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The organisation of an Artificial Neural Network (e.g., the organisation in layers, the number of cells per 
layer, the degree of connectivity between the cells) has a big influence on its abilities (e.g., learning ability). 
In our work we present a novel method to organise the nodes and links of an Artificial Neural Network in a 
biologically motivated manner using virtual embryology. For this purpose we developed a virtual embryo-
genesis, which mimics processes observable in biology. In our system a virtual embryo consists of individual 
cells, controlled by a genome. These cells can develop to nodes in the ANN during the embryogenetic pro-
cess. The embryo is implemented as a spatially discrete and temporally discrete multi-agent model. The cells 
in our model interact with each other via virtual physics and via virtual chemistry. With the work at hand, we 
show that patterns developing in our virtual embryogenesis are comparable to patterns found during natural 
embryogenesis. We plan to combine the described virtual embryology with Evolutionary Algorithms to op-
timise the genome of the embryo. We expect the described model of virtual embryology (in combination 
with Evolutionary Algorithms) to lead to novel, evolutionary shaped net structures of Artificial Neural Net-
works. 

Introduction 
The morphological structure of an Artificial Neural 
Network (ANN) is very important for its functionali-
ty. Basic structural features of ANNs can determine 
the basic capabilities of the network [9] [4]. Several 
approaches to tune ANNs were published recently: 
One common approach is to fully link a network of 
cells, and then use a Genetic Algorithm to find opti-
mal values for weighting these connections [12]. 
ANN controlled agents (e.g., autonomous robots) 
using such systems do not learn during runtime, but 
are customised for their environment by Artificial 
Evolution.  

Such concepts are very effective but become more 
and more time consuming with increasing numbers of 
cells due to the quadratic scaling of the number of 
connections. 

In other approaches the structure of ANNs is manual-
ly predefined [4]. This allows to rely on a set of well-
defined and hand-designed networks with well-
known features. A learning algorithm (e.g., rein-
forcement learning) tunes these weights of the con-
nections during runtime. The advantage of such sys-
tems is the easy combination of several well defined 
network-structures for finding solutions to one given 
problem.  

The disadvantage of such systems is the low ability of 
the network to adapt to unknown situations or prob-
lems that were not taken into account during the net-
work design. This ability of networks is especially 
needed in adaptive controllers for real-world robotics 
or for comparison with biological systems. In nature 
we find that structures of neural nets develop during 
embryogenesis. The outcome of this developmental 
process is shaped by natural selection. During life-
time the connections between cells are tuned by 
learning [11].  

Biologically inspired controllers are able to adapt to 
new situations in an evolutionary way by changing its 
network structure and by learning processes. The 
organisational mechanisms working in embryos are 
easy to evolve and enable a fast and effective artifi-
cial evolutionary development of controllers (e.g., for 
the purpose of robot control) [5]. 

In the work at hand, we present a novel method to 
organise the nodes and links of an ANN in a biologi-
cal motivated manner using a novel method of virtual 
embryology. Our concept of virtual embryogenesis, 
which we present here, is mimicking processes ob-
servable in biology during the developmental phase 
of most multicellular life-forms, like Drosophila m. 
[8] or other species [14][6][1].  
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Figure 1. Process of optimisation of an ANN using 

artificial embryology and artificial evolutionary processes. 
For details pease see 5 

 

Figure 2. Network of feedbacks within the 
developing embryo. Boxes indicate subunits of the 

system controlling the growth of the embryo. 
Arrows indicate influences of one subunite on 

another. 

Our approach also synthesises general concepts of 
biological embryogenesis and of artificial embryo-
genesis [21][2]. These very complex processes are 
strongly abstracted in our virtual embryogenesis. 
These simplifications are important, to enable a later 
optimisation of the resulting ANN, by using artificial 
evolutionary processes (see figure 1).  

Due to this requirement, the fast calculation of single 
embryologic processes is necessary. Especially for 
projects dealing with evolution in autonomous robotic 
systems (e.g., see [19][18]) the fast simulation of 
embryologic processes on systems with limited hard-
ware resources is required.  

1 Concept 
Our virtual embryo consists of individual cells. These 
cells can develop to nodes in the ANN during the 
embryologic process. In our model, cells can dupli-
cate, die, specialise, emit chemical substances (mor-
phogenes), or build links to other cells. These links 
represent the connections between the nodes of the 
resulting ANN. Due to growth processes (duplication 
processes of other cells), which is an importand as-
pect that we implemented in our model, a cell can be 
“pushed around” in space. A cell has no ability for 
active movement.  

The cells’ actions are defined 
by the genome of a cell, 
which consists of a collection 
of genes, which can be trig-
gered by virtual mor-
phogenes. One possible effect 
of gene-activation can be the 
production of another mor-
phogene. This way a network 
of feedbacks emerges (see 
Figure 2).  
The resulting selforganised 
process governs the growth 
of the embryo. When the 
embryologic process is fin-
ished, the developed network 
is analysed and translated in-
to a datastructure, which is 
compatible to a standard 
ANN-interpreter. 

 

2 Implementation 

2.1 Diffusion processes 
In our model, the embryo is implemented as a multi-
agent model, in which a single cell is represented by 
an agent.  

The space in our model is discrete. Each spatial unit 
(patch) can be occupied by a cell. These cells interact 
with each other via virtual physics and via virtual 
chemistry.  

Morphogenes are emitted by cells and diffuse 
throughout the embryo [3].  

 



+++ Model l ing Embryology for  Structur ing an Art i f ic ia l  Neural  Network +++  t

27

N
SN

E 20/2, A
ugust 2010

The concentration  of a morphogene  at the 
position  at time step  is calculated according to 

 (1) 

whereby  is the maximum concentration of a 
morphogene ,  is the maximum concentra-
tion of the morphogene  in the cell at the position 

 and in all neighbouring cells (“Von Neumann” 
neighbourhood), at the time step .  

The amount of the decrease of the morphogene con-
centration when diffusing from one cell to another is 

. When a cell at position  emits a morphogene, 
its value for  is set according to 

 (2) 

Please note, that no conservation of mass is imple-
mented in our model. This simplification of real phys-
ical diffusion processes is necessary to achieve the 
required computational speed (mentioned in the in-
troduction).  

The results of this abstract diffusion model suffices 
for our needs to achieve the desired embryogenesis. 

2.2 Genetics and cellular behaviour 

In our model, a cell measures the concentrations of 
morphogenes every time step and reacts in a prepro-
grammed way. The concentration of a morphogene 
needed to trigger a reaction as well as the triggered 
type of reaction is specified in the genome of the cell. 

The genome  is a set of  genes  (see equation 3). 
Each gene is a tuple of numeric values (see equation 
4). These values determine which cell-reaction  is 
triggered, if a defined morphogene  is present with a 
concentration higher than  and lower than  
at the position of the cell in the embryo.  

All cells share the same genome, which does not 
change during the embryogenetic process. 

 

(3) 

 (4) 

The reactions  of cells can be as follows: emission of 
a morphogene, cell duplication and cell death. They 
are described in detail in table 1. 

 

Table 1. Possible reactions of a virtual cell in our model. 
Cell reaction Description 

Emission of morphogene A cell emits a morpho-
gene ino the embryo 

Cell duplication The cell duplicates, which 
leads to a change of the 
embryo, due to virtual 
physics. For details see 
subsection 3.3. 

Cell death The cell dies, which leads 
to a change of the em-
bryo, due to virtual phys-
ics. For details see subse-
tion 3.3. 

Changes in responsive-
ness 

Changes the cells respon-
siveness towards a certain 
morphogene. By changing 
this values the cell is able 
to differentiate. 

Changes of internal values Internal values represent 
the predisposition for 
certain functions. 

Linking to neighbours Builds a neural connec-
tion (dendrite) to a neigh-
bouring cell. 

 

The fact that our “genes’’ are triggered by mor-
phogenes is comparable to the mechanisms of gene 
expression and protein synthesis found in nature. 
Especially the concepts of second-messenger mecha-
nisms [7] and transcriptioncoregulator mechanisms 
found in biological cells [17] were used in a very 
simplified way for our concept of virtual embryology. 

2.3 Simulated physics 

In case of cell duplication or cell death the positions 
of cells within the embryo have to be reorganised. We 
implemented this process by assuming that cells in-
teract with each other physically via pushing. No 
other complex interactions (e.g., cellular cohesion) 
are simulated. If a cell (mother cell) duplicates, it 
determines the numbers of cells in the directions up, 
down, left and right.  
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The cells have to be in a continuous row to be count-
ed. In the direction where the number of cells is the 
smallest, the whole continuous row of cells is shifted 
by one position in the according direction. The new 
cell (daughter cell) is then placed on the new free 
position next to the mother cell (see figure 3A). This 
process simulates the movement of cells during the 
growth process.  

In case of a cell’s death, analogously to cell duplica-
tion, the free patch of the died cell is filled by shifting 
the whole row of cells towards the empty space (see 
figure 3A). In both, the movement of cells after cell 
duplication and the movement of cells after cell 
death, always the smallest possible number of cells is 
moved.  

This simulates the physical situation in a loose group 
of cells, where the physical inertia of subgroups of 
cells determines which cells have to move. 

 

 

 

 

As well as there are morphogenes 
that can induce growth, other mor-
phogenes can reduce growth. The 
balance between these two groups 
of morphogenes during the embryo-
genesis determines the size of the 
embryo (see figure 4).  

A big variety of shapes can emerge 
from this system, because growth 
factors can be emitted in different 
locations and in different timephases 
during embryology. 

2.4 Cell specialisation 
Morphogenes can not only influence 
the growth of the embryo by induc-
ing cell duplication or cell death, but 
they can also change internal status 
variables of cells (see figure 5) 

 These values can code for the recep-
tivity for another morphogene, the 
probability quality of linking to other 
cells (mentioned below), or for prop-
erties that are necessary for the func-
tion of the resulting neural net (e.g., 
net (e.g., if a cell is an input cell or an 
output cell).  

 

 
Figure 4. Screenshots of the growing embryo.  
The cells of the embryo are indicated by boxes.  

A: Starting condition with one single cell.  
B: Status of the embryo after 5 time steps.  
C. Status of the embryo after 10 time steps.  
D: Status of the embryo after 20 time steps.  

E: Final shape of the embryo. 
 

 

 

 

 

Figure 3. Movement of cells in the embryo during cell duplication and cell 
death processes. A: Modelling cell duplication:The daughter cell is placed in 

the direction where the number of other cells is lowest. B: Modelling cell 
death: Neighbouring cells are moved in from that direction where the number 

of cells is minimal.
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2.5 Cell specialisation 

Morphogenes can not only influence the growth of 
the embryo by inducing cell duplication or cell death, 
but they can also change internal status variables of 
cells (see figure 5). These values can code for the 
receptivity for another morphogene, the probability 
quality of linking to other cells (mentioned below), or 
for properties that are necessary for the function of 
the resulting neural net (e.g., if a cell is an input cell 
or an output cell).  

Usually, the processes of cell specialisation take 
longer than the development of the shape of the em-
bryo during embryogenesis. Especially the shape of 
the embryo has a big influence on the interactions of 
different morphogenes, what goes along with results 
found in nature [16]. Some of the emerging processes 
can be interpreted as being a sort of “Turing process-
es’’ [20]. 

 
Figure 5. Screenshot of a virtual embryo during  

cell specialisation process. Specialised cells 
 (high value of a given internal status variable)  
are indicated as gray dots, not specialised cells  
are not drawn. Lines indicate the boundaries  

of the virtual embryo.  
A: Starting condition,  

B: Status of the embryo after 25 time steps.  
C: Status after 30 time steps.  
D: Status after 40 time steps.  
E: Final status of the embryo. 

2.6 Linkage 

During our simulated embryogenesis, all cells can 
link with other cells (see figure 6). As mentioned 
above, those links represent the connections between 
the nodes of the neural network.  

The amount of links built by a cell, as well as the 
distance to the linked cells, depends on the interplay 
between the morphogenes and the genome (see figure 
7). This way the degree of connectivity within a cer-
tain area of the embryo is determined by the embryo-
logic process.  

 

If the cell is moved after linking, it stays still linked. 
This can lead to long-distance connections and ena-
bles a structuring of the resulting neural network (see 
figure 8). If a cell dies during the embryological pro-
cess its links are deleted. Not all cells within the em-
bryo have to be linked to other cells.  

Cells, that are not linked, are not without function, 
they can operate as morphological structuring cells in 
our model. These cells are needed for shaping the 
embryo due to growth or dying, as well as for shaping 
the gradients of morphogenes. 

 
Figure 6. Example of links between cells.  

For depicting reasons lines indicating intercellular 
links are drawn into the embryo.  

The area of linked cells is depicted enlarged.  
Cells are indicated by white circles. 
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Figure 7. The process of linking cells:  
The degree of connectivity and the distance 

 of cells selected for connection is determined  
by the genome, by the morphogene level  

and by the internal state of the cell.  
A: A focal cell links with its closest neighbours with a 

high density.  
B: A focal cell builds up a few long distance 

connections with cells further away. 
 

 

Figure 8. Scheme for the movement of linked cells. 
Once the focal cell is linked, the connections to other 
cells persist for the rest of the embryologic process, 

even if the cell is moved within the embryo. 

 

Figure 9. Scheme for the translation of a cellular 
pattern into a tabular representation which is easily 
readable by a standard neural network interpreter. 

Please note that not all cells in the embryo have to be 
translated into the neural net.  

Cell number 5, for example, has no connection to other 
cells, for it had a purely morphological structuring 

function during embryogenesis. For details see 
subsection 2.5. 

 

2.7 End of growth process 
For the work at hand, the modelled embryo was al-
lowed to grow and differentiate, until all growth and 
celldifferentiation had finished. That means that no 
more cell duplication events, cell death events, or cell 
linking events occurred. Also the distribution of 
growth factors within the embryo had to stay stable. 
If an embryo reaches this stable point of a complex 
equilibrium of development, it is defined as “fin-
ished’’.  

If the growth processes are not regulated well by the 
genome, the embryo can grow infinitely. In our simu-
lation, the embryological process is stopped, if the 
number of cells reaches a certain point, to deal with 
such “pathologic’’ forms of embryos that grow infi-
nitely. The resulted embryo is then rejected from 
further analysis. 

2.8 Extracting ANNs from our virtual embryos 
After the embryogenesis is finished, the embryo is 
analysed and the network topology is transferred into 
a structure, that is readable for a standard neural net-
work interpreter. Cells that had only a morphological 
structuring function during the embryogenesis and 
have not linked during the embryogenetic process are 
excluded from the translation process to save compu-
tational time. These cells have no influence on the 
shape or function of the ANN after the embryogenesis 
has finished. 

3 Results 
Using our model of virtual embryogenesis we can 
simulate the development of an embryo from a simple 
handcoded genome for the purpose of structuring an 
Artificial Neural Network (see figure 10). The final 
shape of the embryo, the connectedness of the em-
bryos’ cells, as well as the internal specialisation of 
cells (see figure 10 D) are controlled by a system of 
feedbacks.  

These feedbacks arise from the ruleset described 
above (section 3), from the genome, from the spatial 
distribution of the cells within the embryo (see figure 
10 A) and from the diffusion abilities of the mor-
phogenes (see figure 10 B,C). The specialisation of 
cells within the embryo allows the development of 
different tissues, neural cells or structure cells, which 
have no neural function but morphological function. 
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The resulting patterns found in simulations of our 
model are comparable with patterns found in nature 
during embryological development. In figure 10, we 
compare the self-organised segmentation processes in 
our virtual embryo (figure 10A-D) with images from 
natural embryogenesis in Drosophila m. (figure 10E). 
Similar segmentation patterns are described also by 
Kalthoff [10]. 

 

Figure 10. Comparison of virtual embryogenesis in 
our model and real-world embryogenesis:  

A: Virtual embryo, consisting of cells (dots);  
B: Morphogene gradient in embryo;  

C: Gradient of another morphogene, inducing 
 cell differentiation.  

D: Embryo consisting of differentiated cells (white 
dots) and non-differentiated cells (invisible) ;  

E: Natural examples of gene expression: Activity 
domains of gap genes in larva (lateral view) of 

Drosophila m. (from [8];  
’Kr’ and ’Gt’ indicate gap genes.) 

4 Related work 
First ideas about possible self-organisation processes 
shaping or structuring a living creature can be found 
in [20], where the authors describe the interaction of 
different antagonistic chemical substances diffusing 
through a medium.  

Early models of shape-giving processes are described 
in [6] [1]. In recent years many studies about mecha-
nisms that are structuring an embryo have been pub-
lished, dealing with the topics of genetic control 
mechanisms of embryogenesis as well as with physi-
cal mechanisms spatially organising an embryo (for a 
review please see [16]). 

The topic of organising ANNs using genetic optimisa-
tion methods have been investigated recently in [13] 
which describes the coding of network topologies in a 
genome.  

Another study [15] shows the technique to arrange 
groups of cells to solve a ”french flag test“, using 
evolutionary methods. Such tests have become a 
common benchmark in the field of virtual embryo-
genesis [22]. 

5 Conclusion and Outlook 
Our model of embryogenesis for the purpose of struc-
turing artificial neural nets uses ideas from evolution-
ary developmental biology. Our approach produces 
results that are comparable with the products of natu-
ral developmental processes.  

The virtual embryogenetic processes described in this 
article have the potential to structure groups of cells, 
on the level of body shape, as well as at the level of 
microstructure. 

We plan to combine our virtual embryology with 
Artificial Evolution. The network of (neural) cells 
that develops during the embryologic process will be 
tested in a standard neural network interpreter. The 
fitness of a genome will be determined by the quality 
(e.g., learning ability) of the resulting “grown“ neural 
net. This way we plan to evolve novel and efficient 
Artificial Neuronal Network structures (see figure 1). 
Additionally, we think we can learn more about the 
properties of basic processes that act during the bio-
logical evolution of brain structures (e.g., evolution of 
hierarchical brain-structures). 
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