
+++ A Technique for Simulat ion of Recurrent Neural Networks +++ t

21

N
SN

E 20/1, A
pril 2010

A New Technique for Interactive Simulation of
Recurrent Neural Networks

Granino A. Korn, University of Arizona, USA, gatmkorn@aol.com

We present new techniques for modeling the feedback loops of recurrent neural networks, including net-
works that incorporate tapped delay lines or gamma delay lines. Very fast simplified programs result. Exam-
ples of applications include signal prediction and dynamic-model matching. We also suggest interesting fu-
ture research on improved programs for time-series recognition and classification.

Introduction
This article describes much-simplified computer
programs for interactive simulation of recurrent neur-
al networks. Sections 1 to 4 briefly review dynamic-
system simulation and our open-source software for
Windows and Linux [1, 2, 3]. We employ a compact,
human- and machine-readable vector notation, in-
cluding very powerful vector index-shift operations
for modeling delay lines and filters. The remainder of
this report applies these techniques to neural-network
simulation.
Section 5 presents a simple backpropagation model
representing each neuron layer by a one-line vector
assignment. Section 6 then describes a significant
innovation: a technique for programming the time-
delayed feedback in recurrent networks without the
complication of special context layers. Sections 7 to 9
next apply our simple vector index-shift notation to
neural networks with input and feedback delay lines
or gamma delay lines.
Finally, Sections 10 and 11 discuss applications to
model matching and time-history prediction and sug-
gest other applications for future research.

1 A Simulation Language for Interactive
Dynamic-system Modeling

Desire simulation programs[1,2] model dynamic
systems using a natural mathematical notation for
successive difference-equation assignments like

x = x + a * sin(c*t)
y = x
...

Listing 1. Difference-equation notation in Desire

and/or differential-equation-system assignments like
u = alpha * sin(w * t + beta) + c
d/dt x = xdot
d/dt xdot = -a * x – b * xdot

Listing 2. Differential equation system in Desire

Such model definitions are screen-edited into a DY-
NAMIC program segment (Figure 1). Simulation stu-
dies are controlled by typed interactive commands
and/or by an experiment-protocol script. Experiment-
control commands set or change parameters and ini-
tial conditions and then call simulation runs that pro-
duce time-history displays. Each simulation run exer-
cises the model by calling the DYNAMIC program seg-
ment for NN successive time steps, as in

t0 = 0 | t = t0 | NN = 2000 | TMAX = 100
a = -5.00 | x = 17.1
drun

| is a statement delimiter. When the experiment pro-
tocol encounters the first drun statement the DYNAMIC
segment is compiled with a fast runtime compiler and
runs immediately to produce time-history displays
(Figure 1). More elaborate experiment protocols can
call multiple simulation runs with modified para-
meters and different DYNAMIC segments [2, 3].

2 Fast, Human- and Machine-readable
Vector Operations

Desire experiment-control scripts can declare vectors
like x (x[1], x[2], …, x[n]) and matrices like
W (W[1,1], W[1,2], …, W[n, m]) with single or
multiple ARRAY statements such as

Figure 1. Desire with a command window, file manager,
and 3 screen-editor windows. Programs in multiple editor

windows can be run to compare models (based on [3]).

+++ A Technique for Simulat ion of Recurrent Neural Networks +++
SN

E
20

/1
, A

pr
il

20
10

tN

22

ARRAY x[n], a[m], b[n], c[n], y[m],
 W[m, n], u[n], v[n], …

DYNAMIC program segments can then use the vectors
and matrices in vector assignments, and vector diffe-
rential equation, say

Vector x = a + alpha * b * c
Vector y = tanh(W * x)
Vectr d/dt x = beta * cos(t + c)

which automatically compile into multiple scalar
operations

x[i] = a[i] + alpha * b[i] * c[i] (i=1,…,n)
y[i] = tanh() (i=1,…,n)
d/dt x[i] = alpha * cos(t + c[i]) (i=1,…,n)

MATRIX assignments similarly compile into multiple
assignments to matrix elements W[i,k] [2]. All these
compiler operations unroll program loops, so that the
resulting binary code is fast.
We can also compute vector-component sums and
inner products like

p =
p =

with inner-product assignments DOT p = u*1 and DOT
p = u*v, again without program-loop overhead.

Desire vector operations permit very fast vectorized
Monte Carlo simulation of engineering and biological
systems and can model fuzzy-logic controllers and
partial differential equations as well as the neural-
networks we shall discuss here [3].

3 Vector Index-shifting, Delay Lines,
and Filters

Given an n-dimensional vector x (x[1], x[2],

…, x[n]) and an integer k, the index-shifted vector
x{k} is the n-dimensional vector (x[1+k], x[2+k],
…, x[n+k]), with components referring to indices
less than 1 or greater than n set to 0. Significantly,
the assignments

Vector x = x{-1} | x[1] = input

Listing 3. Vector assignment using index-shift notation

compile into
x[i] = x[i – 1] (i = 1,…,n)
x[1] = input

This neatly models shifting successive samples of a
function u(t) into a tapped delay line with tap out-
puts x[1] = input, x[2], …, x[n]. Note that the
assignment x[1] = input overwrites the Vector
operation’s assignment x[1] = 0 at each step.

Assignments like Listing 3 can, for instance, model a
complete nth-order digital filter with only two pro-
gram lines – a very efficient notation and a very effi-
cient implementation. Sections 7 to 9 will describe
neural networks incorporating tapped delay lines and
also gamma delay lines[5] modeled with a similar
index-shift operation.

4 Neural-network Models
DYNAMIC program segments (Listing 1) that include
differential equations compute state-variable deri-
vatives. An integration routine selected by the ex-
periment-control script then combines derivative
values from successive time steps to update differen-
tial-equation state variables [2].

Desire can model biological neurons with differential
equations (e.g. pulsed inegrate-and-fire neurons) [3],
but the neural-network models we discuss here are
much simpler. For DYNAMIC program segments with-
out differential equations, the simulation time t auto-
matically steps through t = 0, 1, 2, …, NN by
default (users can, if desired, specify different starting
times and/or time increments). Neuron activations
and connection weights are represented by real num-
bers that roughly model neuron pulse rates and syn-
apse chemistry. Both are updated with simple differ-
ence equations in successive time steps. Thus, we
can handle problems that combine differential-equa-
tion models and neural networks, as in sampled-data
control systems.

5 A Simple Backpropagation Network
Figure 2 shows a simple three-layer neural network.
Desire’s interpreted experiment-protocol script de-
clares the three neuron layers in turn with

ARRAY x[nx] + x0[1] = xx v[nv], y[n]
x0[1] = 1

and two connection-weight matrices W1 and W2 with

ARRAY W1[nv, nx + 1], W2[ny, nv]

Desire array declarations like ARRAY x[nx] + x0[1]
= xx act like Fortran equivalence statements: xx[3] is
identical with x[3], and xx[nx + 1] is identical with
x0[1]. As is customary, the input layer xx adjoins a
one-dimensional bias vector x0 to the normal nx-
dimensional network input x. With x0[1] set to 1, we
can then conveniently represent input biases as nv
extra connection weights W1[i, 1].

The runtime
defines the n

Vector v
Vector y

if we use a t
hidden layer
updating, w
propagation v

ARRAY tar

and program

Vector er
Vector vd
DELTA W1
DELTA W2

Listing 4. Si

Here W2% de
weight matri

DELTA W
MATRIX W

These assign
data compute
ues. Desire
scripted vari
fine for the
script must i
and W2[i,k]

In addition t
arrays, the e
network exp
values of sc
schedule trai
statements. T
any) and the
our text omit

Figure 2. A si

+++ A Te

e-compiled D
network dynam

= tanh(W1 *
= W2 * v

tanh activation
r. To produc

we declare
vectors with

rget[ny], err

m

rror = targe
delta = W2% *
1 = lrate
2 = lrate

imple backprop

enotes the tra
x W2, and

= matrix exp
= W + matrix

nments update
ed earlier, sta
e ARRAY decl
iables to the
e vectors; bu
nitialize the c
with small ra

to declaring a
experiment-pr
periment must
calar state va
ining and test
The script also
e display scale
ts these house

imple backprop

chnique fo

DYNAMIC prog
mics with

xx)

n function for
ce simple ba
target, error

ror[ny], vdelt

t – y
 error * (1 –
1 * vdelta *
2 * error * v

pagation updatin

anspose of th

pression
x expression

e vectors and
arting with giv
larations initi
default value

ut the experi
connection we
andom values.
and initializing
rotocol script
t set paramet
ariables (if a
t simulation r
o selects integ
e and colors. F
keeping opera

pagation networ

r S imulat io

gram segmen

r the nonlinea
ackpropagation
r, and error

ta[nv]

– v^2)
xx

v

ng

he connection

is equivalent to

matrices with
ven initial val
ialize all sub
e zero. That i
iment-protoco
eights W1[i,k

g neuron-laye
for a neural

ters and initia
any) and then
runs with drun
gration rules (i
For simplicity
ations.

rk. Figure 3

n of Recurr

nt

ar
n
r-

n-

h
l-
b-
is
ol
]

er
l-
al
n
n
if
y,

6 Si
P

An Elm
all or so
layer v1
xx. The
nal 3 n
weight

ARRA

x0[1

and add
weight

ARRA

The net
ment be

Vect
Vect
Vect

Listing

To upda
tion no
v1delta
more co
Just as
layer x0
that com

ARRA

Listing

The tw
the Elm
with a s

ARRA

3. A simple Elm

rent Neural

implified R
rogrammin

man recurrent
ome of the hid
1 which is fed
e experiment-p
neuron layers
matrices W1 an

AY x[nx] + x[
 v[nv], y[n

1] = 1

ds the context
matrix W11:
AY v1[nv], W1

twork dynam
ecome
tor v1 = v
tor v = tanh(
tor y = W2 *

g 5. Implement

ate W11 as we
ow requires
and v2delta, a

omplicated. Bu
we concatena
0, we can dec
mbines our hid

AY x[nx] + x0

g 6. Declaration

wo connection
man network i
single connect

AY W1[nv, nx

man recurrent ne

l Networks

Recurrent-n
ng
network (Fig

dden network
d back to v tog
protocol scrip
xx, v, and y
nd W2 as befor

0[1] = xx,
ny], W1[nv, nx

t layer v1 and

1[nv, nv]

mics in the DYN

W1 * xx) + ta
v

ation of networ

ell as W1 and W
two error-p

and the updatin
ut there is a mu
ated the input
clare a single
dden layer v w

[1] + v[nv] =

n of a new inpu

n-weight matr
in Figure 3 ca
tion-weight m

+ 1 + nv]

etwork.

+++

network

gure 3) [5, 6]
k layer v to a c
gether with the
pt declares the

and the conn
re,

x + 1], W2[ny

d a new conne

NAMIC program

anh(W11 * v1)

rk dynamics

W2 by backpro
propagation v
ng program be

uch better way!
layer x and i
new input la

with x and x0 (F

= xx | x0[1

ut layer

rices W1 and W
an now be re

matrix W1,

Figure 4. Mod
input layer

tN

copies
context
e input
e origi-
nection

y, nv]

ection-

m seg-

opaga-
vectors
ecomes

its bias
ayer xx

Fig.4):

1] = 1

W11 of
eplaced

dified
r.

23

SN
E 20/1, A

pril 2010

+++ A Technique for Simulat ion of Recurrent Neural Networks +++
SN

E
20

/1
, A

pr
il

20
10

tN

24

W1 feeds xx to the hidden layer v just as in Figure 2 –
but xx now includes the hidden-layer activations v
computed in the preceding iteration. The simple
backpropagation-updating assignments (Listing 4) for
the static network of Figure 2 then work without
change for the recurrent neural network in Figure 3.
Only the array dimensions have changed.
It is just as easy to implement time-delayed feedback
from the output layer y (Jordan recurrent network), or
from both v and y. Backpropagation updating re-
mains exactly the same. This simplified implementa-
tion of recurrent-network feedback is by no means
restricted to backpropagation networks. This tech-
nique serves equally well for two-layer linear and
nonlinear networks, for softmax pattern recognizers,
and for radial-basis-function networks, which are all
easy to program in the Desire language [3]. In each
case we simply reuse the unchanged program for a
static neural network.

7 Networks with Input Delay Lines
The earliest neural network with time-history mem-
ory was Widrow’s adaptive filter [5]. In Figure 5,
successive values of a single time-series input input
enter a delay line whose taps feed a static neural net-
work trained to filter, recognize, or predict time-series
patterns. Desire’s compact index-shift operation (List-
ing 3) is exactly what is needed for modeling such
networks.

Widrow’s original network, for example, combined a
delay line and a simple linear network layer

Vector x = x{-1} | x[1] = input
Vector y = W * x

Widrow’s network had a single output y[1] and thus
implemented a linear filter that could be trained with
his new LMS algorithm to match a target time series.

In our notation this successsive-approximation rule
would be

DELTA W = lrate * (target – y) * x

Improved designs incorporate a nonlinear multilayer
network, say the backpropagation network of Section 5:

Vector x = x{-1} | x[1] = input
Vector v = tanh(W1 * x)

or other types of static networks [5]. All need only
ordinary static-network training.

8 NARMAX Networks use Delay-line
Feedback

The recurrent network in Figure 6 has a single input
input to a delay-line layer x of length nx as before.
The output layer y has only a single output output.
y[1]. The (scalar) error in the network output is

ERROR = target – y[1]

where target is a desired output time series. Succes-
sively delayed samples of ERROR enter a second delay-
line layer error of length ne.
The delayed error samples are fed back to the neural
network.
Referring to Figure 6, we again concatenate all input-
layer vectors, in this case the two delay lines x and
error, into a single input layer xx:

ARRAY x[nx] + x0[1] + error[ne] = xx

xx feeds the hidden layer v of an ordinary backpropa-
gation network.

Figure 5. A static neural network fed by an input delay line
Figure 6. A NARMAX (Nonlinear Auto-Regressive
Moving Average with eXogenous inputs) network.

+++ A Technique for Simulat ion of Recurrent Neural Networks +++ t

25

N
SN

E 20/1, A
pril 2010

ARRAY x1[nx] + x0[1] + error1[ne] = xx
x0[1] = 1
ARRAY v[nv], y[1], error[ne], vdelta[nv]
ARRAY W1[nv, nx + ne + 1], W2[1, nv]
 ...
DYNAMIC
Vector x1 = x1{-1} |
x1[1] = input // input delay line
Vector v=tanh(W1 * xx) // hidden layer
Vector y = W2 * v // output layer
ERROR = target - y // output error
Vector error = error{1} |
error[1] = ERROR // feedback delay line
Vector vdelta=W2%*error*(1-v^2) // backpropagation
DELTA W1= lrate1 * vdelta * xx
DELTA W2= late2* error * v

Programmers must specify the input and target time
series for different applications.
Once again the backpropagation program is exactly
the same as in Section 5. One can also substitute
different types of neural networks for the backpropa-
gation layers in Figure 6.

9 Networks with Gamma Delay Lines
A simple tapped delay line of length n “remembers”
its input for only n time steps. Principe’s gamma
delay line[5] replaces each delay-line element with a
simple first-order filter. That effecttively gives neural-
network input and feedback delay lines a much longer
memory, so that the networks tend to perform better
or use fewer neurons. Our vector index-shift notation
models a gamma delay line with

Vector x = x + beta*(x{-1} - x)
x[1] = input

which automatically compiles into
x[i] = x[i] + beta*(x[i – 1] – x[i]) i=1,…,n
x[1] = input

beta is a scalar filter parameter set by the experi-
ment-protocol script; we have compactly program-
med n difference equations for n identical first-order
filters (It is convenient to program Vector x = x +
beta*(x{-1} - x) as Vectr delta x = mu*(x{-1}
- x)). We normally prefer such gamma delay lines
for NARMAX networks.

10 Applications
The most common applications of recurrent networks are

• model matching (e.g. plant models for control-
system design)

• time-series prediction
• recognition or classification of time-series patterns

Figure 8 demonstrates a model-matching experiment.
The program can be screen-edited and rerun immedi-
ately for truly interactive modeling. We programmed
Elman networks with 2 and 3 hidden layers and a
NARMAX network to match one of Narendra’s dif-
ference-equation plant models[7] described by

f = [Y(k)*Y(k-1)*Y(k-2)*input(k-1)*(Y(k-2)-1)
+ input(k)]/[1 + Y(k-1)^2 + Y(k-2)^2)]

target(k) = Y(k) (k=0,1,2,...)

Listing 6. Narendra’s difference-equation plant models

The networks were trained with random-noise input
and tested with Narendra’s test function.

s = 0.5 * ((1 - 0.2*swtch(t-500)) * sin(w*t)
+ 0.2*swtch(t-500) * sin(ww * t))

Listing 7. Narenda’s test function

Training typically converged in 8 out of 10 simulation
runs. All three recurrent networks then matched the
plant equally well (Figure 8).

For modeling a predictor the “present” neural-
network input is a delayed version of a specified
“future” time series target:

ARRAY buffer[m]
Vector buffer = buffer{-1}
buffer[1] = target
input = buffer[m]

The neural network output y is then trained to match
target. We programmed a textbook problem[5] pre-
dicting the chaotic Lorenz[1] and Mackey-Glass[5]
time series (Desire models Mackey-Glass with only
two program lines

tdelay S = D(signal, tau)
d/dt signal = a * S/(1 + Sd^c) – b * signal

where tdelay is a time-delay operator, and a, b, and
tau are specified constants). Our Elman and net-
works predicted this time series within a few percent
for 50 time steps ahead (Figure 9). As expected,
gamma delay lines worked better than simple delay
lines of the same length. Prediction was still success-
ful when we removed the feedback delay line from
the NARMAX network, resulting in the simpler
model of Figure 5.

Figure 7. Matching a neural network to a plant or plant
model. input, target, y, and error can be scalars or vector

functions of the time t.

SN
E

20
/1

, A
pr

il
20

10

26

,
p

tN

Reade
in rep
Desire
tion e
distrib

11 C
The e
applic
(6) in
statem
neuro
netwo
netwo
dersta
On a
puter,
exhib
time-h
tion d
mode
in Figu

We d
Widro
and ti
nition
restin
menti
the ba
requir
static

Figur
mode

test
essen

+++

ers interested
peating our ex
e programs fo
experiments in
bution file.

Conclusion
essential contr
cation of the D
Sec. 7. Actin

ment, this pro
on layers an
ork updating
ork models ar
and.

3.15 GHz 2-
 the screen-e
ited in this r
history displa
delay is not n
ling is possibl
ures 8 and 9 co

demonstrated
ow, and NARM
ime-series pre
n (pattern cla
g topic for fu
ing various s
ackpropagatio
red training pr
network.

re 8. Simple Elm
el (Listing 6). P
function (Listin

ntially reproduc
four-laye

+ A Techniq

in the details
xperiments – w
or 20 model-m
ncluded in th

ns and Futu
ribution of thi
Desire langua
ng much like
ogramming tr
nd greatly s
algorithms. T

re smaller, fas

-CPU Penryn
edited, runtim
report all com
ys within 30

noticeable, so
le. The recurre
onverged withi

simple app
MAX network

ediction. Time
ssification) w

future work. N
softmax class
on network in
rocedure is ag

man network m
Plant and networ
ng 7). The grap
e Narendra’s re
er NARNAX ne

que for Sim

s of these stud
will find the c
matching and
e open-source

ure Researc
is article is th
ge’s array dec
a Fortran equ
rick eliminate
simplifies re
The resulting
ster, and easie

n-class person
e-compiled p
mpiled and p
msec. This c
that truly int

ent-network p
in 1 to 3 second

plications to
ks to model m

e-series pattern
will be the fir
Neuron layers
ifiers[3] will
Figures 4 and

gain simply th

matching Narndr
rk were fed Nar

phs of target=f
esults obtained
etwork [7]..

ulat ion of R

dies – or
compact

d predic-
e Desire

ch
he novel
claration
ivalence

es entire
ecurrent-

neural-
er to un-

nal com-
programs
produced
compila-
teractive
programs
ds.

Elman,
matching
n recog-
rst inte-
s imple-

replace
d 6. The
hat for a

O
w
g
e
l
i
e

C

R
R
A

ra’s plant
rendra’s
f and y
with his

Recurrent N

Our new tric
would work
guages. But
experiment pr
lation runs m
involve hundr
especially con

12 Refere
[1] G.A. Korn

on Person
Cambridg

[2] G.A. Kor
under Win

[3] G.A. Kor
Model-rep
lation. Wi

[4] G.A. Korn
ters Usin
News Eur

[5] J. Principe
Hoboken,

[6] J.L. Elma
ence, 14:1

[7] K.S. Nare
Control of
IEEE Tran

Correspondin
ECE Depar
gatmkorn@

Received: Ma
Revised: Oct
Accepted: Jan

Figure 9. This
Elman networ

series.

Neural Netw

k of concaten
equally wel
Desire’s com

rotocol and fa
makes interacti

reds of progr
nvenient.

ences
n. Neural Netw
nal Computers
ge, 1995.
rn. Interactive
ndows. Gordon
rn. Advanced
plication Techn
iley, Hoboken,
n. Fast Simulat

ng Vectorized
rope 18-1, Apri
e, et al. Neural
, NJ, 2000.
an. Finding Stru
179-211, 1990.
endra, K. Part

of Dynamic Sys
ns. on Neural N

ng author: Gr
rtment, Unive

@aol.com

y 14, 2009
tober 23, 2009
uary 10, 2010

s display shows
rk predicting the
. The original g

works +++

nating neuron
l in most co

mbination of a
ast runtime-co
ive modeling
ram changes

works and Fuzzy
and Workstatio

Dynamic-syst
and Breach, Lo
Dynamic-syste

niques and Mon
NJ, 2007.

tion of Digital a
State Equation
l 2008.
and Adaptive S

ucture in Time.

thasarathy. Iden
stems Using Ne
Networks, 1:4-2

ranino A. Kor
ersity of Arizo

s target, y, and
e Mackey-Glas
graphs were in

n-layer arrays
omputer lan-
an interpreted
ompiled simu-

– which can
in one day –

y-logic Control
ons. MIT Press,

tem Simulation
ondon, 1998.
em Simulation:
nte Carlo Simu-

and Analog Fil-
ns. Simulation

Systems. Wiley,

Cognitive Sci-

ntification and
eural Networks.
27, 1990.

rn
ona, USA

d ERROR for an
s chaotic time
color.

s
-
d
-
n
–

l
,

n

:
-

-
n

,

-

d
.

