+++ A Technique for Simulation of Recurrent Neural Networks +++

A New Technique for Interactive Simulation of

Recurrent Neural Networks

Granino A. Korn, University of Arizona, USA, gatmkorn@aol.com
SNE Simulation Notes Europe SNE 20(1), 2010, 21-26, doi: 10.11128/sne.20.tn.09963

We present new techniques for modeling the feedback loops of recurrent neural networks, including net-
works that incorporate tapped delay lines or gamma delay lines. Very fast simplified programs result. Exam-
ples of applications include signal prediction and dynamic-model matching. We also suggest interesting fu-
ture research on improved programs for time-series recognition and classification.

Introduction

This article describes much-simplified computer
programs for interactive simulation of recurrent neur-
al networks. Sections 1 to 4 briefly review dynamic-
system simulation and our open-source software for
Windows and Linux [1, 2, 3]. We employ a compact,
human- and machine-readable vector notation, in-
cluding very powerful vector index-shift operations
for modeling delay lines and filters. The remainder of
this report applies these techniques to neural-network
simulation.

Section 5 presents a simple backpropagation model
representing each neuron layer by a one-line vector
assignment. Section 6 then describes a significant
innovation: a technique for programming the time-
delayed feedback in recurrent networks without the
complication of special context layers. Sections 7 to 9
next apply our simple vector index-shift notation to
neural networks with input and feedback delay lines
or gamma delay lines.

Finally, Sections 10 and 11 discuss applications to
model matching and time-history prediction and sug-
gest other applications for future research.

1 A Simulation Language for Interactive
Dynamic-system Modeling
Desire simulation programs[1,2] model dynamic
systems using a natural mathematical notation for
successive difference-equation assignments like
X = X + a * sin(c*t)
y =X

Listing 1. Difference-equation notation in Desire

and/or differential-equation-system assignments like

u = alpha * sin(w * t + beta) + ¢
d/dt x = xdot
d/dt xdot = -a * x - b * xdot

Listing 2. Differential equation system in Desire

Figure 1. Desire with a command window, file manager,
and 3 screen-editor windows. Programs in multiple editor
windows can be run to compare models (based on [3]).

Such model definitions are screen-edited into a DY-
NAMIC program segment (Figure 1). Simulation stu-
dies are controlled by typed interactive commands
and/or by an experiment-protocol script. Experiment-
control commands set or change parameters and ini-
tial conditions and then call simulation runs that pro-
duce time-history displays. Each simulation run exer-
cises the model by calling the DYNAMIC program seg-
ment for NN successive time steps, as in

t0 = 0 | t = t0

t
a=-5.00] x=17.1
drun

| NN = 2000 | TMAX = 100

| is a statement delimiter. When the experiment pro-
tocol encounters the first drun statement the DYNAMIC
segment is compiled with a fast runtime compiler and
runs immediately to produce time-history displays
(Figure 1). More elaborate experiment protocols can
call multiple simulation runs with modified para-
meters and different DYNAMIC segments [2, 3].

2 Fast, Human- and Machine-readable
Vector Operations

Desire experiment-control scripts can declare vectors

like x = (x[1], x[2], .., x[n])

W= (W[1,1], W([1,2],

multiple ARRAY statements such as

and matrices like
«, W[n, m]) with single or

S

0107 1t4dy ‘1/0Z ANS

SNE 20/1, April 2010

u

+++ A Technique for Simulation of Recurrent Neural Networks +++

ARRAY x[n], alm], b(n
Wim, n], uln],

cln], ym],
]

1 1 r
v[n], ..
DYNAMIC program segments can then use the vectors
and matrices in vector assignments, and vector diffe-
rential equation, say

Vector x =

Vector y =
Vectr d/dt x =

a + alpha * b * ¢
tanh(W * x)
beta * cos(t + ¢)

which automatically compile into multiple scalar
operations

x[i] = a[i] + alpha * b[i] * c[i] (i=1,..,n)
ylil = tanh(Xje, W [i, k] * x[i]) (i=1,..,n)
d/dt x[i] = alpha * cos(t + c[i]) (i=1,..,n)

MATRIX assignments similarly compile into multiple
assignments to matrix elements W[i,k] [2]. All these
compiler operations unroll program loops, so that the
resulting binary code is fast.
We can also compute vector-component sums and
inner products like

D = Y=y ulk]

D = Ypoqulk] * vik]
with inner-product assignments DOT p = u*1 and DOT
p = u*v, again without program-loop overhead.

Desire vector operations permit very fast vectorized
Monte Carlo simulation of engineering and biological
systems and can model fuzzy-logic controllers and
partial differential equations as well as the neural-
networks we shall discuss here [3].

3 Vector Index-shifting, Delay Lines,
and Filters

Given an n-dimensional vector x = (x[1], x[2],
., x[n]) and an integer k, the index-shifted vector
x{k} is the n-dimensional vector (x[1+k], x[2+k],
., x[n+k]), with components referring to indices
less than 1 or greater than n set to 0. Significantly,
the assignments

x[1] =

Vector x = x{-1} | input

Listing 3. Vector assignment using index-shift notation

compile into

x[i - 1]
input

x[i] =
x[1] =
This neatly models shifting successive samples of a
function u(t) into a tapped delay line with tap out-
Note that the
input overwrites the Vector

puts x[1] = input, x[2], .., x[n].

assignment x[1] =

operation’s assignment x [1] = 0 at each step.

Assignments like Listing 3 can, for instance, model a
complete nth-order digital filter with only two pro-
gram lines — a very efficient notation and a very effi-
cient implementation. Sections 7 to 9 will describe
neural networks incorporating tapped delay lines and
also gamma delay lines[5] modeled with a similar
index-shift operation.

4 Neural-network Models

DYNAMIC program segments (Listing 1) that include
differential equations compute state-variable deri-
vatives. An integration routine selected by the ex-
periment-control script then combines derivative
values from successive time steps to update differen-
tial-equation state variables [2].

Desire can model biological neurons with differential
equations (e.g. pulsed inegrate-and-fire neurons) [3],
but the neural-network models we discuss here are
much simpler. For DYNAMIC program segments with-
out differential equations, the simulation time t auto-
matically steps through t = 0, 1, 2, .., NN by
default (users can, if desired, specify different starting
times and/or time increments). Neuron activations
and connection weights are represented by real num-
bers that roughly model neuron pulse rates and syn-
apse chemistry. Both are updated with simple differ-
ence equations in successive time steps. Thus, we
can handle problems that combine differential-equa-
tion models and neural networks, as in sampled-data
control systems.

5 A Simple Backpropagation Network

Figure 2 shows a simple three-layer neural network.
Desire’s interpreted experiment-protocol script de-
clares the three neuron layers in turn with

ARRAY x [nx]
x0[1] =1

+ x0[1] = xx v[nv], yl(n]

and two connection-weight matrices W1 and W2 with
ARRAY Wl[nv, nx + 1], W2[ny, nv]

Desire array declarations like ARRAY x[nx] + x0[1]
= xx act like Fortran equivalence statements: xx [3] is
identical with x[3], and xx[nx + 1] is identical with
x0[1].
one-dimensional bias vector x0 to the normal nx-
dimensional network input x. With x0[1] set to 1, we
can then conveniently represent input biases as nv
extra connection weights W1 [i, 1].

As is customary, the input layer xx adjoins a

+++ A Technique for Simulation of Recurrent Neural Networks +++

1

XX

w1
v | w2 X
>< '
w11 v

Vi

NAX/

XX

L

Figure 2. A simple backpropagation network.

The runtime-compiled DYNAMIC program segment
defines the network dynamics with

tanh (Wl * xx)
W2 * v

Vector v =
Vector y =

if we use a tanh activation function for the nonlinear
hidden layer. To produce simple backpropagation
updating, we declare target, error, and error-
propagation vectors with

ARRAY target [ny], error[ny], vdelta[nv]
and program

Vector error
Vector vdelta
DELTA W1 =
DELTA W2 =

target - y

W2% * error * (1 - v*2)
lratel * vdelta * xx
lrate2 * error * v

Listing 4. Simple backpropagation updating

Here W2% denotes the transpose of the connection-
weight matrix W2, and

DELTA W =
MATRIX W =

matrix expression is equivalent to

W + matrix expression

These assignments update vectors and matrices with
data computed earlier, starting with given initial val-
ues. Desire ARRAY declarations initialize all sub-
scripted variables to the default value zero. That is
fine for the vectors; but the experiment-protocol
script must initialize the connection weights W1 [1, k]
and W2 [i,k] with small random values.

In addition to declaring and initializing neuron-layer
arrays, the experiment-protocol script for a neural-
network experiment must set parameters and initial
values of scalar state variables (if any) and then
schedule training and test simulation runs with drun
statements. The script also selects integration rules (if
any) and the display scale and colors. For simplicity,
our text omits these housekeeping operations.

Figure 3. A simple Elman recurrent network.

X0

XX

copy V to context layer v1

Figure 4. Modified
input layer.

6 Simplified Recurrent-network
Programming

An Elman recurrent network (Figure 3) [5, 6] copies
all or some of the hidden network layer v to a context
layer v1 which is fed back to v together with the input
xx. The experiment-protocol script declares the origi-
nal 3 neuron layers xx, v, and y and the connection
weight matrices W1 and W2 as before,

ARRAY x[nx] + x[0[1] = xx,

v[nv], ylnyl, Wllnv, nx + 1], W2[ny, nv]

x0[1] =1
and adds the context layer v1 and a new connection-
weight matrix W11:

ARRAY v1[nv], Wll[nv, nv]

The network dynamics in the DYNAMIC program seg-
ment become

Vector vl = v
Vector v = tanh(Wl * xx)
Vector y = W2 * v

+ tanh (W1l * v1)

Listing 5. Implementation of network dynamics

To update W11 as well as W1 and W2 by backpropaga-
tion now requires two error-propagation vectors
vldelta and v2delta, and the updating program becomes
more complicated. But there is a much better way!

Just as we concatenated the input layer x and its bias
layer x0, we can declare a single new input layer xx
that combines our hidden layer v with x and x0 (Fig.4):

ARRAY x[nx] + x0[1] + v[nv] = xx |

Listing 6. Declaration of a new input layer
The two connection-weight matrices W1 and W1l of

the Elman network in Figure 3 can now be replaced
with a single connection-weight matrix W1,

ARRAY Wl[nv, nx + 1 + nv]

S

0107 1t4dy 1/0Z ANS

SNE 20/1, April 2010

u

+++ A Technique for Simulation of Recurrent Neural Networks +++

W1 feeds xx to the hidden layer v just as in Figure 2 —
but xx now includes the hidden-layer activations v
computed in the preceding iteration. The simple
backpropagation-updating assignments (Listing 4) for
the static network of Figure2 then work without
change for the recurrent neural network in Figure 3.
Only the array dimensions have changed.

It is just as easy to implement time-delayed feedback
from the output layer y (Jordan recurrent network), or
from both v and y. Backpropagation updating re-
mains exactly the same. This simplified implementa-
tion of recurrent-network feedback is by no means
restricted to backpropagation networks. This tech-
nique serves equally well for two-layer linear and
nonlinear networks, for softmax pattern recognizers,
and for radial-basis-function networks, which are all
easy to program in the Desire language [3]. In each
case we simply reuse the unchanged program for a
static neural network.

7 Networks with Input Delay Lines

The earliest neural network with time-history mem-
ory was Widrow’s adaptive filter [5]. In Figure 5,
successive values of a single time-series input input
enter a delay line whose taps feed a static neural net-
work trained to filter, recognize, or predict time-series
patterns. Desire’s compact index-shift operation (List-
ing 3) is exactly what is needed for modeling such
networks.

Widrow’s original network, for example, combined a
delay line and a simple linear network layer

x(-1} |

W * x

Vector x = x[1] = input

Vector y

Widrow’s network had a single output y[1] and thus
implemented a linear filter that could be trained with
his new LMS algorithm to match a target time series.

| static neural
network

A 4

A 4

Figure 5. A static neural network fed by an input delay line

In our notation this successsive-approximation rule
would be

DELTA W = lrate * (target - y) * x

Improved designs incorporate a nonlinear multilayer
network, say the backpropagation network of Section 5:

x{-1} | x[1] =
tanh(Wl * x)

Vector x =
Vector v =

input

or other types of static networks [5]. All need only
ordinary static-network training.

8 NARMAX Networks use Delay-line
Feedback

The recurrent network in Figure 6 has a single input
input to a delay-line layer x of length nx as before.
The output layer y has only a single output output.
y[1]. The (scalar) error in the network output is

ERROR = target - y[1]

where target is a desired output time series. Succes-
sively delayed samples of ERROR enter a second delay-
line layer error of length ne.

The delayed error samples are fed back to the neural
network.

Referring to Figure 6, we again concatenate all input-
layer vectors, in this case the two delay lines x and
error, into a single input layer xx:

ARRAY x[nx] + x0[1] + error[ne] = xx

xx feeds the hidden layer v of an ordinary backpropa-
gation network.

input

W1
X
¥
| w2
¥
Rl
Oy -
—
error s, 4
target 4 ()
M E
ERROR

Figure 6. A NARMAX (Nonlinear Auto-Regressive
Moving Average with eXogenous inputs) network.

+++ A Technique for Simulation of Recurrent Neural Networks +++

ARRAY x1[nx] + x0[1] + errorl[ne] = xx
x0[1] = 1

ARRAY v[nv], y[1], error[ne], vdelta[nv]
ARRAY Wl([nv, nx + ne + 1], W2[1, nv]

DYNAMIC

Vector x1 = x1{-1} |

x1[1] = input // input delay line
Vector v=tanh(Wl * xx) //hidden layer
Vector vy = W2 * v // output layer

ERROR = target - y
Vector error = error{l} |
error[1] = ERROR // feedback delay line
Vector vdelta=W2%*error* (1-v*2) // backpropagation
DELTA Wl= lratel * vdelta * xx

DELTA W2= late2* error * v

// output error

Programmers must specify the input and target time
series for different applications.

Once again the backpropagation program is exactly
the same as in Section 5. One can also substitute
different types of neural networks for the backpropa-
gation layers in Figure 6.

9 Networks with Gamma Delay Lines

A simple tapped delay line of length n “remembers”
its input for only » time steps. Principe’s gamma
delay line[5] replaces each delay-line element with a
simple first-order filter. That effecttively gives neural-
network input and feedback delay lines a much longer
memory, so that the networks tend to perform better
or use fewer neurons. Our vector index-shift notation
models a gamma delay line with

Vector x = x + beta* (x{-1} - x)
x[1] = input

which automatically compiles into

x[i] = x[i] + beta*(x[1i - 1] - x[i]) i=1,..,n
x[1] = input
beta is a scalar filter parameter set by the experi-

ment-protocol script; we have compactly program-
med n difference equations for » identical first-order
filters (It is convenient to program Vector x =
beta* (x{-1} - x) as Vectr delta x = mu*(x{-1}
- x)). We normally prefer such gamma delay lines
for NARMAX networks.

X +

input target
i plant or plant model —
+
srror
P neural network —
Y

Figure 7. Matching a neural network to a plant or plant
model. input, target, y, and error can be scalars or vector
functions of the time t.

10 Applications
The most common applications of recurrent networks are
e model matching (e.g. plant models for control-
system design)
e time-series prediction

e recognition or classification of time-series patterns

Figure 8 demonstrates a model-matching experiment.
The program can be screen-edited and rerun immedi-
ately for truly interactive modeling. We programmed
Elman networks with 2 and 3 hidden layers and a
NARMAX network to match one of Narendra’s dif-
ference-equation plant models[7] described by

£ = [Y(k)*Y(k-1)*Y(k-2)*input (k-1) * (Y (k-2)-1)
+ input (k)1/01 + Y(k-1)"2 + Y(k-2)"2)]
target (k) = Y(k) (k=0,1,2,...)

Listing 6. Narendra’s difference-equation plant models

The networks were trained with random-noise input
and tested with Narendra’s test function.

s =0.5*% ((1 - 0.2*swtch(t-500)) * sin(w*t)

+ 0.2*swtch(t-500) * sin(ww * t))

Listing 7. Narenda’s test function

Training typically converged in 8 out of 10 simulation
runs. All three recurrent networks then matched the
plant equally well (Figure 8).

For modeling a predictor the “present” neural-
network input is a delayed version of a specified
“future” time series target:

ARRAY buffer [m]

Vector buffer = buffer{-1}

buffer[1] = target

input = buffer [m]
The neural network output y is then trained to match
target. We programmed a textbook problem[5] pre-
dicting the chaotic Lorenz[1] and Mackey-Glass[5]
time series (Desire models Mackey-Glass with only
two program lines

tdelay S = D(signal, tau)
d/dt signal = a * S/(1 + Sd”c) - b * signal

where tdelay is a time-delay operator, and a, b, and
tau are specified constants). Our Elman and net-
works predicted this time series within a few percent
for 50 time steps ahead (Figure9). As expected,
gamma delay lines worked better than simple delay
lines of the same length. Prediction was still success-
ful when we removed the feedback delay line from
the NARMAX network, resulting in the simpler
model of Figure 5.

S

0107 1t4dy ‘1/0Z ANS

+++ A Technique for Simulation of Recurrent Neural Networks +++

u

SNE 20/1, April 2010

Figure 8. Simple Elman network matching Narndra’s plant
model (Listing 6). Plant and network were fed Narendra’s
test function (Listing 7). The graphs of target=f and y
essentially reproduce Narendra’s results obtained with his
four-layer NARNAX network [7]..

Readers interested in the details of these studies — or
in repeating our experiments — will find the compact
Desire programs for 20 model-matching and predic-
tion experiments included in the open-source Desire
distribution file.

11 Conclusions and Future Research

The essential contribution of this article is the novel
application of the Desire language’s array declaration
(6) in Sec. 7. Acting much like a Fortran equivalence
statement, this programming trick eliminates entire
neuron layers and greatly simplifies recurrent-
network updating algorithms. The resulting neural-
network models are smaller, faster, and easier to un-
derstand.

On a 3.15 GHz 2-CPU Penryn-class personal com-
puter, the screen-edited, runtime-compiled programs
exhibited in this report all compiled and produced
time-history displays within 30 msec. This compila-
tion delay is not noticeable, so that truly interactive
modeling is possible. The recurrent-network programs
in Figures 8 and 9 converged within 1 to 3 seconds.

We demonstrated simple applications to Elman,
Widrow, and NARMAX networks to model matching
and time-series prediction. Time-series pattern recog-
nition (pattern classification) will be the first inte-
resting topic for future work. Neuron layers imple-
menting various softmax classifiers[3] will replace
the backpropagation network in Figures 4 and 6. The
required training procedure is again simply that for a
static network.

MAAMMANAM AL MNP

4,50e3 175wl - s

seals = 0,75 - " FETRTLTRAT TR

Figure 9. This display shows target, y, and ERROR for an
Elman network predicting the Mackey-Glass chaotic time
series. The original graphs were in color.

Our new trick of concatenating neuron-layer arrays
would work equally well in most computer lan-
guages. But Desire’s combination of an interpreted
experiment protocol and fast runtime-compiled simu-
lation runs makes interactive modeling — which can
involve hundreds of program changes in one day —
especially convenient.

12 References

[1] G.A. Korn. Neural Networks and Fuzzy-logic Control
on Personal Computers and Workstations. MIT Press,
Cambridge, 1995.

[2] G.A. Korn. Interactive Dynamic-system Simulation
under Windows. Gordon and Breach, London, 1998.

[3] G.A. Korn. Advanced Dynamic-system Simulation:
Model-replication Techniques and Monte Carlo Simu-
lation. Wiley, Hoboken, NJ, 2007.

[4] G.A. Korn. Fast Simulation of Digital and Analog Fil-
ters Using Vectorized State Equations. Simulation
News Europe 18-1, April 2008.

[5] J. Principe, et al. Neural and Adaptive Systems. Wiley,
Hoboken, NJ, 2000.

[6] J.L. Elman. Finding Structure in Time. Cognitive Sci-
ence, 14:179-211, 1990.

[7] K.S. Narendra, K. Parthasarathy. Identification and
Control of Dynamic Systems Using Neural Networks.
IEEE Trans. on Neural Networks, 1:4-27, 1990.

Corresponding author: Granino A. Korn
ECE Department, University of Arizona, USA
gatmkorn@aol.com

Received: May 14, 2009

Revised: Ocober 23, 2009
Accepted: Jamary 10,2010

