and MA processes and both AR processes and 
MA processes are specific ARMA processes. An 

 process is an  process and an 
 process is an  process. Note that a 

white noise also fits this framework in that it is an 
 process. 

2 Building and validating stochastic 
models 

We have developed a systematic procedure for model 
fitting to real data by courtesy of Siemens AG – 
Healthcare Sector Customer Services Material Logis-
tics (a.k.a. Siemens Medical Solutions), Erlangen, 
Germany. Initially, no independence assumption are 
made but after computing comprehensive statistics, 
the independence of data is checked. Dependent on 
the outcome of suitable tests, either the time series 
corresponding to interdemand times and demand 
sizes are fitted to autoregressive moving average 
(ARMA) processes or fitted to adequate probability 
distributions. 

The essential steps of our modeling procedure and 
their order in an automated algorithmic application 
starting with the raw data are outlined below. We 
emphasize that this procedure is flexible and well 
accessible to practitioners.  

Many steps are supported by statistical software 
packages, which is important for being viable as a 
part of real inventory management within industrial 
companies. 

1. Study summary statistics and the correlation 
structure of interdemand times and demand sizes 

2. Test the independence hypothesis: Ljung-Box test 
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3. If independent, fit data to appropriate probability 
distribution 

a. Select potentially appropriate distribution 
families based on summary statistics 

b. For each candidate distribution, obtain pa-
rameters by maximum likelihood estimation 

c. Validate goodness-of-fit by visualization: 
graphical plots 

d. Validate goodness-of-fit by statistical tests: 
, Anderson-Darling, Kolmogorov-Smirnov 

4. If not independent, fit data to ARMA model 

a. Select potentially appropriate class of ARMA 
based on (partial) autocorrelation functions 

b. For each candidate class, obtain parameters by 

i. least squares estimation for the AR part 

ii. numerical iteration for the MA part 

c. Validate goodness-of-fit by residual analysis 

This procedure has been applied to the demand pat-
terns of 54 different slow-moving items, each record-
ed from September 1994 to May 2008. In addition to 
model fitting for each of these items, one goal was to 
identify similarities in order to build an aggregated 
model that integrates as much slow-moving items as 
possible (inventory of Siemens Medical Solutions 
takes care bout altogether about 8500 slow-moving 
items). In the following we describe some more de-
tails of the steps and outline the main findings that we 
obtained in this manner. 

Note that we could have formulated our model fitting 
procedure without explicitly distinguishing between 
independent and dependent data by just fitting to an 
ARMA process and keeping in mind that an 

 process is a white noise which means that 
the data is independent. However, this would be over-
ly generalized. We make the distinction with regard to 
the specific fitting methodologies, which are much 
easier for independent data. 

2.1 Summary Statistics and Correlation Structure 
Summary statistics are usually not common in time 
series analysis when trends, seasonality, dependencies 
or correlations are present. Nevertheless, they should 
be computed as a first step in any statistical data 
analysis because they almost always give useful in-
sights, in particular in the case of intermittent de-
mands where completely random patterns in the sense 
of iid data or white noise are very likely.  

In addition, the correlation structure is of major im-
portant in time series analysis. Therefore, we consider 
a variety of statistical measures that give us a first 
quantitative impression of the data and its correlation 
structure. More precisely, we compute the following 
empirical measures from the time series data 

. 

• Empirical mean 

 , 

• Empirical variance 

 , 

• Empirical standard deviation 

 , 

• Empirical coefficient of variation 

 , 

• Empirical standard error 

 , 

• Empirical skewness 

 , 

• Empirical kurtosis 

 , 

• Empirical covariance 

•  , 

• Empirical coefficient of correlation 

  

Note that the latter two measures can be computed 
with regard to different time series as well as within a 
single time series. One can shift the time series by a 
lag  and interpret the resulting pairs 

 in the same way as data points from dif-
ferent time series. Concerned with a single time series 
one also speaks of autocorrelation as for stochastic 
processes. In particular, when considering such auto-
correlations for different lags, one can get useful 
insights on the strength of potentially present depend-
encies, which then yields guidelines for the choice of 
appropriate ARMA processes. 
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2.2 Independence test 
After computing comprehensive summary statistics 
and studying the correlation structure of the given 
data, our next step is to test the hypothesis of inde-
pendence. More specifically, we want to examine 
whether it is appropriate to assume that successive 
interdemand times and demand sizes are independent. 
In the terminology of stochastic time series models, 
this independence hypothesis corresponds to the hy-
pothesis that the data generating stochastic processes 
are white noise. 

Hence, we are concerned with the independence of 
successive data from one time series (not with the 
independence of two or more data sets). In order to 
test it, the Ljung-Box test [9] can be applied. 

With the Ljung-Box test all autocorrelation coeffi-
cients are considered simultaneously. The independence 
hypothesis  and its alternative  are defined as 

 , 
  

and the test statistic is computed by 
 . 

where  is the sample size,  is the empirical coeffi-
cient of autocorrelation on lag  and  is the number 
of lags. Then for a given significance level  the 
critical section is defined by 

  

where  is the -quantile of the chi square 
distribution with  degrees of freedom. 

The Ljung-Box test has been specified as an S-Plus 
program and applied to the intermittent demand pat-
terns, that is to the interdemand times and the demand 
sizes of all slow-moving items. One of our main find-
ings is that for almost all intermittent demand patterns 
the independence assumption is valid.  

More specifically, according to the Ljung-Box test on 
a statistical significance level of , the independ-
ence hypothesis was only rejected for two out of the 
54 items considered, and the run tests that we addi-
tionally performed did not indicate any dependence. 

2.3 Fitting dependent data 
If the data is assumed to be dependent, our modeling 
procedure proceeds by fitting the data to an ARMA 
process.  

In order to find appropriate ARMA processes that 
well represent the measured data, we first selected a 
potentially appropriate class of ARMA models based 
on partial autocorrelation functions, estimated the 
corresponding parameters and validated the fit by 
residual analysis. Roughly speaking, the fit is made 
iteratively such that processes of different orders are 
successively fitted and the sum of squares of differ-
ences between the fitted process and the time series 
data is computed. Finally, the order providing the 
least square sum is chosen. 

Informally, the partial correlation between two varia-
bles is the correlation that remains if the possible 
impact of all other random variables has been elimi-
nated and it is much easier to determine the order of 
an ARMA process via the partial autocorrelation function 
than via the original autocorrelation function.  

For our intermittent demand data, inspection of the 
partial autocorrelation functions suggested that pure 
AR processes are most appropriate. We have speci-
fied an according procedure in S-Plus and specifically 
used the Akaike information criterion (AIC) where 

  

is considered and the  for which  is minimal 
yields the estimated order of the AR process. For the 
details we refer the reader to, e.g., [1, 2, 4, 5, 8]. 

Even for the two potentially critical items that did not 
pass the Ljung-Box test for independence, the best fits 
to ARMA processes resulted in neglecting the MA part 
and low orders of the AR part, that is, these data were 
best fitted to purely autoregressive processes of order 
2 and 4, respectively, which indicates a very weak de-
pendence. Taking the data as independent and fitting 
to probability distributions resulted in very accurate 
fits.  

Hence, it seems reasonable to assume independence 
even for these two items. Note that statistical tests 
give only statements with certain statistical signifi-
cance, neither proofs nor disproofs of hypotheses. 

3 Forecasting and stock control 
Once we have built stochastic models and validated 
their appropriateness, it is clear that deterministic 
point forecasts are not very meaningful but stock 
control strategies are possible which do not rely on 
simple point forecasts.  

 



+++ Stochast ic  Models  for  Demands Forecasting and Stock control  +++  

 

SN
E 

20
/3

-4
, 

D
ec

em
be

r 
20

10
 

T N 

34 

We obtain service level guarantees in terms of proba-
bility bounds on stock out or item availability, respec-
tively. More specifically, we can compute the proba-
bility of a demand size being greater than some given 
threshold, which is closely related to quantiles and 
tail probabilities of the fitted demand size distribu-
tion. Furthermore, to be useful for inventory man-
agement in practice where typically not every month 
each item stock is checked we also need to consider a 
larger time horizon as the planning period. 

Therefore, we compute the probability of more than a 
given number of demands within a certain time peri-
od, essentially via tail probabilities of sums of ran-
dom variables. After all, we end up with stock control 
strategies guaranteeing that, given a desired service 
level in terms of probabilities and the constraint of 
minimized inventory costs, for every inventory period 
sufficiently many units of all items are in stock. Fi-
nally, thanks to stochastic similarities, items can be 
aggregated yielding an integrated inventory control 
system.  

Hence, altogether we have a mathematically well-
founded model fitting procedure for practicable stock 
control of slow-moving items that seems to be prom-
ising and and overcomes some of the weaknesses of 
currently practiced methods. 

3.1 Stock control exemplification 
We demonstrate a possible application in practice by 
a simple example where we assume that the interde-
mand times and demand sizes are independent and 
have been properly fitted to probability distributions. 
We further assume that for an example item a pre-
scribed service levels should be achieved within a 
time horizon of  months.  

The service level is considered to be the item availa-
bility, that is the probability  that demands for this 
item can be immediately served by the units in stock. 
The question arises how many units of this item must 
be in stock for a given desired availability. 

Though the demand size has no theoretical upper 
bound, the demand size distribution allows statements 
on the probability of certain demand sizes. We argue 
that for practicable stock control only demand sizes 
with some minimum probability can be reasonably 
taken into account. In other words, we consider a 
lower probability bound for the demand sizes such 
that all demand sizes with a smaller probability are 
neglected.  

Then, whenever a demand occurs, the units to be hold 
in stock should equal the -quantile  of the demand 
size distribution times the number of months in which 
the item is actually demanded.  

Hence, by considering a time horizon of more than 
one month for the planning period, we are even able 
to serve extreme demands with unlikely large demand 
sizes, provided that they do not occur multiple times 
within the time horizon of the planning period. 

The remaining question is how often (in how many 
months) within the next  months we should be pre-
pared for demands. We do not simply take the expec-
tation of the number of demands within  months, be-
cause this does not account for the specific probability 
distribution.  

Similarly as for the demand sizes, we consider an upper 
bound such that only with a small probability demands 
occur in more months than suggested by the bound. 
This probability is determined by and can be obtained 
from the interdemand size distribution. 

For numerical illustration, we consider an example 
item that has according to our fitting procedure geo-
metrically distributed interdemand times with param-
eter .  
Hence, the probability that the item is demanded in 
the next month equals p, which is relatively large. 
This means we should be prepared for a demand in 
the next month. Moreover, the number of demands is 
binomially distributed, that is the probability of exact-
ly  demands within the next n months is given by 

  

Now, assume that our time horizon of the planning 
period is six months. Then the probability that the 
item is demanded in each of these next six months is 

 , 

which is extremely small. Such a demand pattern will 
happen on average every thousand years such that it 
is reasonable to neglect it. Clearly, other patterns are 
more likely. For instance, the probability of exactly 
one demand within the next six months is 

.  

Hence, we have to choose a bound  such that any 
probability below this bound will be considered too 
small to realistically assume the corresponding de-
mand pattern. 
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Let . From the remaining demand patterns 
with larger probability, choose those with the largest 
number of months with demand. Multiplying this 
number with the -quantile  of the demand size 
distribution then gives the number m of units required 
in stock.  
For our example item the demand sizes are logarith-
mically distributed with parameter . 
With the choice of , the  quantile of the 
demand sizes computes as 

 . 

Now, for demonstration purposes, successively com-
pare the probabilities  with : 

 , 
 , 
 , 
 , 
 . 

Hence, we take four demands within the next six 
months as sufficiently likely to be prepared for it and 
the number of units required in stock is therefore 

  

The outlined approach is astonishingly simple and 
provides a useful way of assuring certain service 
levels. Nevertheless, a couple of issues require further 
investigation such as a reasonable planning period 
(time horizon) over which stock control should be 
considered.  

Besides, an additional option to react within the plan-
ning period when the number of units in stock falls 
below a critical level would be surely useful. Howev-
er, with regard to these points, there are usually prac-
tical constraints and not everything what is theoreti-
cally desirable is practically possible. 

4 Conclusion 
We have presented a stochastic modeling approach 
for the demand patterns of slow moving items with 
regard to intermittent demands forecasting and stock 
control. The key problem in intermittent demands 
forecasting and stock control is the demand pattern of 
slow moving items which renders traditional deter-
ministic exponential smoothing techniques inappro-
priate.  

Stochastic models are required to capture the inter-
mittent demand pattern. It turns out that stochastic 
time series models are well suited. In many cases the 
intermittent demand patterns even appear to be purely 
random in the sense that interdemand times and de-
mand sizes are iid random variables corresponding to 
a white noise process. 

A procedure has been suggested for fitting real data to 
suitable stochastic models based on which forecasting 
and stock control become well-founded and automat-
ed.  

While this modeling procedure already seems to be 
mature enough to address items separately without 
any substantial improvements necessary, further re-
search should deal with aggregated models for multi-
ple items.  

With regard to stock control for single items, one 
potential application of the stochastic model has been 
demonstrated and similar approaches with an aggre-
gated model are highly desirable. Hence, stochastic 
models for intermittent demands forecasting and 
stock control appear to be promising and have already 
proven useful but a lot of future work is still required 
and already ongoing. 
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