
+++ Intel l igent Model l ing in  Product ion of  Pharmaceuticals  +++  t

33

N
SN

E 20/2, A
ugust 2010

Intelligent Modelling of a Fluidised Bed Granulator used in 
Production of Pharmaceuticals 

Esko K. Juuso. Control Engineering Laboratory, Department of Process and  
Environmental Engineering, University of Oulu, Finland 

SNE Simulation Notes Europe SNE 20(2), 2010, 33-40, doi: 10.11128/sne.20.tn.09975 

The aim of dynamic modelling and simulation is to improve the control of the fluidised bed granulator. 
Modelling and simulation was done on the basis of data collected from several test campaigns. Several mod-
elling methodologies have been compared in Matlab-Simulink environment. A solution based on dynamic 
linguistic equation models was chosen. The main input variables are humidity difference between incoming 
and outgoing air, temperature difference between inflowing air and granule and the rate of inflowing air. The 
final output is the estimated granule size but the overall models contains also dynamic models for tempera-
ture and humidity. The simulator combines several models which are specific to the operating conditions. 
According to the results, the spraying and drying processes included short-duration periods. Extension to 
fuzzy LE models provides useful information about uncertainties of the forecasted granulation results. The 
complexity of the models is increased only slightly with the new system based on the extension principle and 
fuzzy interval analysis. 

Introduction 
Powder particles are agglomerated though granula-
tion processes due to interparticle bonds caused by 
the addition of a granulation liquid. The handling of 
the starting materials is facilitated and further pro-
cessing (e.g. tabletting) becomes more secure [1]. 
Granulation usually refers to processes whereby ag-
gregates with sizes ranging from approximately 0.1 to 
2.0 mm are produced by agitation of moistened pow-
der. Compression characteristics are improved, and 
handling of powders become easier because of less 
dust, less adhesion with hydroscopic materials. [2] 
During the granulation process a three-phase system 
of solid, liquid and gas is established. The system will 
reduce its free energy by formation of liquid bridges 
between the particles. By the liquid bridges cohesive 
forces are established which may cause agglomera-
tion and consolidation of the agglomerates in so far as 
they can resist the disruptive forces. The outcome 
depends on the interactions between apparatus, pro-
cess and compositional variables and the properties of 
the powder. [3, 4, 5] 
Airflow rate, temperature and humidity of the inlet air 
and the addition rate and droplet size of the granulat-
ing liquid are critical input variables. Temperature 
and humidity measurements of the process air are the 
most important parameters for monitoring heat and 
mass transfer. However, the inlet air humidity cannot 
usually be specified accurately because the seasonal 
variations in the process air humidity are difficult to 
control entirely.  

The actual effect of different humidity levels of the 
inlet air on the various fluid bed process parameters 
have been studied in [6]. Properties of the particles 
are also important. Effects of primary particle surface 
wettability by a binder solution on the rate of ag-
glomeration were investigated in [7]. 

A physically-based mathematical model for the de-
scription of particle wetting and of temperature and 
concentration distribution in fluidized bed spraygran-
ulation is presented in [8]. The bed mass and particle 
diameter growth in discontinuous granulation are 
taken into account and the two-dimensional calcula-
tion of the temperature and concentration distribu-
tions were carried out for the steady, continuous fluid-
ized bed spray-granulation. 

The physical changes in the beginning of spraying 
process are fast, because the weight of granules in-
creases rapidly, which requires also that the amount 
of the inlet air has to be increased significantly so that 
fluidising would continue. This part of the process 
was the most difficult part to model. Correspondingly 
during the first few minutes of drying, the surface 
drying proceeds quickly until the balance is found. 
According to samples, the size of granules continued 
to grow for a while even the drying phase was started. 

The aim of dynamic modelling and simulation is to 
improve the control of the fluidised bed granulator. 
Modelling is based on linguistic equation (LE) ap-
proach introduced in [9]. LE approach has been used 
in various applications [10, 11].  
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Dynamic LE models have provided accurate predic-
tion and good performance in continuous processes, 
e.g. a lime kiln and a solar collector field [10]. A set 
of interactive intelligent systems can be combined 
with other modelling and simulation methodologies to 
build practical simulators for industrial processes [12]. 

For granulation process, dynamic modelling and 
simulation is necessary. Dynamic LE modelling was 
started in 2000 in cooperation with Helsinki Universi-
ty and Orion [13]. Dynamic models are well suited 
for forecasting the granulation result [13, 14]. The 
research equipment used in this project was a bench-
scale fluidized bed granulator (Glatt WSG 5) shown 
in Figure 1. Modelling and simulation was done on 
the basis of data collected from test campaigns based 
on experimental design. 
This paper presents more details of the solution and 
extends the models to uncertain environment. 

 
Figure 1. A bench-scale fluidised bed granulator. 

1 Measurements 
The granulation process shown in Figure 1 has three 
main phases: 

• mixing to get granules homogeneous, 
• spraying with PVP granulation liquid, and 
• drying with warm air. 

The model formulation (batch size  g) consisting 
of verapamil hydrochloride, microcrystalline cellu-
lose and lactose monohydrate was applied. Polyvi-
nylpyrrolidone was used as a binder. The temperature 
of the drying air was . 

To eliminate the granules escape from granulator, 
filters were needed to shake every  seconds. The 
shaking takes  seconds, and meanwhile the process 
flows are off. For proper modelling it was essential to 
eliminate the effect of shaking as well as possible. 

More stable data and better modelling was achieved 
by median and moving average method. 

Testing data was collected from  batches,  
batches were used to training and the rest of the  to 
testing. The design of experiments for the test batches 
R1-11 presented in Table 1 includes three levels 
(high, normal and low) for the feed rate and the pres-
sure of the granulation liquid. To confirm the func-
tionality there were three repeated batches in the 
normal conditions. 

Table 1. The design of experiments for the batches. 

Test 
Feed rate of granu-
lation liquid [l/min] 

Feed pressure of 
granulation liquid [bar]

R1 100 1.5 
R2 125 1.5 
R3 100 2 
R4 125 2.5 
R5 100 2 
R6 125 2 
R7 112.5 1.5 
R8 112.5 2.5 
R9 112.5 2 
R10 112.5 2 
R11 112.5 2 

 

Numerous variables are known to affect the fluid bed 
process and the final granules. During the test cam-
paigns, on-line measurements of more than 40 varia-
bles were collected with sampling time of one sec-
ond. Air flow rate, temperature and humidity of the 
inlet air and the addition rate of the granulation are 
important variables. The instrumentation is described 
in [15]. 
Particle size analyses of intermediate and product 
granules and bulk factor were done off-line. Particle 
size analysis introduces two challenges: (1) it is based 
on samples, and there cannot be too many of them, 
and (2) particle size has always a distribution. The 
data driven modelling was based on the average par-
ticle size, and interpolation based on nonlinear re-
gression was used to obtain additional points required 
for the dynamic modelling. 

Seasonal variation in humidity is considerable and 
that will cause the changes in the water amount of the 
incoming air. The incoming air humidity should be 
included to the input variables or another possibility 
is to make a pre-moistening to a constant moisture 
value in the beginning of granulation. 
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2 Nonlinear modelling 
Nonlinear models are needed in modelling of the 
granulation process. Various statistical and intelligent 
methodologies have been compared in this project. 

2.1 Statistical modelling 
Response surface methodology combines linear terms 
with interaction and quadratic terms to calculate one 
output variable  from multiple input variables : 

 

(1) 

The number of parameters increases very fast with 
the number of variables. 
Statistical models have been used for interpolating 
the granule size to obtain data for dynamic modelling. 
There are considerable differences between the 
batches (Figure 6). 

 
Figure 2. Interpolation of the granule size from 8 samples, 

starting point presumed to been 0.05 mm. 
 
Dynamic statistical modelling is widely used in sys-
tem identification. For parametric models, the output 
at time t is computed as a linear combination of past 
inputs and past outputs in such a way that the output 
at time t can depend on the signals at many previous 
time instants chosen according to appropriate time 
delays [16]. The number of delayed inputs and out-
puts is usually referred as the model order(s). The 
simplest model, ARX model, is usually written 

 (2) 

where  and  are model coefficients,  and 
 state variables and  input variable 

delayed with  time steps. State-space models are 
widely used for combining effects of several input 
variables. 

Various structures based on ARMAX, output error 
and Box Jenkins with different orders of the respec-
tive polynomials have been compared. Nonlinear 
models are needed, i.e. higher orders were needed in 
the parametric models, and the state-space models 
were insufficient. 

2.2 Fuzzy modelling 
Fuzzy set theory was first presented by Zadeh [17] to 
form a conceptual framework for linguistically repre-
sented knowledge. Extension principle is the basis 
generalisation of the arithmetic operations if the in-
ductive mapping  is a monotonously increasing 
function, e.g.  in Figure 3. These results 
can be combined by applying fuzzy interval analysis 
in fuzzy arithmetic [18]. 

Linguistic fuzzy models [19], where both the ante-
cedent and consequent are fuzzy propositions, suit 
very well to qualitative description of the process as 
they can be interpreted by using natural language, 
heuristics and common sense knowledge. The key 
idea is to use membership functions for both the in-
puts x and the outputs y. These functions can be de-
fined by expert knowledge or by experimentation. 
The input-output mapping is realized by the fuzzy 
inference mechanism equipped with conversion inter-
faces, fuzzification and defuzzification. The approxi-
mate reasoning is based on T-norms and T-conorms 
[19]. 

 
Figure 3. Fuzzy extension of a power function. 

 
The Takagi-Sugeno (TS) fuzzy modelling method 
was proposed by Takagi and Sugeno as a framework 
for generating fuzzy if–then rules from numerical 
data [20]. A TS fuzzy model consists of a set of fuzzy 
rules, each describing a local linear input–output 
relationship: 

 
(3) 
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where  are fuzzy sets defined in the ante-
cedent space and  is the rule output of the model.  
denotes the number of rules. The results of the rules 
are usually combined as a weighted average where 
the weights are obtained from the fulfilment of the 
rules. 

Fuzzy relational models [21], which allow one partic-
ular antecedent proposition to be associated with 
several different consequent propositions, can be 
regarded asgeneralizations of the linguistic fuzzy 
models. Each element of the relation represents the 
degree of association between the individual refer-
ence fuzzy sets defined in the input and output do-
mains, i.e. all the antecedents are tied to all the con-
sequents with different weights. 

Dynamic fuzzy models can be constructed on the 
basis of state-space models, input-output models or 
semimechanistic models [22]. In the state-space mod-
els, fuzzy antecedent propositions are combined with 
a deterministic mathematical presentation of the con-
sequent. The most common structure for the input-
output models is the NARX (Nonlinear AutoRegres-
sive with eXogenous input) model, in which the input 
and output values are chosen as in the ARX model 
according to appropriate system orders. The regressor 
vector consists of a finite number of past inputs and 
outputs [23]. This structure is directly used for multi-
ple input, single output (MISO) systems. Multiple 
input, multiple output (MIMO) systems can be built 
as a set of coupled MISO models. 

2.3 Neural modelling 
Artificial neural networks consist of neurons 

 (4) 

where  is the weight factor of the element  in the 
input vector of the neuron , and  a scalar bias. For 
the input layer, the elements are usually normalized 
values of the variables . 

Neurofuzzy systems use fuzzy neurons to combine 
the weight factors and the inputs. The activation func-
tion is handles as a function in the extension principle. 

Dynamic ANN models are based on similar structures 
as the dynamic fuzzy models: simple structures, e.g. 
NARX structures, can constructed by taking delays 
into account in the input vector  in (2). A dynamic 
ANN model can be realised by a static feedforward 
network and an external feedback connection [23]. 

Another possibility is to use recurrent networks, e.g. 
Elman networks} are two-layer feedforward net-
works, with the addition of a feedback connection 
from the output of the hidden layer to its input [24]. 
This feedback path allows Elman networks to learn to 
recognize and generate temporal patterns, as well as 
spatial patterns. The weight factors  can also de-
pend on time. 

3 LE modelling 
Data-driven steady state modelling is normally used 
in linguistic equation (LE) modelling [11]. Dynamic 
structures extend the models to dynamic simulation, 
and in this paper uncertainty of the results is handled 
with fuzzy arithmetics. 

3.1 Steady state LE modelling 
Linguistic equation models consist of two parts: in-
teractions are handled with linear equations, and 
nonlinearities are taken into account by (membership 
definitions) [10]. The output is obtained by 

 (5) 

Where parameters  and  are the 
interaction coefficients of the linguistic equation . 
Nonlinear scaling is based on membership definitions 

 and corresponding inverse functions . This 
model corresponds to the neural model (4) if the 
normalization is replaced by the nonlinear scaling. 

In the LE models, the nonlinear scaling is performed 
twice: first scaling from real values to the interval 

 before applying linguistic equations and then 
scaling from the interval  to real values after 
applying linguistic equations (Figure 4). The linguis-
tic level of the input variable  is calculated the in-
verse functions of the polynomials [11]. 

 
Figure 4. A steady state LE model for two inputs  

and one output. 
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3.2 Dynamic LE modelling 
The basic form of the linguistic equation (LE) model 
is a static mapping in the same way as fuzzy set sys-
tems and neural networks, and therefore dynamic 
models will include several inputs and outputs origi-
nating from a single variable. External dynamic mod-
els provide the dynamic behaviour. The models are 
developed for a defined sampling interval in the same 
way as in various identification approaches [16]. 
However, the LE simulators normally use variable 
time step integrators. 

Rather simple input-output LE models, where the old 
value of the simulated variable and the current value 
of the control variable as inputs and the new value of 
the simulated variable as an output, can be used since 
nonlinearities are taken into account by membership 
definitions. To use integration methods available in 
the simulation software, a difference of the output is 
calculated (Figure 5). 
Nonlinear scaling reduces the order of the model, 
i.e.the number of input and output signals needed for 
modelling of nonlinear systems. Need for higher 
order models can be tested by applying classical iden-
tification with different polynomial degrees to the 
data after scaling with membership definitions. For 
the default LE model, all the degrees of the polyno-
mials in parametric models become very low, i.e. all 
the parametric models become the same, ARX model 
shown in (2). 

 
Figure 5. Dynamic LE model of . 

 
Several artificial neural networks have been com-
pared for expanding the linear models, but these more 
complex model structures do not provide any consid-
erable improvement to the results obtained by the 
basic LE models, i.e. a linear activation function can 
be chosen in (4) if the nonlinear scaling described 
above is used for the input variables. 
Changing operating conditions can be taken into 
account by modifying membership defintions and/or 
interaction coefficients of the LE models. Linguistic 
fuzzy models can be used for selecting submodels. 
This approach is used for selecting the appropriate 
submodels for spraying and drying. 

Also structures used Takagi-Sugeno type fuzzy mod-
els can be used if the interaction coefficients depend 
clearly on the input variables. 

3.3 Fuzzy LE modelling 
Universal approximators for fuzzy functions can be 
constructed as extension principle extensions of con-
tinuous real-valued functions which continuously 
map fuzzy numbers into fuzzy numbers . LE 
models can extended to fuzzy inputs with this ap-
proach if the membership definitions and the corre-
sponding inverse functions, are replaced by corre-
sponding extension principle extensions of these 
functions presented in Figure 4. 

The argument of the function  in (1) is obtained 
by fuzzy arithmetics. Here the calculations are based 
on interval analysis which has been widely used in 
physics for handling measurement errors. In this 
methodology, measurement values are assumed to be 
on intervals whose lengths depend on the accuracy of 
the measurements. The interval analysis is used for 
estimating the intervals of calculated variables [26]: 

 
 

 

 

(6) 

where intervals  and  are arbitrary real 
intervals. 

The original interval analysis does not include any 
gradual approach, but the methodology can be gener-
alized to horizontal membership functions (Figures 3 
and 6) by applying interval analysis on each -cut 
separately. The number of  levels should be in-
creased when the fuzziness of the input increases. 

 
Figure 6. Fuzzy extension for a square root function. 
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Only addition and subtraction are needed if the inter-
actioncoefficients are crisp. The only fuzzy part in the 
linguistification function is the term which includes 
the input  (Figure 4). The extension principle is 
used to obtain a square root of the fuzzy number 
(Figure 6). The width and location of the input fuzzy 
number are modified by the parameters of the scaling 
functions. The output fuzzy numbers of these blocks 
are limited to the range  

In the equation block presented by (2), the state vari-
able  and the input variable , 
which are both fuzzy numbers, are multiplied by crisp 
numbers –  and , respectively, if the model is 
crisp. The sum of the resulting fuzzy numbers is the 
new state variable  in the range  

In the delinguistification block, the terms  can be 
obtained by the extension principle (Figure 3) or by 
multiplication  with fuzzy interval analysis. 
The resulting fuzzy number and the original fuzzy 
number  multiplied by crisp numbers shown in 
Figure 4 are then added to the crisp number  to 
obtain the fuzzy output. 

Fuzzy LE models with fuzzy inputs can be construct-
ed by using fuzzy multiplication and division as well 
since the parameters  and are all fuzzy 
numbers. Fuzzy extension of the classical interval 
analysis suits very well also to these calculations. 
However, the result becomes naturally more uncertain 
when fuzzy models are used. 

Results of the fuzzy interval analysis have always 
maximal uncertainty as it takes the worst case. A 
negative associations between the input variables 
reduces the uncertainty considerably. In the calcula-
tions, this can be taken into account by using own 
membership functions for the upper and lower parts 
of the value range. 

4 Dynamic simulator 
Data was separated to three main processes: mixing, 
spraying and drying. Modelling for mixing area has 
not done so far because of insignificant changes in 
the humidity and the airflow. Thus physical 
knowledge of mixing process is not well known. The 
aim of mixing step is to make a homogeneous batch. 

In the beginning of spraying the physical changes 
were very rapid and that part of process has been the 
most difficult area to model. The weight of granules 
increase rapidly, i.e. the inlet air has to be increased 

significantly to maintain fluidising. Correspondingly 
during the first few minutes of the drying, the surface 
drying proceeds quickly until the balance is founded. 
The granule growth may still continue for some time 
in the beginning of the drying phase. 

The overall model for the spraying and drying phases 
consists of three models: 

• temperature, 
• humidity, and 
• granule size. 

Output variables were the temporary value of the 
granule temperature, the new value of humidity dif-
ference and the new estimated value of the granule 
size, correspondingly. The dynamic submodels have 
similar structures as shown in Figure 5 and model 
specific variables: 
• The new granule size depends on the current 

granule size and two other variables, temperature 
difference and humidity difference. 

• The granule temperature depends on airflow 
( ), humidity difference between inlet and out-
let air ( ) and temperature between granule 
and inlet air ( ). 

• The humidity depends on ,  and gran-
ule temperature. 

The distribution of the particle size is based on the 
fuzzy extension principle, i.e. the membership func-
tion of the particle size is computed in each time step 
from the uncertain input values by using the dynamic 
LE model as a function. In this way the uncertainty of 
the model is not forgotten in the analysis. The system 
is able to select automatically the best submodel dur-
ing the granulation process and move gradually from 
one submodel to another when the process proceeds 
by fuzzy methods. 

The LE models have been developed and tuned in the 
FuzzEqu Toolbox: the LE model in Figure 7 is a 
model of the granule size. Membership definitions 
have been developed from the data: a batch specific 
example is shown in Figure 8. 

5 Results and discussion 
Testing data was collected from  batches,  
batches were used to training and the rest of the  to 
testing. Stable data for modelling was obtained by 
filtering. The modelled and simulated results were 
compared with experimental data. 
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Figure 7. Model development and tuning in 

FuzzEquToolbox. 
 

 
Figure 8. Membership definitions. 

 

According to the modeling and simulation results, the 
most representative input variables were airflow 
in , humidity difference between inlet and outlet 
air  and temperature between granule and inlet 
air . In Simulink model, also other input vari-
ables were used but the interaction coefficients of 
these variables are rather small. 

Modelling is aimed to help in estimating the granule 
size while processing since the analysis result of 
samples is not available on line. The granulation goes 
through considerably different routes depending on 
the operating conditions. By controlling the interac-
tion coefficients of the variables the model worked 
well also in rapidly changing areas. 

The temperature of granules varied mainly from  to 
. The data of the batches were shared to several 

subperiods, and the membership definitions were 
made for every area. In the linguistic equation model, 
the variables are scaled between  and . The 
value range of the variables must be wide enough to 
guarantee the applicability to the modelling. 

Fuzzy modelling is a reasonable extension as also the 
granule size has always a distribution rather than a 
single value. This distribution changes with time, and 
the result becomes more and more uncertain when the 
prediction horizon increases. Negative associations 
between  and  alleviate this problem slight-
ly. 

The first results show that the complexity of the mod-
els is increased only slightly with the new system 
based on the extension principle and fuzzy interval 
analysis. This study will be extended to the complete 
data set as it provides a lot of useful additional infor-
mation about the granulation process. In future, the 
results will be compared to the measured distributions 
of the granule size. The goal is to develop more gen-
eral models, i.e. the membership definitions will be 
developed from the complete data set related to the 
batches of the verapamil granulations. 

Partly the uncertainty is caused by uncontrolled pro-
cess conditions, e.g. seasonal variation in humidity is 
considerable and that will cause the changes in the 
water amount of the incoming air. The incoming air 
humidity should be included to the input variables or 
another possibility is to make a pre-moistening to a 
constant moisture value in the beginning of granula-
tion. Later a humidifying system has been included, 
and this enables high and fluctuating humidity of the 
process air. 

6 Conclusions 
The data based modelling succeeded well after the 
main process stages were divided into sub stages 
corresponding to shorter time periods. The interaction 
of the main variables was improved by using fuzzy 
modelling. Extension to fuzzy LE models provides 
useful information about uncertainties of the forecast-
ed granulating results. The complexity of the models 
is increased only slightly with the new system based 
on the extension principle and fuzzy interval analysis. 
Associations between input variables were useful in 
reducing the uncertainty of the final result. 



+++ Intel l igent Model l ing in  Product ion of  Pharmaceuticals  +++  

 

SN
E 

20
/2

, A
ug

us
t 

20
10

 

t N 

40 

References 
[1] Rantanen J., Lehtola S., Rämet P., Mannermaa J.P. 

Yliruusi J. On-line monitoring of moisture content in 
an instrumented fluidized bed granulator with a multi-
channel NIR moisture sensor. Powder Technology, 
vol. 99, pp. 163-170, 1998. 

[2] Aulton M.E. Pharmaceutics: The science of dosage 
form design. Churchill Livingstone, New York, 1992. 

[3] Bergman R., Johansson M.E., Lundstedt T., Seifert E., 
Åberg J. Optimization of a granulation and tabletting 
process by sequential design and multivariate analy-
sis. Cheometrics and Intelligent Laboratory Systems, 
vol. 44, pp. 271-286, 1988. 

[4] Colburn E.A., RoweR.C. Modelling and optimization 
of a tablet formulation using neural networks and ge-
netic algorithms. Pharmaceutical Technology Europe, 
vol. 8,pp. 46-55, 1996. 

[5] Kristensen H.G. Advances in pharmaceutical scienc-
es. Academic Press, pp. 221-271, 1995. 

[6] Lipsanen T., Antikainen O., Räikkönen H., Airaksinen 
S., Yliruusi J. Novel description of a design space for 
fluidised bed granulation, Int. J. Pharmaceut, 2007.  
doi:10.1016/j.ijpharm.2007.05.051 

[7] Thielmann F., Naderi M., Ansari M.A., Stepanek 
F.(2007). The effect of primary particle surface ener-
gy on agglomeration rate in fluidised bed wet granu-
lation, Powder Technology, 2007. 
doi:10.1016/j.powtec.2006.12.015 

[8] Heinrich S., Mörl L. Fluidized bed spray granula-
tion—A new model for the description of particle wet-
ting and of temperature and concentration distribu-
tion, Chemical Engineering and Processing vol. 38 pp. 
635–663, 1999. 

[9] Juuso E.K, Leiviskä K.. Adaptive expert systemsfor 
metallurgical processes. Jämsä-Jounela S.L., Niemi 
A.J., editors, Expert Systems in Mineral and Metal 
Processing, Proceedings of the IFAC Workshop, Es-
poo, Finland, August 26-28, 1991, IFACWorkshop 
Series, 1992, Number 2, pages 119–124, Oxford, UK, 
1992. Pergamon. 

[10] Juuso E.K. Fuzzy Control in Process Industry: The 
Linguistic Equation Approach. In: Verbruggen, H. B., 
H.-J. Zimmermann and R. Babuska, editors, Fuzzy 
Algorithms for Control, International Series in Intelli-
gent Technologies, pp. 243-300, Kluwer, Boston, 
1999. 

[11] Juuso E.K. Integration of intelligent systems in devel-
opment of smart adaptive systems. International Jour-
nal of Approximate Reasoning, vol. 35, pp. 307–337, 
2004. 

[12] Juuso E.K. (2004). Modelling and simulation with in-
telligent methods. White paper of theVirtual Institute 
for Simulation (Sim-Serv): www.simserv.com. Sim-
Serv, 17 pp., 2004. 

[13] Mäki T., Juuso E.K. (2000). Multiple Model Dynamic 
Simulation of a Fluidised Bed Granulator with Lin-
guistic Equations. Proceedings of TOOLMET 2000 
Workshop, Oulu, April 13-14, pp. 78-89, Oulu. Oulun 
yliopistopaino, 2000. 

[14] Mäki T., Juuso E., Leiviskä K. Fuzzy Modelling and 
Dynamic Simulation of a Fluidized Bed Granulator. 
In Proceedings of AFNC 2004- The 2nd IFAC Work-
shop on Advanced Fuzzy/Neural Control. September 
16-17, Oulu, Finland, pp. 133-138, 2004. 

[15] Rantanen J. Near-Infrared Reflectance Spectroscopy 
in the Measurement of Water as a Part of Multivariate 
Process Monitoring of Fluidised Bed Granulation 
Process, Dissertationes Biocentri Viikki Universitatis 
Helsingiensis 21/2000, pp. 46, 2000. 

[16] Ljung L. (1999). System Identification - Theory for the 
User. Prentice Hall, Upper Saddle River, N.J., 2nd edition. 

[17] Zadeh L.A. Fuzzy sets, Information and Control, vol. 
8, pp. 338-353, 1965. 

[18] Buckley J.J., Hayashi Y. Can neural nets be universal 
approximators for fuzzy functions?, Fuzzy Sets and 
Systems, vol. 101, pp. 323–330, 1999. 

[19] Driankov D., Hellendoorn H., Reinfrank M. An Introduc-
tion to Fuzzy Control, Springer, Berlin, Germany, 1993. 

[20] Takagi T., Sugeno M. Fuzzy identification of systems and 
its applications to modelling and control. IEEE Trans. 
Syst., Man, & Cybern. vol. 15/1, pp. 116-132, 1985. 

[21] Pedrycz W. An identification algorithm in fuzzy rela-
tional systems. Fuzzy Sets and Systems vol. 13, pp. 
153—167, 1984. 

[22] Babuska R., Setnes M., U. Kaymak U., Verbruggen 
H.B. Fuzzy Modelling: a Universal and Transparent 
Tool. Yliniemi, L. \& Juuso, E. (eds.), Proceedings of 
TOOLMET'97- Tool Environments and Development 
Methods for Intelligent Systems, Oulu, April 17-18, 
1997}. Oulun yliopistopaino, Oulu, pp. 1-27, 1997. 

[23] Babuska R., Verbruggen H. Neuro-fuzzy methods for 
nonlinear system identification, Annual Reviews in 
Control vol. 27, pp. 73—85, 2003. 

[24] Elman J.L. Finding structure in time, Cognitive Sci-
ence vol. 14, pp. 179—211, 1990. 

[25] Buckley J.J., Feuring T. Universal approximators for 
fuzzy functions, Fuzzy Sets and Systems, vol. 113, pp. 
411–415, 2000. 

[26] Moore R.E. Interval Analysis. Prentice Hall, Eng-
lewood Cliffs, NJ., 1966. 

Corresponding author: Esko K. Juuso 
Control Engineering Laboratory, Dept. of Process 
and Environmental Engineering, P.O.Box 4300, 
FI-90014 University of Oulu, Finland 
esko.juuso@oulu.fi 

Received & Accepted: SIMS 2007: - 
Revised: November 10, 2009  
Accepted: May 10, 2010 


