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A New Technique for Interactive Simulation of  
Recurrent Neural Networks 

Granino A. Korn, University of Arizona, USA, gatmkorn@aol.com

We present new techniques for modeling the feedback loops of recurrent neural networks, including net-
works that incorporate tapped delay lines or gamma delay lines. Very fast simplified programs result. Exam-
ples of applications include signal prediction and dynamic-model matching. We also suggest interesting fu-
ture research on improved programs for time-series recognition and classification. 

Introduction 
This article describes much-simplified computer 
programs for interactive simulation of recurrent neur-
al networks. Sections 1 to 4 briefly review dynamic-
system simulation and our open-source software for 
Windows and Linux [1, 2, 3]. We employ a compact, 
human- and machine-readable vector notation, in-
cluding very powerful vector index-shift operations 
for modeling delay lines and filters. The remainder of 
this report applies these techniques to neural-network 
simulation. 
Section 5 presents a simple backpropagation model 
representing each neuron layer by a one-line vector 
assignment. Section 6 then describes a significant 
innovation: a technique for programming the time-
delayed feedback in recurrent networks without the 
complication of special context layers. Sections 7 to 9 
next apply our simple vector index-shift notation to 
neural networks with input and feedback delay lines 
or gamma delay lines. 
Finally, Sections 10 and 11 discuss applications to 
model matching and time-history prediction and sug-
gest other applications for future research. 

1 A Simulation Language for Interactive 
Dynamic-system Modeling 

Desire simulation programs[1,2] model dynamic 
systems using a natural mathematical notation for 
successive difference-equation assignments like 

x = x + a * sin(c*t)
y = x 
...

Listing 1. Difference-equation notation in Desire 

and/or differential-equation-system assignments like 
u = alpha * sin(w * t + beta) + c 
d/dt x    = xdot 
d/dt xdot = -a * x – b * xdot 

Listing 2. Differential equation system in Desire 

Such model definitions are screen-edited into a DY-
NAMIC program segment (Figure 1).  Simulation stu-
dies are controlled by typed interactive commands 
and/or by an experiment-protocol script. Experiment-
control commands set or change parameters and ini-
tial conditions and then call simulation runs that pro-
duce time-history displays. Each simulation run exer-
cises the model by calling the DYNAMIC program seg-
ment for NN successive time steps, as in 

t0 = 0    | t = t0  | NN = 2000 | TMAX = 100 
a = -5.00 | x = 17.1
drun

| is a statement delimiter. When the experiment pro-
tocol encounters the first drun statement the DYNAMIC
segment is compiled with a fast runtime compiler and 
runs immediately to produce time-history displays 
(Figure 1). More elaborate experiment protocols can 
call multiple simulation runs with modified para-
meters and different DYNAMIC segments [2, 3]. 

2 Fast, Human- and Machine-readable 
Vector Operations 

Desire experiment-control scripts can declare vectors
like x  (x[1], x[2], …, x[n])  and matrices like
W  (W[1,1], W[1,2], …, W[n, m]) with single or
multiple ARRAY statements such as 

Figure 1. Desire with a command window, file manager, 
and 3 screen-editor windows. Programs in multiple editor 

windows can be run to compare models (based on [3]). 
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ARRAY x[n], a[m], b[n], c[n], y[m], 
      W[m, n], u[n], v[n], … 

DYNAMIC program segments can then use the vectors 
and matrices in vector assignments, and vector diffe-
rential equation, say 

Vector x     = a + alpha * b * c 
Vector y     = tanh(W * x)
Vectr d/dt x = beta * cos(t + c) 

which automatically compile into multiple scalar 
operations 

x[i] = a[i] + alpha * b[i] * c[i]    (i=1,…,n) 
y[i] = tanh( ) (i=1,…,n) 
d/dt x[i] = alpha * cos(t + c[i])    (i=1,…,n) 

MATRIX assignments similarly compile into multiple 
assignments to matrix elements W[i,k] [2]. All these 
compiler operations unroll program loops, so that the 
resulting binary code is fast. 
We can also compute vector-component sums and 
inner products like 

p = 
p = 

with inner-product assignments DOT p = u*1 and DOT
p = u*v, again without program-loop overhead.  

Desire vector operations permit very fast vectorized 
Monte Carlo simulation of engineering and biological 
systems and can model fuzzy-logic controllers and 
partial differential equations as well as the neural-
networks we shall discuss here [3]. 

3 Vector Index-shifting, Delay Lines, 
and Filters 

Given an n-dimensional vector x  (x[1], x[2],

…, x[n]) and an integer k, the index-shifted vector
x{k} is the n-dimensional vector (x[1+k], x[2+k],
…, x[n+k]), with components referring to indices 
less than 1 or greater than n set to 0.  Significantly, 
the assignments 

Vector x = x{-1}  |  x[1] = input 

Listing 3. Vector assignment using index-shift notation 

compile into 
x[i] = x[i – 1]      (i = 1,…,n)
x[1] = input 

This neatly models shifting successive samples of a 
function u(t) into a tapped delay line with tap out-
puts x[1] = input, x[2], …, x[n].  Note that the 
assignment x[1] = input overwrites the Vector
operation’s assignment x[1] = 0 at each step.  

Assignments like Listing 3 can, for instance, model a 
complete nth-order digital filter with only two pro-
gram lines – a very efficient notation and a very effi-
cient implementation. Sections 7 to 9 will describe 
neural networks incorporating tapped delay lines and 
also gamma delay lines[5] modeled with a similar 
index-shift operation. 

4 Neural-network Models 
DYNAMIC program segments (Listing 1) that include 
differential equations compute state-variable deri-
vatives. An integration routine selected by the ex-
periment-control script then combines derivative 
values from successive time steps to update differen-
tial-equation state variables [2]. 

Desire can model biological neurons with differential 
equations (e.g. pulsed inegrate-and-fire neurons) [3], 
but the neural-network models we discuss here are 
much simpler. For DYNAMIC program segments with-
out differential equations, the simulation time t auto-
matically steps through t = 0, 1, 2, …, NN  by 
default (users can, if desired, specify different starting 
times and/or time increments). Neuron activations 
and connection weights are represented by real num-
bers that roughly model neuron pulse rates and syn-
apse chemistry. Both are updated with simple differ-
ence equations in successive time steps.  Thus, we 
can handle problems that combine differential-equa-
tion models and neural networks, as in sampled-data 
control systems. 

5 A Simple Backpropagation Network 
Figure 2 shows a simple three-layer neural network. 
Desire’s interpreted experiment-protocol script de-
clares the three neuron layers in turn with 

ARRAY x[nx] + x0[1] = xx v[nv], y[n] 
x0[1] = 1 

and two connection-weight matrices W1 and W2 with 

ARRAY W1[nv, nx + 1], W2[ny, nv] 

Desire array declarations like ARRAY x[nx] + x0[1] 
= xx act like Fortran equivalence statements: xx[3] is 
identical with x[3], and xx[nx + 1] is identical with 
x0[1].  As is customary, the input layer xx adjoins a 
one-dimensional bias vector x0 to the normal nx-
dimensional network input x. With x0[1] set to 1, we 
can then conveniently represent input biases as nv
extra connection weights W1[i, 1].
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W1 feeds xx to the hidden layer v just as in Figure 2 – 
but xx now includes the hidden-layer activations v
computed in the preceding iteration. The simple 
backpropagation-updating assignments (Listing 4) for 
the static network of Figure 2 then work without 
change for the recurrent neural network in Figure 3. 
Only the array dimensions have changed. 
It is just as easy to implement time-delayed feedback 
from the output layer y (Jordan recurrent network), or 
from both v and y.  Backpropagation updating re-
mains exactly the same. This simplified implementa-
tion of recurrent-network feedback is by no means 
restricted to backpropagation networks. This tech-
nique serves equally well for two-layer linear and 
nonlinear networks, for softmax pattern recognizers, 
and for radial-basis-function networks, which are all 
easy to program in the Desire language [3]. In each 
case we simply reuse the unchanged program for a 
static neural network. 

7 Networks with Input Delay Lines 
The earliest neural network with time-history mem-
ory was Widrow’s adaptive filter [5]. In Figure 5, 
successive values of a single time-series input input 
enter a delay line whose taps feed a static neural net-
work trained to filter, recognize, or predict time-series 
patterns. Desire’s compact index-shift operation (List-
ing 3) is exactly what is needed for modeling such 
networks.  

Widrow’s original network, for example, combined a 
delay line and a simple linear network layer 

Vector x = x{-1}  |  x[1] = input 
Vector y = W * x 

Widrow’s network had a single output y[1] and thus 
implemented a linear filter that could be trained with 
his new LMS algorithm to match a target time series.  

In our notation this successsive-approximation rule 
would be 

DELTA W = lrate * (target – y) * x 

Improved designs incorporate a nonlinear multilayer 
network, say the backpropagation network of Section 5: 

Vector x = x{-1}  |  x[1] = input 
Vector v = tanh(W1 * x) 

or other types of static networks [5]. All need only 
ordinary static-network training. 

8 NARMAX Networks use Delay-line 
Feedback

The recurrent network in Figure 6 has a single input 
input to a delay-line layer x of length nx as before. 
The output layer y has only a single output output. 
y[1].  The (scalar) error in the network output is 

ERROR = target – y[1] 

where target is a desired output time series.  Succes-
sively delayed samples of ERROR enter a second delay-
line layer error of length ne.
The delayed error samples are fed back to the neural 
network. 
Referring to Figure 6, we again concatenate all input-
layer vectors, in this case the two delay lines x and 
error, into a single input layer xx:

ARRAY x[nx] + x0[1] + error[ne] = xx 

xx feeds the hidden layer v of an ordinary backpropa-
gation network. 

Figure 5. A static neural network fed by an input delay line
Figure 6. A NARMAX (Nonlinear Auto-Regressive 
Moving Average with eXogenous inputs) network. 
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ARRAY x1[nx] + x0[1] + error1[ne] = xx 
x0[1] = 1 
ARRAY v[nv], y[1], error[ne], vdelta[nv] 
ARRAY W1[nv, nx + ne + 1], W2[1, nv] 
  ... 
DYNAMIC
Vector x1 = x1{-1} | 
x1[1] = input // input delay line
Vector v=tanh(W1 * xx) // hidden layer
Vector y = W2 * v // output layer
ERROR = target - y // output error
Vector error = error{1} |
error[1] = ERROR // feedback delay line
Vector vdelta=W2%*error*(1-v^2) // backpropagation
DELTA W1= lrate1 * vdelta * xx 
DELTA W2= late2* error * v 

Programmers must specify the input and target time 
series for different applications. 
Once again the backpropagation program is exactly 
the same as in Section 5. One can also substitute 
different types of neural networks for the backpropa-
gation layers in Figure 6. 

9 Networks with Gamma Delay Lines 
A simple tapped delay line of length n “remembers” 
its input for only n time steps. Principe’s gamma 
delay line[5] replaces each delay-line element with a 
simple first-order filter. That effecttively gives neural-
network input and feedback delay lines a much longer 
memory, so that the networks tend to perform better 
or use fewer neurons. Our vector index-shift notation 
models a gamma delay line with 

Vector x = x + beta*(x{-1} - x) 
x[1] = input  

which automatically compiles into 
x[i] = x[i] + beta*(x[i – 1] – x[i])   i=1,…,n 
x[1] = input 

beta is a scalar filter parameter set by the experi-
ment-protocol script; we have compactly program-
med n difference equations for n identical first-order 
filters (It is convenient to program Vector x = x + 
beta*(x{-1} - x)  as  Vectr delta x = mu*(x{-1} 
- x)).  We normally prefer such gamma delay lines 
for NARMAX networks. 

10 Applications 
The most common applications of recurrent networks are 

• model matching (e.g. plant models for control-
system design)

• time-series prediction
• recognition or classification of time-series patterns 

Figure 8 demonstrates a model-matching experiment. 
The program can be screen-edited and rerun immedi-
ately for truly interactive modeling. We programmed 
Elman networks with 2 and 3 hidden layers and a 
NARMAX network to match one of Narendra’s dif-
ference-equation plant models[7] described by 

f  = [Y(k)*Y(k-1)*Y(k-2)*input(k-1)*(Y(k-2)-1)
+ input(k)]/[1 + Y(k-1)^2 + Y(k-2)^2)] 

target(k) = Y(k)           (k=0,1,2,...) 

Listing 6. Narendra’s difference-equation plant models 

The networks were trained with random-noise input 
and tested with Narendra’s test function. 

s = 0.5 * ( (1 - 0.2*swtch(t-500)) * sin(w*t)
+ 0.2*swtch(t-500) * sin(ww * t) ) 

Listing 7. Narenda’s test function 

Training typically converged in 8 out of 10 simulation 
runs. All three recurrent networks then matched the 
plant equally well (Figure 8). 

For modeling a predictor the “present” neural-
network input is a delayed version of a specified 
“future” time series target: 

ARRAY buffer[m]
Vector buffer = buffer{-1} 
buffer[1] = target 
input = buffer[m] 

The neural network output y is then trained to match 
target.  We programmed a textbook problem[5] pre-
dicting the chaotic Lorenz[1] and Mackey-Glass[5] 
time series (Desire models Mackey-Glass with only 
two program lines 

tdelay S = D(signal, tau) 
d/dt signal = a * S/(1 + Sd^c) – b * signal 

where tdelay is a time-delay operator, and a, b, and 
tau are specified constants). Our Elman and net-
works predicted this time series within a few percent 
for 50 time steps ahead (Figure 9). As expected, 
gamma delay lines worked better than simple delay 
lines of the same length.  Prediction was still success-
ful when we removed the feedback delay line from 
the NARMAX network, resulting in the simpler 
model of Figure 5.  

Figure 7. Matching a neural network to a plant or plant 
model. input, target, y, and error can be scalars or vector 

functions of the time t.
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