
+++ Comparison of  F lexs im, Dymola and MATLAB/Statef low based on C2 +++ 
SN

E 
20

/1
, A

pr
il 

20
10

 

38

A R G E S I M B E N C H M A R K S

Event-based and State-Automata-based Modelling of FMS 

A Comparative Case Study of Flexsim, Dymola and Matlab/Stateflow 
based on the ARGESIM Benchmark C2 

Sebastian Schreiber, Mike Barth, René Nicolaus, Markus Schleburg, Alexander Fay 
Helmut-Schmidt-University, Institute for Automation Technology, Hamburg, Germany 

{sebastian.schreiber; mike.barth; rene.nicolaus; markus.schleburg; alexander.fay}@hsu-hh.de 

By implementing the ARGESIM Benchmark C2 “Flexible Assembly System”, the simulation system Flex-
sim, the Matlab/Simulink-toolbox Stateflow, and the equation-based modelling language Modelica are com-
pared to each other. Based on the different modelling techniques, the systems will be described and analysed 
from an automation point of view. Subsequently, the modelling approaches of state-automata (Stateflow) as 
well as object-orientation (Flexsim) and equation-based modelling (Modelica) are reflected. The analysis in-
cludes (1) the time and efforts that are necessary for the modelling process itself, (2) the complexity of the 
implementation, (3) the possibility to analyse the simulation results, and (4) the possibility to separate con-
trol algorithms and controlled system in the implementation. 

Introduction 
A wide choice of commercial software tools for the 
simulation of material flow is available on the market 
(see e.g. [6]). Within this work, the authors analyse 
how software tools which are commonly used within 
the automation community can be used for the model-
ling and simulation of material flow problems. In this 
context, modelling and simulation methods are im-
portant for testing control algorithms without the 
need of having access to real systems. Therefore, the 
simulation environment Flexsim [1], the Mat-
lab/Simulink-Toolbox Stateflow [2], and the model-
ling language Modelica [3] implemented in Dymola
[4] have been selected and applied to the ARGESIM 
C2 Benchmark “Flexible Assembly System” [5]. 
There has not been a publication of C2 Benchmark 
results concerning these tools before.  

The article is structured as follows. First, the Bench-
mark C2 will be introduced by presenting the struc-
ture of the target system and its modelling tasks. 
Subsequently, the different modelling techniques as 
well as the respective implementations of the C2 
Benchmark are explained for Flexsim (Section 2), 
Modelica (Section 3) and Matlab/Stateflow (sec-
tion 4). Finally, all three approaches are compared 
with respect to the required time for modelling, the 
complexity of the implementation, the possibility to 

analyse the simulation results, and the possibility to 
separate the control algorithms from the controlled 
system. The latter requirement is essential for the test 
of control algorithms on the model. 

This article is an extended and reviewed version of 
[15], which was presented at the ASIM ST/GMMS-
Workshop 2010. 

1 Benchmark ARGESIM C2  
“Flexible Assembly System” 

The benchmark C2 describes a flexible assembly 
system and has originally been proposed by the AR-
GESIM in [5]. Its objective is to test different simula-
tion systems with regard to their ability to define and 
to combine sub-models, as well as to formulate com-
plex control strategies. The VDI guideline 3633 [7] 
uses this benchmark as an application example for the 
efficient handling of simulation studies. The average 
throughput time and the optimal number of pallets are 
the comparable target results. 

The pallets are used to transport single parts through 
an assembly system, which is shown Figure 1. The 
number of pallets to be used is one of the parameters 
that is kept constant during a single simulation run. 
The system can be separated into eight sub-models 
placed along a main conveyor belt. Each of these sub-
models contains an assembly station. 
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veyor. The listing for the latter possibility is shown in 
Listing 1. Every Flowitem reaching the end of this 
conveyor triggers the control decision. It represents 
the decision whether a pallet should be processed in 
Ax (shift to B2) or not (stay on B1), depending on the 
pallet’s properties, where: (1) is a reference (tree-
node) to the current conveyer ownerobject(c) in the 
global treeview, in which all elements of the simula-
tion model are listed; (2) is a reference to the pallet 
currently on this conveyor by parnode(1); (3) reads 
the target label on the pallet by getlablenum(...);
(4) compares the target information; and (5-6) send 
the pallet to the defined ports. The example is written 
in Flexscript, which has a syntax similar to C++. 

1 treenode current = ownerobject(c); 
2 treenode item = parnode(1); 
3 int target=getlabelnum(item,"target"); 
4 if (target==Ax) { 
5 return 1; 
6 } else return 2; 

Listing 1. Trigger Flow-Output-Send to port of a 
conveyor in Flexsim.

The parts and pallets are modelled as different Flowi-
tems. Each Flowitem can carry a number of so-called 
Labels, e.g. information of a RFID tag, which can be 
analysed and manipulated through every object. The 
part objects are generated within station A1 and are 
combined with a pallet for transportation. After being 
processed on every necessary machine the pallet 
returns to station A1, in which the part object is sepa-
rated from the pallet object. 

For analyzing the simulation results, Flexsim offers 
an included module as well as an interface to MS 
Excel, which was used within this work. 

3  Modelica and Dymola 
Due to its object-oriented equation-based (OOE) 
architecture, Modelica is well suited for the model-
ling of continuous physical systems. By using the 
module State-Graph ([10], [11]) of the Modelica 
Standard Library (MSL) [9], it is also capable of 
discrete-event simulation. The Benchmark C2 can be 
classified as a hybrid model, which represents a com-
bination of both discrete and continuous modelling 
(e.g. [12], [13]). 

Within Modelica, it is possible to define so-called 
real-world models through known mathematical rela-
tionships. By defining interfaces of different variable 
types (e.g. real, boolean, integer), the combination of 

time-based equations and decision routines can be 
implemented. While applying tests on event-driven 
models it is often necessary to allow user interaction 
in parallel to a running simulation. These can be initi-
ated together with the User-Interaction (UI) module 
[9] and a built-in real-time option. The UI module is 
part of the MSL. As an example, a boolean variable 
(e.g. start of a conveyor) can be changed manually 
and the user is able to visualize additional feedback 
variables at the same time (e.g. photo eye on this 
conveyor). 

Following the object-oriented approach of Modelica, 
the objects of the benchmark can be separated into 
physical objects (e.g. conveyor, pallets) and decision 
(control) objects. A combination of physical objects 
represents the controlled system, while the distributed 
control decisions are modelled as separated objects. 
Figure 5 shows the object “conveyor” with its differ-
ent types of interfaces. There is one array input and 
one output (SISO) for the exchange of status informa-
tion of the current pallet. In this context, a capacity of 
six real variables has been implemented. Further-
more, two interfaces represent boolean type informa-
tion whether there is a pallet waiting for takeover 
(input) or is ready for takeover (output). Another 
input informs the conveyor about the release of a 
waiting pallet. The output interfaces on the bottom of 
the conveyor are also of boolean type and represent 
the status of the object (idle/busy) as well as a trigger 
signal to the previous object sending a release flag. 

The whole modelling of the benchmark is based on 
the object Conveyor. To each object, a range of physi-
cal parameters is assigned, e.g. length and conveyor 
belt speed, processing time, as well as the respective 
process number in case of representing an assembly 
station. For modelling the elements Sx and Sy (see 

Figure 5. Screenshot of the basic object Conveyor in 
Modelica.
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1 [after(MoveTime(2,5),sec)&&in(B23.Idle)]
2 {send(s1,B23);
3 PosMemo[2][6]=PosMemo[2][5];
4 ml.Data[PosMemo[2][5]][2]=1;
5 PosMemo[2][5]=0;
6 station[2]=0;}

Listing 3. Listing of transition Working to Idle of 
segment Ax2 (see Figure 7).

As already mentioned, Stateflow is embedded into the 
environment of Matlab/Simulink (see Figure 9). All 
necessary parameters, e.g. processing times, or the 
numbers of pallets, are implemented in the form of 
Simulink inputs. The user interaction in form of dis-
plays is shown on the right side. The array PosMemo
itself is stored on the level of Matlab for later analy-
sis, e.g. by use of Matlab functions. 

5 Comparison of modelling approaches 
As shown before, the modelling and simulation of the 
benchmark aspects can be implemented within all 
three modelling techniques analysed here. The main 
differences are: (1) the time which was necessary for 
modelling the system, (2) the complexity of the im-
plementation (3), the possibility to analyse the simu-
lation results, and (4) the possibility to implement the 
control algorithms and the controlled system sepa-
rately within the tools. The comparison of these four 
aspects is done from an automation technology point 
of view. A brief summary is shown in Table 1 at the 
end of this section. 

There is a considerable difference between the several 
approaches with respect to the time necessary for 
modelling (1). Based on the well-suited library for 
material flow processes, the modelling in Flexsim just 
comprises the identification of suitable objects, as 
well as the creation of the necessary connections 
between them. The library also contains the necessary 
objects for generating elements (e.g. queue, sink), as 
well as for combining and separating parts and pal-
lets. The benchmark constraints, e.g. a fraction of 
pallet capacities for the conveyors, can be imple-
mented correctly. This is different concerning the 
other approaches. For modelling a conveyor in Mode-
lica or Stateflow, it needs to be split up into an inte-
gral number of segments. An object (Modelica) or a 
state (Stateflow) represents each of these segments, 
with each of them having the capacity of one pallet. It 
would be possible to model these segments with a 
lower capacity, to reach a “continuous-like” behav-
iour as it is done in Flexsim. Nevertheless, this would 

lead to two main problems: First, it would increase 
the number of objects/states, including more effort for 
implementation. Second, the model of a pallet would 
have to be changed in a way that it can be split up and 
“cover” more than one object/state. This would result 
in a higher complexity, especially for keeping the 
inner-coherence of a pallet. Hence, this alternative 
was not further considered The modelling in 
Stateflow compromises of using similarly structured 
charts, which only contain two states and two transi-
tions. When events are sent between the objects, there 
is no necessity for connecting the charts, because 
only the recipient needs to be manipulated. This al-
lows a high degree of reuse. For modelling in Mode-
lica, the reuse of objects is achieved by building a 
basic conveyor object. The effort for modelling this 
object was higher, compared to the other approaches. 
Due to the inherited possibility of building up the 
whole system based on this object, this once-only-
effort could be justified. 

This modelling has been time consuming for each of 
the three modelling techniques, but the effort has 
been well spent: the carefully created objects result in 
low complexitiy of the C2 Benchmark implementa-
tion. The instantiation and parameterization of the 
objects is the main aspect to be considered. Flexsim, 
as a commercial simulation software, covers this in 
an intuitive dialog-based manner. In addition, the 
already mentioned possibility of describing the con-
trol decisions is helpful. Connections between the 
objects can be implemented through interfaces (ports) 
on which the control decisions are based on. The 
implementation in Modelica is mainly based on the 
combination of previous modelled classes. It is possi-
ble to build and reuse a module for representing a 
whole sub-system, as required in the benchmark de-
scription. This can be done by parameterization, e.g. 
processing and transportation times, or the defined 
stage in the process. The modules are combined 
through connecting the pre-defined type-safe inter-

Figure 9. Embedding of Stateflow in Matlab/Stateflow.
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faces. Before building the connections in Stateflow, 
all charts have to be placed and clearly marked (ID). 
Due to the lack of direct connections between the 
charts and the necessity of a global assignment array, 
this results in being inflexible, e.g. concerning later 
revision. The manipulation of the transitions is, in 
comparison to this, straightforward. 

The necessary effort for providing and collecting the 
relevant information is a very important aspect. Espe-
cially the evaluation of the ability to analyze simula-
tion results (3) needs to be considered. Here Flexsim 
performs well. It is possible to store data within every 
object (Label), esp. on the Flowitems. This supports 
an easy verification of the process variables, as well 
as a local reasoning and manipulation. In addition, a 
further development of the models, e.g. extended data 
collection, can be implemented with few effort. This 
approach can be realized in Modelica too. However, 
with respect to information transmission, analyzing, 
and manipulation, the effort is considerably higher. 
Furthermore, it is not possible to verify the simulation 
model without knowing the internal structure of the 
“virtual” pallet objects. The same problem occurs 
within Stateflow, where all the relevant information is 
stored within a global data table. It is important for 
both approaches, Modelica as well as Stateflow, to 
define the necessary information before starting the 
modelling phase. For example, a later extension of 
the array size in Modelica affects each interface. As 
already mentioned this is not the case in Flexsim. For 
analyzing simulations results, each of the three ap-
proaches is well suited. A clear preference only de-
pends on the personal aspects and cannot be testified 
at this point. 

Another relevant point is the separation of control 
algorithms from the controlled system (4), which is 
especially important in the field of automation. This 
separation can be implemented in both Modelica and 
Stateflow. The implementation in Modelica already 

encapsules the control decisions within the shifting 
modules. For Stateflow, this could be reached by 
communicating the relevant information to Mat-
lab/Simulink where the reasoning can be imple-
mented, e.g. using function block diagrams. This is 
not possible within Flexsim, which is based on the 
concept of combined behaviour-description logic. 
This works quite well for acting within this simula-
tion environment but not for testing or rather verify-
ing new control algorithms. In the field of automation 
technology, these algorithms are usually implemented 
in different programming languages, e.g. using 
IEC 61131-3 [14], which are not supported in Flexsim. 

6 Summary and Outlook 
The modelling approaches as well as the implementa-
tion of the benchmark have been described for the 
three selected simulation environments. The compari-
son has shown a clear distinction especially in the 
effort necessary for modelling and for the analysis of 
the simulation results. 

In summary, the three modelling approaches are ca-
pable for modelling and simulating the benchmark. 
The results of the several simulation runs are compa-
rable with those that have already been published.  

In further steps, the described benchmark will be 
extended by a dynamic behaviour with specified 
stochastic attributes, e.g. breakdowns and changing 
types of products, which would allow to test new 
control algorithms regarding to their roubustness. The 
authors currently develop a new version of the C2 
Benchmark and would be thankful for remarks. In 
addition, the separation of the modelled process and 
its control should be focused on.  
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