SNE 20/1, April 2010

+++ Comparison of Flexsim, Dymola and MATLAB/Stateflow based on C2 +++

Y

ARGESIM BENCHMARKS

Event-based and State-Automata-based Modelling of FMS

A Comparative Case Study of Flexsim, Dymola and Matlab/Stateflow
based on the ARGESIM Benchmark C2

Sebastian Schreiber, Mike Barth, René Nicolaus, Markus Schleburg, Alexander Fay
Helmut-Schmidt-University, Institute for Automation Technology, Hamburg, Germany
{sebastian.schreiber; mike.barth; rene.nicolaus;, markus.schleburg; alexander.fay}@hsu-hh.de
Simulation Notes Europe SNE 20(1), 2010, 38-44, doi: 10.11128/sne.20.bn02.09968

By implementing the ARGESIM Benchmark C2 “Flexible Assembly System”, the simulation system Flex-
sim, the Matlab/Simulink-toolbox Stateflow, and the equation-based modelling language Modelica are com-
pared to each other. Based on the different modelling techniques, the systems will be described and analysed
from an automation point of view. Subsequently, the modelling approaches of state-automata (Stateflow) as
well as object-orientation (F/exsim) and equation-based modelling (Modelica) are reflected. The analysis in-
cludes (1) the time and efforts that are necessary for the modelling process itself, (2) the complexity of the
implementation, (3) the possibility to analyse the simulation results, and (4) the possibility to separate con-

trol algorithms and controlled system in the implementation.

Introduction

A wide choice of commercial software tools for the
simulation of material flow is available on the market
(see e.g. [6]). Within this work, the authors analyse
how software tools which are commonly used within
the automation community can be used for the model-
ling and simulation of material flow problems. In this
context, modelling and simulation methods are im-
portant for testing control algorithms without the
need of having access to real systems. Therefore, the
simulation environment Flexsim [1], the Mat-
lab/Simulink-Toolbox Stateflow [2], and the model-
ling language Modelica [3] implemented in Dymola
[4] have been selected and applied to the ARGESIM
C2 Benchmark “Flexible Assembly System” [5].
There has not been a publication of C2 Benchmark
results concerning these tools before.

The article is structured as follows. First, the Bench-
mark C2 will be introduced by presenting the struc-
ture of the target system and its modelling tasks.
Subsequently, the different modelling techniques as
well as the respective implementations of the C2
Benchmark are explained for Flexsim (Section 2),
Modelica (Section 3) and Matlab/Stateflow (sec-
tion 4). Finally, all three approaches are compared
with respect to the required time for modelling, the
complexity of the implementation, the possibility to

analyse the simulation results, and the possibility to
separate the control algorithms from the controlled
system. The latter requirement is essential for the test
of control algorithms on the model.

This article is an extended and reviewed version of
[15], which was presented at the ASIM ST/GMMS-
Workshop 2010.

1 Benchmark ARGESIM C2
“Flexible Assembly System”

The benchmark C2 describes a flexible assembly
system and has originally been proposed by the AR-
GESIM in [5]. Its objective is to test different simula-
tion systems with regard to their ability to define and
to combine sub-models, as well as to formulate com-
plex control strategies. The VDI guideline 3633 [7]
uses this benchmark as an application example for the
efficient handling of simulation studies. The average
throughput time and the optimal number of pallets are
the comparable target results.

The pallets are used to transport single parts through
an assembly system, which is shown Figure 1. The
number of pallets to be used is one of the parameters
that is kept constant during a single simulation run.
The system can be separated into eight sub-models
placed along a main conveyor belt. Each of these sub-
models contains an assembly station.

+++ Comparison of Flexsim, Dymola and MATLAB/Stateflow based on C2 +++

(%)
e

Figure 2. Description of a subsystem.

Station A1 is responsible for unloading finished parts
from the pallets and loading new ones. The stations
A2 to A6 are each responsible for a predefined proc-
essing step. Every part has to pass the processing
steps A2 to A5 before it is finished. Station A6 acts as
a back-up function and should be used if one of the
stations A3 to AS is busy or down. The processing
sequence has to start or end within station A2. The
sequence of A3 to AS is not predefined in this context.

Each subsystem (Figure 2) consists of two conveyor
belts B1 and B2, two shifting units Sx and Sy, and an
assembly station Ax. If a pallet arriving on B1 needs to
be processed into Ax, the shifting unit Sx pushes it
onto B2. If it does not need to access Ax, the pallet
remains on B1l. The transportation area between Sx
and Ax on belt B2 can be used as a buffer. All finished
pallets are pushed back to Bl through Sy and have
priority to those on B1.

2 Simulation environment Flexsim

Flexsim is an object-oriented system for discrete-
event simulation and simulation of continuous-flow
processes. The available standard library contains
more than 40 objects, of which 26 are discrete ones.
In May 2010, the current version 5.0 of Flexsim has
been released.

All objects refer to one of the so-called “super-
classes” FixedRessources (e.g. source, sink, or ma-
chine) or TaskExecuter (e.g. operator, vehicle, or
crane). Elements modelling the material flow are
called Flowitems and form a special class within the
system. The objects are connected to each other via
input and output ports, where the connection itself
represents information and/or material flow.

&

Figure 3. Description (left) and parameterization (right) of
a Processor object.

Every object allows several possibilities for parame-
terization. As an example, Figure 3 shows a Proces-
sor (assembly station A2) and its properties. These
properties support all the relevant aspects for model-
ling a material flow system, such as Processor, Flow,
and Trigger (e.g. events OnEntry or OnExit), and are
used to define the element’s behaviour. In this con-
text, Flexsim offers pre-defined samples as well as
the possibility to define new models within the pro-
gramming languages C++ or Flexscript. Compared to
C++, the use of Flexscript offers the advantage that
the simulation model does not have to be compiled
before it can be used.

For implementing the benchmark in Flexsim, only
standard library elements have been used to allow an
efficient traceability. Flexsim itself allows to build
own objects and libraries. As an example, Figure 4
shows the implementation of the first assembly sta-
tion A2. For the sake of visual clarity, the connections
between the elements are hidden and the single ele-
ments are separated in this Figure. Because material
flow is only modelled as an (information) connection
in Flexsim, the separation of the elements has no
influence on the processing of the simulation model.
Figure 4 contains several instances of the objects
Conveyor and Processor. Furthermore, there are
some more objects used within the model, e.g. Com-
biner, or Separator, which are not displayed here.

For implementing control algorithms, Flexsim sup-
ports several possibilities. For example, so-called
Photo Eyes can be placed on every Conveyor, e.g.
representing sensor information, or special triggers of
an object can be used, e.g. a flow item leaving a con-

ComvA1_AZ1

CowAZi_B1

CoaveAZ1 AZ2

Figure 4. Implementing the first sub-model A2 in Flexsim.

0107 1t4dy 1/0Z ANS

SNE 20/1, April 2010

Y

+++ Comparison of Flexsim, Dymola and MATLAB/Stateflow based on C2 +++

veyor. The listing for the latter possibility is shown in
Listing 1. Every Flowitem reaching the end of this
conveyor triggers the control decision. It represents
the decision whether a pallet should be processed in
Ax (shift to B2) or not (stay on B1), depending on the
pallet’s properties, where: (1) is a reference (tree-
node) to the current conveyer ownerobject (c¢) in the
global treeview, in which all elements of the simula-
tion model are listed; (2) is a reference to the pallet
currently on this conveyor by parnode (1); (3) reads
the target label on the pallet by getlablenum(...);
(4) compares the target information; and (5-6) send
the pallet to the defined ports. The example is written
in Flexscript, which has a syntax similar to C++.

1 treenode current = ownerobject(c);

2 treenode item = parnode(1);

3 int target=getlabelnum(item, "target");

4 if (target==Ax) {

5 return 1;
6 } else return 2;

Listing 1. Trigger Flow-Output-Send to port of a
conveyor in Flexsim.

The parts and pallets are modelled as different Flowi-
tems. Each Flowitem can carry a number of so-called
Labels, e.g. information of a RFID tag, which can be
analysed and manipulated through every object. The
part objects are generated within station Al and are
combined with a pallet for transportation. After being
processed on every necessary machine the pallet
returns to station A1, in which the part object is sepa-
rated from the pallet object.

For analyzing the simulation results, Flexsim offers
an included module as well as an interface to MS
Excel, which was used within this work.

3 Modelica and Dymola

Due to its object-oriented equation-based (OOE)
architecture, Modelica is well suited for the model-
ling of continuous physical systems. By using the
module State-Graph ([10], [11]) of the Modelica
Standard Library (MSL) [9], it is also capable of
discrete-event simulation. The Benchmark C2 can be
classified as a hybrid model, which represents a com-
bination of both discrete and continuous modelling

(e.g. [12], [13]).

Within Modelica, it is possible to define so-called
real-world models through known mathematical rela-
tionships. By defining interfaces of different variable
types (e.g. real, boolean, integer), the combination of

Pal ette_D Palette_Out

Figure 5. Screenshot of the basic object Conveyor in
Modelica.

time-based equations and decision routines can be
implemented. While applying tests on event-driven
models it is often necessary to allow user interaction
in parallel to a running simulation. These can be initi-
ated together with the User-Interaction (Ul) module
[9] and a built-in real-time option. The Ul module is
part of the MSL. As an example, a boolean variable
(e.g. start of a conveyor) can be changed manually
and the user is able to visualize additional feedback
variables at the same time (e.g. photo eye on this
conveyor).

Following the object-oriented approach of Modelica,
the objects of the benchmark can be separated into
physical objects (e.g. conveyor, pallets) and decision
(control) objects. A combination of physical objects
represents the controlled system, while the distributed
control decisions are modelled as separated objects.
Figure 5 shows the object “conveyor” with its differ-
ent types of interfaces. There is one array input and
one output (SISO) for the exchange of status informa-
tion of the current pallet. In this context, a capacity of
six real variables has been implemented. Further-
more, two interfaces represent boolean type informa-
tion whether there is a pallet waiting for takeover
(input) or is ready for takeover (output). Another
input informs the conveyor about the release of a
waiting pallet. The output interfaces on the bottom of
the conveyor are also of boolean type and represent
the status of the object (idle/busy) as well as a trigger
signal to the previous object sending a release flag.

The whole modelling of the benchmark is based on
the object Conveyor. To each object, a range of physi-
cal parameters is assigned, e.g. length and conveyor
belt speed, processing time, as well as the respective
process number in case of representing an assembly
station. For modelling the elements Sx and Sy (see

+++ Comparison of Flexsim, Dymola and MATLAB/Stateflow based on C2 +++

Entscheider
5X

Figure 6. Description of an element Sx in Modelica.

Section 1), two Conveyor objects and a decision
block have been combined to a single object (see
Figure 6). For the initialisation phase of each simula-
tion run, a separate module was modelled, which
releases a defined number of pallets and later deacti-
vates them.

4 Matlab-toolbox Stateflow

Stateflow is part of the simulation environment Mat-
lab/Simulink and supports the modelling and simula-
tion of state automata. A detailed description can be
found in [8]. In this context, state-charts are used for
modelling state automata whose basic elements are
shown in Figure 8. The main modelling elements are
states and transitions, which can be grouped as charts
or superstates. States can be modelled as exclusive
(OR) or parallel (AND) with respect ot their activa-
tion within a chart. State transitions are implemented
as event [condition] {condition action}/transit
ion action} and can therefore be triggered by an
event and/or a fulfilled condition. In addition,
Truth Tables can be used for pre-defined control
decisions and corresponding actions.

The system behaviour of the benchmark needs to be
modelled as enclosed states. For this purpose, the

l/ |Beda]
Z1 22
|Bed2]

Tronsition State

Figure 8: Basic elements in Matlab/Stateflow.

[after(C MoveTime(2,5),sec)&&in(B23.IdIe)]
{send(s1,B23);

PosMemo[2][6]-Pos Memo[2][5];
ml.Data[Pos Memo[2][5]][2]=1;

Figure 7. Implementation in MMatlab/Stateflow.

conveyors are separated into segments (charts) having
the length of a single pallet. Each segment can be
empty (Idle) or can carry a pallet (Working). A pallet
receives a unique identifier (ID) which is transported
through all segments and is assigned by a global table.
Because there is no “physical” pallet object, it is called
“virtual” in contrast to the Flowitems within Flexsim.

Figure 7 shows the state transition from Idle to
Working within segment B22 that is triggered trough
the event s1, which will be activated through the
previous segment. The opposite state transition (see
Listing 2) consists of: (1) two conditions, where Mo-
veTime is a function that generates the processing
time for the segment; (2) virtual transport of the pal-
let, where PosMemo is a global 3D-array in Matlab
containing the information of all segments in the
system (here [2] [4] describes the segment B22), and
the status of the current pallet in this segment; (3)
release of the event for the next segment Ax2; (4)
clearing the stored information in PosMemo for the
segment B22.

1 [after (MoveTime(2,2),sec)&& in(Ax2.Idle)]
2 {PosMemo[2] [5] =PosMemo [2] [4] ;

3 send(sl,Ax2);

4 [PosMemo[2] [4]]=0;}

Listing 2. Listing of transition Working to Idle of
segment B22 (see Figure 7).

The structure of a two state segment within one chart
can also be used for the assembly station (see Fig-
ure 7, right). A segment of an assembly station differs
by two aspects from conveyor segments (see List-
ing 3). First, (4) manipulates the information stored
on the current pallet at PosMemo, where [2]=1 indi-
cates that the necessary processing in A2 is done.
Second, station[2] (6) generates a status informa-
tion for the assembly station, which is an output vari-
able to Simulink and is used for user interaction.

A

0107 1t4dy 1/0Z ANS

SNE 20/1, April 2010

Y

+++ Comparison of Flexsim, Dymola and MATLAB/Stateflow based on C2 +++

1 [after (MoveTime(2,5),sec)&&in(B23.Idle)]
2 {send(s1,B23);

3 PosMemo[2] [6]=PosMemo [2] [5] ;

4 ml.Data[PosMemo[2] [5]] [2]=1;

5 PosMemo [2] [5]=0;

6 station[2]=0;}

Listing 3. Listing of transition Working to Idle of
segment Ax2 (see Figure 7).

2
2

As already mentioned, Stateflow is embedded into the
environment of Matlab/Simulink (see Figure 9). All
necessary parameters, e.g. processing times, or the
numbers of pallets, are implemented in the form of
Simulink inputs. The user interaction in form of dis-
plays is shown on the right side. The array PosMemo
itself is stored on the level of Matlab for later analy-
sis, e.g. by use of Matlab functions.

5 Comparison of modelling approaches

As shown before, the modelling and simulation of the
benchmark aspects can be implemented within all
three modelling techniques analysed here. The main
differences are: (1) the time which was necessary for
modelling the system, (2) the complexity of the im-
plementation (3), the possibility to analyse the simu-
lation results, and (4) the possibility to implement the
control algorithms and the controlled system sepa-
rately within the tools. The comparison of these four
aspects is done from an automation technology point
of view. A brief summary is shown in Table 1 at the
end of this section.

There is a considerable difference between the several
approaches with respect to the time necessary for
modelling (1). Based on the well-suited library for
material flow processes, the modelling in Flexsim just
comprises the identification of suitable objects, as
well as the creation of the necessary connections
between them. The library also contains the necessary
objects for generating elements (e.g. queue, sink), as
well as for combining and separating parts and pal-
lets. The benchmark constraints, e.g. a fraction of
pallet capacities for the conveyors, can be imple-
mented correctly. This is different concerning the
other approaches. For modelling a conveyor in Mode-
lica or Stateflow, it needs to be split up into an inte-
gral number of segments. An object (Modelica) or a
state (Stateflow) represents each of these segments,
with each of them having the capacity of one pallet. It
would be possible to model these segments with a
lower capacity, to reach a “continuous-like” behav-
iour as it is done in Flexsim. Nevertheless, this would

R

Bearbeimngsstationen
B —
P | —
o |

as

MC—

NumbaOiFatts

Anlsgunparsmeter

e
Anzahi_Paletten Fe———

Figure 9. Embedding of Stateflow in Matlab/Stateflow.

lead to two main problems: First, it would increase
the number of objects/states, including more effort for
implementation. Second, the model of a pallet would
have to be changed in a way that it can be split up and
“cover” more than one object/state. This would result
in a higher complexity, especially for keeping the
inner-coherence of a pallet. Hence, this alternative
was not further considered The modelling in
Stateflow compromises of using similarly structured
charts, which only contain two states and two transi-
tions. When events are sent between the objects, there
is no necessity for connecting the charts, because
only the recipient needs to be manipulated. This al-
lows a high degree of reuse. For modelling in Mode-
lica, the reuse of objects is achieved by building a
basic conveyor object. The effort for modelling this
object was higher, compared to the other approaches.
Due to the inherited possibility of building up the
whole system based on this object, this once-only-
effort could be justified.

This modelling has been time consuming for each of
the three modelling techniques, but the effort has
been well spent: the carefully created objects result in
low complexitiy of the C2 Benchmark implementa-
tion. The instantiation and parameterization of the
objects is the main aspect to be considered. Flexsim,
as a commercial simulation software, covers this in
an intuitive dialog-based manner. In addition, the
already mentioned possibility of describing the con-
trol decisions is helpful. Connections between the
objects can be implemented through interfaces (ports)
on which the control decisions are based on. The
implementation in Modelica is mainly based on the
combination of previous modelled classes. It is possi-
ble to build and reuse a module for representing a
whole sub-system, as required in the benchmark de-
scription. This can be done by parameterization, e.g.
processing and transportation times, or the defined
stage in the process. The modules are combined
through connecting the pre-defined type-safe inter-

+++ Comparison of Flexsim, Dymola and

MATLAB/Stateflow based on C2 +++

Flexsim

Modelica/
Dymola

Matlab/
Stateflow

&

1. necessary time for modelling |object library (+)

2. implementation complexity |instantiation,
connection (+)
3. ability of analysing Labels,

combined behaviour-
description logic (-)

4. separation of system and
control

interface for MS Excel (+)

basic element (—)
combination (+)

state automata (+)

instantiation,
connection (+)

<.

marking (-)
connection (+)
virtual” objects fix data ,virtual® objects
structure in early phase (+/—) |global array (+/-)
capsulation of decision
modules (+)

separation between Simulink
and Stateflow (+)

Table 1: Comparison of the modelling approaches: (+) positive, (+/—) neutral, () negative influence.

faces. Before building the connections in Stateflow,
all charts have to be placed and clearly marked (ID).
Due to the lack of direct connections between the
charts and the necessity of a global assignment array,
this results in being inflexible, e.g. concerning later
revision. The manipulation of the transitions is, in
comparison to this, straightforward.

The necessary effort for providing and collecting the
relevant information is a very important aspect. Espe-
cially the evaluation of the ability to analyze simula-
tion results (3) needs to be considered. Here Flexsim
performs well. It is possible to store data within every
object (Label), esp. on the Flowitems. This supports
an easy verification of the process variables, as well
as a local reasoning and manipulation. In addition, a
further development of the models, e.g. extended data
collection, can be implemented with few effort. This
approach can be realized in Modelica too. However,
with respect to information transmission, analyzing,
and manipulation, the effort is considerably higher.
Furthermore, it is not possible to verify the simulation
model without knowing the internal structure of the
“virtual” pallet objects. The same problem occurs
within Stateflow, where all the relevant information is
stored within a global data table. It is important for
both approaches, Modelica as well as Stateflow, to
define the necessary information before starting the
modelling phase. For example, a later extension of
the array size in Modelica affects each interface. As
already mentioned this is not the case in Flexsim. For
analyzing simulations results, each of the three ap-
proaches is well suited. A clear preference only de-
pends on the personal aspects and cannot be testified
at this point.

Another relevant point is the separation of control
algorithms from the controlled system (4), which is
especially important in the field of automation. This
separation can be implemented in both Modelica and
Stateflow. The implementation in Modelica already

encapsules the control decisions within the shifting
modules. For Stateflow, this could be reached by
communicating the relevant information to Mat-
lab/Simulink where the reasoning can be imple-
mented, e.g. using function block diagrams. This is
not possible within Flexsim, which is based on the
concept of combined behaviour-description logic.
This works quite well for acting within this simula-
tion environment but not for testing or rather verify-
ing new control algorithms. In the field of automation
technology, these algorithms are usually implemented
in different programming languages, e.g. using
IEC 61131-3 [14], which are not supported in Flexsim.

6 Summary and Outlook

The modelling approaches as well as the implementa-
tion of the benchmark have been described for the
three selected simulation environments. The compari-
son has shown a clear distinction especially in the
effort necessary for modelling and for the analysis of
the simulation results.

In summary, the three modelling approaches are ca-
pable for modelling and simulating the benchmark.
The results of the several simulation runs are compa-
rable with those that have already been published.

In further steps, the described benchmark will be
extended by a dynamic behaviour with specified
stochastic attributes, e.g. breakdowns and changing
types of products, which would allow to test new
control algorithms regarding to their roubustness. The
authors currently develop a new version of the C2
Benchmark and would be thankful for remarks. In
addition, the separation of the modelled process and
its control should be focused on.

References

[1] Flexsim Software Products: http://www.flexsim.com
/products/flexsim/ [last visited: 2010-05-11]

0107 1t4dy ‘1/0Z ANS

SNE 20/1, April 2010

Y

+++ Comparison of Flexisim, Dymola and MATLAB/Stateflow based on C2 +++

[2] The MathWorks™: http://www.mathworks.de
/products/stateflow/ [last visited: 2010-05-11]

[3] Modelica Association: http://www.modelica.org/ [last
visited: 2010-05-11]

[4] Dassault Systémes: http://www.3ds.com/products
/catia/portfolio/dymola/ [last visited: 2010-05-11]

[5] ARGESIM: Benchmarks = List of Benchmarks -
Flexible Assembly System, http://www.argesim.org/
[last visited: 2010-05-11]

[6] M. Lindemann, S. Schmid. Simulationswerkzeuge in
Produktion und Logistik: Marktiibersicht, PPS Mana-
gement, Vol. 12 (2), 2007, pp. 48-55. (in German)

[7]1 VDI 3633-1:2000-03: Simulation von Logistik-, Mate-
rialflu3- und Produktionssystemen: Grundlagen,
Beuth Verlag, 2003.

[8] A. Angermann: Matlab — Simulink — Stateflow.
Grundlagen, Toolboxen, Beispiele, Oldenburg Wis-
senschaftsverlag GmbH, 2009. (in German)

[9] The Modelica Association — Chairman Martin Otter:

Modelica Standard Library 3.1 _build5 (released on

2009/12/18). http://www.modelica.org/libraries

/Modelica [last visited: 2010-05-11].

Otter M; Arzén K.-E; Dressler, 1.: StateGraph - A

Modelica Library for Hierarchical State Machines,

Proceedings of the 4th Int. Modelica Conference,

2005, pp. 569-578.

[10

—_

[11] J.A. Ferreira, J.P. Estima de Oliveira. Modelling Hy-
brid Systems using Statecharts and Modelica, Proc.
7th IEEE Int. Conference on Emerging Technologies
and Factory Automation (ETFA), 1999.

[12] P.J. Mosterman, M. Otter, H. Elmqvist. Modelling
Petri Nets as Local Constraint Equations for Hybrid
Systems using Modelica, Proceedings of the Summer
Computer Simulation Conference, 1998, pp. 314-319.

[13] V.S. Prat, A. Urquia, S. Dormido. ARENALib: A
Modelica Library for Discrete-Event System, Proceed-
ings of the 5th Modelica Conference; Vienna, Austria;
September 2006; pp. 539-548.

[14] EN 61131-3:2003: Programmable controllers — Part 3:
programming languages (IEC 61131-3:2003). (or de-
rived national versions)

[15] S. Schreiber, M. Barth, A. Fay. Modellierungs- und
Simulationsmethoden: Vergleich und Bewertung an-
hand des Benchmarks ARGESIM C2. In: Proceedings
of “ASIM-Treffen 2010 — STS/GMMS”. Ulm, 2010,
pp- 290-297. (in German)

Corresponding author: Sebastian Schreiber
Helmut-Schmidt-University,
Institute for Automation Technology,
Hamburg, Germany
sebastian.schreiber@hsu-hh.de

Received: March 25, 2010

Accepted: April 5,2010

