
+++ Comparison of F lexs im, Dymola and MATLAB/Statef low based on C2 +++
SN

E
20

/1
, A

pr
il

20
10

38

A R G E S I M B E N C H M A R K S

Event-based and State-Automata-based Modelling of FMS

A Comparative Case Study of Flexsim, Dymola and Matlab/Stateflow
based on the ARGESIM Benchmark C2

Sebastian Schreiber, Mike Barth, René Nicolaus, Markus Schleburg, Alexander Fay
Helmut-Schmidt-University, Institute for Automation Technology, Hamburg, Germany

{sebastian.schreiber; mike.barth; rene.nicolaus; markus.schleburg; alexander.fay}@hsu-hh.de

By implementing the ARGESIM Benchmark C2 “Flexible Assembly System”, the simulation system Flex-
sim, the Matlab/Simulink-toolbox Stateflow, and the equation-based modelling language Modelica are com-
pared to each other. Based on the different modelling techniques, the systems will be described and analysed
from an automation point of view. Subsequently, the modelling approaches of state-automata (Stateflow) as
well as object-orientation (Flexsim) and equation-based modelling (Modelica) are reflected. The analysis in-
cludes (1) the time and efforts that are necessary for the modelling process itself, (2) the complexity of the
implementation, (3) the possibility to analyse the simulation results, and (4) the possibility to separate con-
trol algorithms and controlled system in the implementation.

Introduction
A wide choice of commercial software tools for the
simulation of material flow is available on the market
(see e.g. [6]). Within this work, the authors analyse
how software tools which are commonly used within
the automation community can be used for the model-
ling and simulation of material flow problems. In this
context, modelling and simulation methods are im-
portant for testing control algorithms without the
need of having access to real systems. Therefore, the
simulation environment Flexsim [1], the Mat-
lab/Simulink-Toolbox Stateflow [2], and the model-
ling language Modelica [3] implemented in Dymola
[4] have been selected and applied to the ARGESIM
C2 Benchmark “Flexible Assembly System” [5].
There has not been a publication of C2 Benchmark
results concerning these tools before.

The article is structured as follows. First, the Bench-
mark C2 will be introduced by presenting the struc-
ture of the target system and its modelling tasks.
Subsequently, the different modelling techniques as
well as the respective implementations of the C2
Benchmark are explained for Flexsim (Section 2),
Modelica (Section 3) and Matlab/Stateflow (sec-
tion 4). Finally, all three approaches are compared
with respect to the required time for modelling, the
complexity of the implementation, the possibility to

analyse the simulation results, and the possibility to
separate the control algorithms from the controlled
system. The latter requirement is essential for the test
of control algorithms on the model.

This article is an extended and reviewed version of
[15], which was presented at the ASIM ST/GMMS-
Workshop 2010.

1 Benchmark ARGESIM C2
“Flexible Assembly System”

The benchmark C2 describes a flexible assembly
system and has originally been proposed by the AR-
GESIM in [5]. Its objective is to test different simula-
tion systems with regard to their ability to define and
to combine sub-models, as well as to formulate com-
plex control strategies. The VDI guideline 3633 [7]
uses this benchmark as an application example for the
efficient handling of simulation studies. The average
throughput time and the optimal number of pallets are
the comparable target results.

The pallets are used to transport single parts through
an assembly system, which is shown Figure 1. The
number of pallets to be used is one of the parameters
that is kept constant during a single simulation run.
The system can be separated into eight sub-models
placed along a main conveyor belt. Each of these sub-
models contains an assembly station.

+++

Station A1 is
from the pal
A2 to A6 are
essing step.
steps A2 to A
a back-up fu
stations A3
sequence ha
sequence of A

Each subsyst
belts B1 and
assembly sta
be processed
onto B2. If i
remains on
and Ax on be
pallets are p
priority to th

2 Simul
Flexsim is a
event simula
processes. T
more than 40
In May 2010
been released

All objects
classes” Fix

chine) or Ta
crane). Elem
called Flowi
system. The
input and ou
represents in

Figure

Fig

+ Compariso

s responsible
llets and load
e each respon
Every part h

A5 before it is
unction and sh
to A5 is busy
s to start or

A3 to A5 is not

tem (Figure 2
B2, two shift

ation Ax. If a p
d into Ax, the
it does not ne
B1. The trans

elt B2 can be u
pushed back t
ose on B1.

lation envir
an object-ori
ation and sim
The available
0 objects, of w
0, the current
d.

refer to one
edRessources

askExecuter
ments modell
tems and form
objects are c

utput ports, w
nformation and

e 1. Description

gure 2. Descrip

on of F lex

for unloading
ding new ones
nsible for a pr
has to pass t
s finished. Stat
hould be used
y or down. T
end within st
t predefined in

2) consists of
ting units Sx a
pallet arriving
e shifting unit
eed to access
sportation are
used as a buffe
to B1 through

ronment Fl
ented system

mulation of co
 standard lib
which 26 are
version 5.0 o

e of the so-c
s (e.g. source
(e.g. operato

ing the mate
m a special cl
connected to
where the con
d/or material f

n of the assembl

ption of a subsy

s im, Dymola

g finished part
s. The station
edefined proc
the processin
tion A6 acts a
d if one of th
The processin
tation A2. Th
this context.

two conveyo
and Sy, and an
on B1 needs t
t Sx pushes i
Ax, the palle

ea between S
er. All finishe
h Sy and hav

lexsim
m for discrete
ontinuous-flow
brary contain

discrete ones
of Flexsim ha

called “super
e, sink, or ma
or, vehicle, o
erial flow ar
lass within th
each other vi
nnection itsel
flow.

ly system.

stem.

 and MATL

ts
ns
c-
g

as
he
g

he

or
n
o
it
et
x

d
ve

e-
w
ns
s.
as

r-
a-
or
re
he
ia
lf

Every o
terizatio
sor (as
propert
ling a m
and Tri
used to
text, Fl
the pos
grammi
C++, th
the sim
before i

For im
standar
efficien
own ob
shows
tion A2
between
ments a
flow is
in Flex
influenc
Figure 4
Convey

some m
biner,

For im
ports s
Photo
represen
an obje

Figure

Figure

AB/Statef l

object allows
on. As an exa
ssembly statio
ies support al

material flow s
igger (e.g. ev
o define the e
lexsim offers
ssibility to def
ing languages
he use of Fle

mulation mode
it can be used

mplementing th
d library elem

nt traceability
bjects and lib
the implemen

2. For the sake
n the element
are separated
only modelle

xsim, the sep
ce on the pro
4 contains s
or and Proc

more objects u
or Separator

mplementing c
several possib
Eyes can be
nting sensor i

ect can be used

3. Description
a P

4. Implementin

ow based o

several possi
ample, Figure
on A2) and it
ll the relevant
system, such a

vents OnEntry
element’s beh

pre-defined
fine new mod
s C++ or Flex
xscript offers
el does not ha
.

he benchmark
ments have be
y. Flexsim its
braries. As an
ntation of the
e of visual clar
ts are hidden
in this Figur

ed as an (infor
paration of th
cessing of the
everal instan
cessor. Furth
used within th
, which are no

control algorit
bilities. For
placed on ev

information, o
d, e.g. a flow

(left) and param
Processor obje

ng the first sub-

n C2 +++

ibilities for pa
3 shows a Pr

ts properties.
t aspects for m
as Processor
or OnExit), a
aviour. In thi
samples as w
dels within th

xscript. Compa
s the advantag
ave to be com

k in Flexsim
een used to all
elf allows to

n example, Fi
e first assemb
rity, the conne
and the sing

e. Because m
rmation) conn

he elements h
e simulation m

nces of the o
hermore, ther
he model, e.g
ot displayed h

thms, Flexsim
example, so-

very Conveyo
or special trigg

item leaving

meterization (ri
ct.

-model A2 in Fl

arame-
roces-

These
model-
, Flow,

and are
is con-
well as
he pro-
ared to
ge that
mpiled

m, only
low an

o build
igure 4
ly sta-
ections

gle ele-
material
nection
has no
model.
objects
re are

g. Com-
here.

m sup-
-called
r, e.g.
gers of
a con-

ght) of

lexsim.

39

SN
E 20/1, A

pril 2010

+++ Comparison of F lexs im, Dymola and MATLAB/Statef low based on C2 +++
SN

E
20

/1
, A

pr
il

20
10

40

veyor. The listing for the latter possibility is shown in
Listing 1. Every Flowitem reaching the end of this
conveyor triggers the control decision. It represents
the decision whether a pallet should be processed in
Ax (shift to B2) or not (stay on B1), depending on the
pallet’s properties, where: (1) is a reference (tree-
node) to the current conveyer ownerobject(c) in the
global treeview, in which all elements of the simula-
tion model are listed; (2) is a reference to the pallet
currently on this conveyor by parnode(1); (3) reads
the target label on the pallet by getlablenum(...);
(4) compares the target information; and (5-6) send
the pallet to the defined ports. The example is written
in Flexscript, which has a syntax similar to C++.

1 treenode current = ownerobject(c);
2 treenode item = parnode(1);
3 int target=getlabelnum(item,"target");
4 if (target==Ax) {
5 return 1;
6 } else return 2;

Listing 1. Trigger Flow-Output-Send to port of a
conveyor in Flexsim.

The parts and pallets are modelled as different Flowi-
tems. Each Flowitem can carry a number of so-called
Labels, e.g. information of a RFID tag, which can be
analysed and manipulated through every object. The
part objects are generated within station A1 and are
combined with a pallet for transportation. After being
processed on every necessary machine the pallet
returns to station A1, in which the part object is sepa-
rated from the pallet object.

For analyzing the simulation results, Flexsim offers
an included module as well as an interface to MS
Excel, which was used within this work.

3 Modelica and Dymola
Due to its object-oriented equation-based (OOE)
architecture, Modelica is well suited for the model-
ling of continuous physical systems. By using the
module State-Graph ([10], [11]) of the Modelica
Standard Library (MSL) [9], it is also capable of
discrete-event simulation. The Benchmark C2 can be
classified as a hybrid model, which represents a com-
bination of both discrete and continuous modelling
(e.g. [12], [13]).

Within Modelica, it is possible to define so-called
real-world models through known mathematical rela-
tionships. By defining interfaces of different variable
types (e.g. real, boolean, integer), the combination of

time-based equations and decision routines can be
implemented. While applying tests on event-driven
models it is often necessary to allow user interaction
in parallel to a running simulation. These can be initi-
ated together with the User-Interaction (UI) module
[9] and a built-in real-time option. The UI module is
part of the MSL. As an example, a boolean variable
(e.g. start of a conveyor) can be changed manually
and the user is able to visualize additional feedback
variables at the same time (e.g. photo eye on this
conveyor).

Following the object-oriented approach of Modelica,
the objects of the benchmark can be separated into
physical objects (e.g. conveyor, pallets) and decision
(control) objects. A combination of physical objects
represents the controlled system, while the distributed
control decisions are modelled as separated objects.
Figure 5 shows the object “conveyor” with its differ-
ent types of interfaces. There is one array input and
one output (SISO) for the exchange of status informa-
tion of the current pallet. In this context, a capacity of
six real variables has been implemented. Further-
more, two interfaces represent boolean type informa-
tion whether there is a pallet waiting for takeover
(input) or is ready for takeover (output). Another
input informs the conveyor about the release of a
waiting pallet. The output interfaces on the bottom of
the conveyor are also of boolean type and represent
the status of the object (idle/busy) as well as a trigger
signal to the previous object sending a release flag.

The whole modelling of the benchmark is based on
the object Conveyor. To each object, a range of physi-
cal parameters is assigned, e.g. length and conveyor
belt speed, processing time, as well as the respective
process number in case of representing an assembly
station. For modelling the elements Sx and Sy (see

Figure 5. Screenshot of the basic object Conveyor in
Modelica.

+++

Section 1), t
block have
Figure 6). Fo
tion run, a
releases a de
vates them.

4 Matla
Stateflow is
lab/Simulink
tion of state
found in [8].
modelling st
shown in Fig
states and tra
or superstate
(OR) or para
tion within a
as event[co

ion_action}
event and/o
Truth Table
decisions and

The system b
modelled as

Figure 6.

Figure

+ Compariso

two Conveyo
been combin

or the initialis
separate mod

efined number

ab-toolbox
part of the sim

k and supports
automata. A

. In this conte
tate automata
gure 8. The m
ansitions, whi
es. States can
allel (AND) w
a chart. State t
ondition]{co

} and can th
or a fulfilled
es can be us
d correspondin

behaviour of
 enclosed sta

Description of

8: Basic eleme

on of F lexs im

or objects an
ned to a sing
sation phase o
dule was mo
r of pallets an

Stateflow
mulation envi
s the modellin
detailed desc

ext, state-char
a whose basic
main modelling

ch can be gro
n be modelled
with respect o
transitions are
ondition_act

herefore be tr
d condition.
sed for pre-d
ng actions.

the benchmar
ates. For this

f an element Sx

nts in Matlab/S

, Dymola

nd a decision
gle object (se
of each simula
odelled, which
nd later deacti

ironment Mat
ng and simula
cription can b
rts are used fo
c elements ar
g elements ar

ouped as chart
d as exclusiv
ot their activa
e implemente
tion}/transi

iggered by an
In addition

defined contro

rk needs to b
s purpose, th

in Modelica.

Stateflow.

 and MATL

n
ee
a-
h
i-

t-
a-
be
or
re
re
ts

ve
a-
d
t

n
n,
ol

be
he

convey
the len
empty (
receive
through
Because
“virtual”

Figure 7
Working

the eve
previou
Listing
veTime
time fo
let, wh
contain
system
the stat
release
clearing
segmen

1 [af
2 {Po
3 sen
4 [Po

Listing
segm

The stru
can als
ure 7, r
by two
ing 3).
on the
cates th
Second
tion for
able to

F

AB/Statef l

ors are separa
gth of a sing
(Idle) or can
s a unique ide

h all segments
e there is no “
” in contrast to

7 shows the
g within segm
ent s1, which
us segment. T

2) consists o
is a functio

r the segment
here PosMemo
ning the infor

(here [2][4]
tus of the cu
of the event

g the stored
nt B22.

fter(MoveTime
osMemo[2][5]=P
nd(s1,Ax2);
osMemo[2][4]]=

g 2. Listing of
ment B22 (see F

ucture of a tw
o be used fo
ight). A segm

o aspects from
First, (4) ma
current pallet

hat the neces
d, station[2]
r the assembly
Simulink and

Figure 7. Implem

ow based o

ated into segm
gle pallet. Ea
carry a pallet

entifier (ID) w
s and is assign
“physical” pall
o the Flowitem

e state transit
ment B22 that
h will be act

The opposite
f: (1) two con

on that genera
t; (2) virtual t
is a global 3

rmation of a
 describes the

urrent pallet in
t for the nex
information

(2,2),sec)&&
PosMemo[2][4]

=0;}

f transition Wo
Figure 7).

wo state segme
r the assemb

ment of an asse
m conveyor s
anipulates the
t at PosMemo,
ssary processi
 (6) generate

y station, whic
is used for us

entation in M

n C2 +++

ments (charts) h
ach segment c
t (Working). A
which is trans
ned by a globa
let object, it is
ms within Flexs

tion from Id
t is triggered
tivated throug
state transitio
nditions, whe
ates the proc
transport of th
3D-array in M
all segments
e segment B22
n this segmen

xt segment Ax
in PosMemo f

in(Ax2.Idle)
;

orking to Idle

ent within one
ly station (se

embly station
segments (see

information
 where [2]=1
ing in A2 is
es a status inf
ch is an outpu
ser interaction

Matlab/Stateflow.

having
can be

A pallet
sported
al table.
s called
sim.

dle to
trough
gh the

on (see
ere Mo-

cessing
he pal-
Matlab
in the
2), and
nt; (3)
x2; (4)
for the

]

e of

e chart
ee Fig-
differs
e List-
stored
1 indi-

done.
forma-
ut vari-
.

41

SN
E 20/1, A

pril 2010

+++ Comparison of F lexs im, Dymola and MATLAB/Statef low based on C2 +++
SN

E
20

/1
, A

pr
il

20
10

42

1 [after(MoveTime(2,5),sec)&&in(B23.Idle)]
2 {send(s1,B23);
3 PosMemo[2][6]=PosMemo[2][5];
4 ml.Data[PosMemo[2][5]][2]=1;
5 PosMemo[2][5]=0;
6 station[2]=0;}

Listing 3. Listing of transition Working to Idle of
segment Ax2 (see Figure 7).

As already mentioned, Stateflow is embedded into the
environment of Matlab/Simulink (see Figure 9). All
necessary parameters, e.g. processing times, or the
numbers of pallets, are implemented in the form of
Simulink inputs. The user interaction in form of dis-
plays is shown on the right side. The array PosMemo
itself is stored on the level of Matlab for later analy-
sis, e.g. by use of Matlab functions.

5 Comparison of modelling approaches
As shown before, the modelling and simulation of the
benchmark aspects can be implemented within all
three modelling techniques analysed here. The main
differences are: (1) the time which was necessary for
modelling the system, (2) the complexity of the im-
plementation (3), the possibility to analyse the simu-
lation results, and (4) the possibility to implement the
control algorithms and the controlled system sepa-
rately within the tools. The comparison of these four
aspects is done from an automation technology point
of view. A brief summary is shown in Table 1 at the
end of this section.

There is a considerable difference between the several
approaches with respect to the time necessary for
modelling (1). Based on the well-suited library for
material flow processes, the modelling in Flexsim just
comprises the identification of suitable objects, as
well as the creation of the necessary connections
between them. The library also contains the necessary
objects for generating elements (e.g. queue, sink), as
well as for combining and separating parts and pal-
lets. The benchmark constraints, e.g. a fraction of
pallet capacities for the conveyors, can be imple-
mented correctly. This is different concerning the
other approaches. For modelling a conveyor in Mode-
lica or Stateflow, it needs to be split up into an inte-
gral number of segments. An object (Modelica) or a
state (Stateflow) represents each of these segments,
with each of them having the capacity of one pallet. It
would be possible to model these segments with a
lower capacity, to reach a “continuous-like” behav-
iour as it is done in Flexsim. Nevertheless, this would

lead to two main problems: First, it would increase
the number of objects/states, including more effort for
implementation. Second, the model of a pallet would
have to be changed in a way that it can be split up and
“cover” more than one object/state. This would result
in a higher complexity, especially for keeping the
inner-coherence of a pallet. Hence, this alternative
was not further considered The modelling in
Stateflow compromises of using similarly structured
charts, which only contain two states and two transi-
tions. When events are sent between the objects, there
is no necessity for connecting the charts, because
only the recipient needs to be manipulated. This al-
lows a high degree of reuse. For modelling in Mode-
lica, the reuse of objects is achieved by building a
basic conveyor object. The effort for modelling this
object was higher, compared to the other approaches.
Due to the inherited possibility of building up the
whole system based on this object, this once-only-
effort could be justified.

This modelling has been time consuming for each of
the three modelling techniques, but the effort has
been well spent: the carefully created objects result in
low complexitiy of the C2 Benchmark implementa-
tion. The instantiation and parameterization of the
objects is the main aspect to be considered. Flexsim,
as a commercial simulation software, covers this in
an intuitive dialog-based manner. In addition, the
already mentioned possibility of describing the con-
trol decisions is helpful. Connections between the
objects can be implemented through interfaces (ports)
on which the control decisions are based on. The
implementation in Modelica is mainly based on the
combination of previous modelled classes. It is possi-
ble to build and reuse a module for representing a
whole sub-system, as required in the benchmark de-
scription. This can be done by parameterization, e.g.
processing and transportation times, or the defined
stage in the process. The modules are combined
through connecting the pre-defined type-safe inter-

Figure 9. Embedding of Stateflow in Matlab/Stateflow.

+++ Comparison of F lexs im, Dymola and MATLAB/Statef low based on C2 +++

43

SN
E 20/1, A

pril 2010

faces. Before building the connections in Stateflow,
all charts have to be placed and clearly marked (ID).
Due to the lack of direct connections between the
charts and the necessity of a global assignment array,
this results in being inflexible, e.g. concerning later
revision. The manipulation of the transitions is, in
comparison to this, straightforward.

The necessary effort for providing and collecting the
relevant information is a very important aspect. Espe-
cially the evaluation of the ability to analyze simula-
tion results (3) needs to be considered. Here Flexsim
performs well. It is possible to store data within every
object (Label), esp. on the Flowitems. This supports
an easy verification of the process variables, as well
as a local reasoning and manipulation. In addition, a
further development of the models, e.g. extended data
collection, can be implemented with few effort. This
approach can be realized in Modelica too. However,
with respect to information transmission, analyzing,
and manipulation, the effort is considerably higher.
Furthermore, it is not possible to verify the simulation
model without knowing the internal structure of the
“virtual” pallet objects. The same problem occurs
within Stateflow, where all the relevant information is
stored within a global data table. It is important for
both approaches, Modelica as well as Stateflow, to
define the necessary information before starting the
modelling phase. For example, a later extension of
the array size in Modelica affects each interface. As
already mentioned this is not the case in Flexsim. For
analyzing simulations results, each of the three ap-
proaches is well suited. A clear preference only de-
pends on the personal aspects and cannot be testified
at this point.

Another relevant point is the separation of control
algorithms from the controlled system (4), which is
especially important in the field of automation. This
separation can be implemented in both Modelica and
Stateflow. The implementation in Modelica already

encapsules the control decisions within the shifting
modules. For Stateflow, this could be reached by
communicating the relevant information to Mat-
lab/Simulink where the reasoning can be imple-
mented, e.g. using function block diagrams. This is
not possible within Flexsim, which is based on the
concept of combined behaviour-description logic.
This works quite well for acting within this simula-
tion environment but not for testing or rather verify-
ing new control algorithms. In the field of automation
technology, these algorithms are usually implemented
in different programming languages, e.g. using
IEC 61131-3 [14], which are not supported in Flexsim.

6 Summary and Outlook
The modelling approaches as well as the implementa-
tion of the benchmark have been described for the
three selected simulation environments. The compari-
son has shown a clear distinction especially in the
effort necessary for modelling and for the analysis of
the simulation results.

In summary, the three modelling approaches are ca-
pable for modelling and simulating the benchmark.
The results of the several simulation runs are compa-
rable with those that have already been published.

In further steps, the described benchmark will be
extended by a dynamic behaviour with specified
stochastic attributes, e.g. breakdowns and changing
types of products, which would allow to test new
control algorithms regarding to their roubustness. The
authors currently develop a new version of the C2
Benchmark and would be thankful for remarks. In
addition, the separation of the modelled process and
its control should be focused on.

References
[1] Flexsim Software Products: http://www.flexsim.com

/products/flexsim/ [last visited: 2010-05-11]

Flexsim
Modelica/
Dymola

Matlab/
Stateflow

1. necessary time for modelling object library (+) basic element (–)
combination (+)

state automata (+)

2. implementation complexity instantiation,
connection (+)

instantiation,
connection (+)

marking (–)
connection (+)

3. ability of analysing Labels,
interface for MS Excel (+)

“virtual” objects fix data
structure in early phase (+/–)

„virtual“ objects
global array (+/–)

4. separation of system and
control

combined behaviour-
description logic (–)

capsulation of decision
modules (+)

separation between Simulink
and Stateflow (+)

Table 1: Comparison of the modelling approaches: (+) positive, (+/–) neutral, (–) negative influence.

+++ Comparison of F lexis im, Dymola and MATLAB/Statef low based on C2 +++
SN

E
20

/1
, A

pr
il

20
10

44

[2] The MathWorks™: http://www.mathworks.de
/products/stateflow/ [last visited: 2010-05-11]

[3] Modelica Association: http://www.modelica.org/ [last
visited: 2010-05-11]

[4] Dassault Systèmes: http://www.3ds.com/products
/catia/portfolio/dymola/ [last visited: 2010-05-11]

[5] ARGESIM: Benchmarks List of Benchmarks
Flexible Assembly System, http://www.argesim.org/
[last visited: 2010-05-11]

[6] M. Lindemann, S. Schmid. Simulationswerkzeuge in
Produktion und Logistik: Marktübersicht, PPS Mana-
gement, Vol. 12 (2), 2007, pp. 48–55. (in German)

[7] VDI 3633-1:2000-03: Simulation von Logistik-, Mate-
rialfluß- und Produktionssystemen: Grundlagen,
Beuth Verlag, 2003.

[8] A. Angermann: Matlab – Simulink – Stateflow.
Grundlagen, Toolboxen, Beispiele, Oldenburg Wis-
senschaftsverlag GmbH, 2009. (in German)

[9] The Modelica Association – Chairman Martin Otter:
Modelica Standard Library 3.1_build5 (released on
2009/12/18). http://www.modelica.org/libraries
/Modelica [last visited: 2010-05-11].

[10] Otter M; Arzén K.-E; Dressler, I.: StateGraph - A
Modelica Library for Hierarchical State Machines,
Proceedings of the 4th Int. Modelica Conference,
2005, pp. 569–578.

[11] J.A. Ferreira, J.P. Estima de Oliveira. Modelling Hy-
brid Systems using Statecharts and Modelica, Proc.
7th IEEE Int. Conference on Emerging Technologies
and Factory Automation (ETFA), 1999.

[12] P.J. Mosterman, M. Otter, H. Elmqvist. Modelling
Petri Nets as Local Constraint Equations for Hybrid
Systems using Modelica, Proceedings of the Summer
Computer Simulation Conference, 1998, pp. 314–319.

[13] V.S. Prat, A. Urquia, S. Dormido. ARENALib: A
Modelica Library for Discrete-Event System, Proceed-
ings of the 5th Modelica Conference; Vienna, Austria;
September 2006; pp. 539-548.

[14] EN 61131-3:2003: Programmable controllers – Part 3:
programming languages (IEC 61131-3:2003). (or de-
rived national versions)

[15] S. Schreiber, M. Barth, A. Fay. Modellierungs- und
Simulationsmethoden: Vergleich und Bewertung an-
hand des Benchmarks ARGESIM C2. In: Proceedings
of “ASIM-Treffen 2010 – STS/GMMS”. Ulm, 2010,
pp. 290-297. (in German)

Corresponding author: Sebastian Schreiber
Helmut-Schmidt-University,
Institute for Automation Technology,
Hamburg, Germany
sebastian.schreiber@hsu-hh.de

Received: March 25, 2010

Accepted: April 5, 2010

