
+++ IBKSim Network Simulator +++ 
SN

E 
20

/1
, A

pr
il 

20
10

 
tN

16

XML Meets Simulation: 
Concepts and Architecture of the IBKSim Network Simulator 

Lukas Wallentin, Marco Happenhofer, Christoph Egger, Joachim Fabini 
Vienna University of Technology, Austria  

One option to evaluate various aspects concerning the performance of large computer networks is simula-
tion. In order to understand the influence of single parameters onto the overall performance of a network, 
large series of simulations must be processed. Therefore, automation of simulation series is an important is-
sue in the development of network simulators. In this paper we present the second version of the discrete 
event based simulator IBKSim. This simulator incorporates the experience of IKNSim which has been de-
veloped in 2005 at the same institute. Using XML (Extensible Markup Language) for the configuration and 
logging function, the new version bridges the gap between usability and automation. In addition to the simu-
lator description we outline our experience with XML as configuration and logging language. 

Introduction 
Performance analysis and identification of design 
problems in communication systems can be very 
challenging due to the size of communication net-
works, the inherent complexity of network protocols 
and the influence of the environment. Detailed simu-
lation of communication systems offers an excellent 
opportunity to perform experiments to gain a deeper 
insight into their behavior under different conditions. 

In this paper we present IBKSim, the second simula-
tor which has been developed at the Institute of 
Broadband Communications of the Vienna University 
of Technology. Based on the experience with IKNSim 
and other simulation environments, IBKSim was 
developed to meet the requirements of a state of the 
art network simulator. The motivation was to produce 
not only a simulator which supports large simulation 
series but also to facilitate single experiments on 
networks. As a result XML [1] was introduced as 
format to describe both, simulation scenarios as well 
as the simulator’s output. The usage of XML differen-
tiates IBKSim from other network simulators i.e. 
NS2[2] and OMNET++[3]. Another important target 
was the extensibility of the simulator to allow other 
developers to use IBKSim as an development and 
testing platform for own network protocols and algo-
rithms.  

The remainder of this paper is structured as follows: 
Section 1 provides a closer description of the archi-
tecture of IBKSim. Section 2 explains the benefits of 
XML as configuration and logging language, whereas 
section 3 presents the usage of IBKSim to solve typi-
cal scenarios. The paper concludes with a summary. 

1 Basic IBKSim Concept 
IBKSim is a discrete event based simulator written in 
C++. The simulator kernel is based on the simulator 
described in [4] and is pictured in Figure 2. It consists 
of a basic simEntity class for the representation of 
simulation objects. Simulation objects exchange ob-
jects of the type simEvent which represents current or 
future events. Future events are stored in the order of 
their occurrence in an queue-object of the class sim-
Queue. As long as there is at least one event in the 
simulation queue the simulator controller (simCon-
trol) removes the next event and executes it on the 
associated simulation object. The object reacts on this 
event and eventually submits new events to the simu-
lation queue. The simulation ends if there is either no 
event left in the simulation queue or if the moment of 
the occurrence of the next event lies behind a precon-
figured point of time.  
By using this kernel it is possible to build own simu-
lations by implementing new simulation objects 
which are derived from simEntity. Since the purpose 
of IBKSim is to simulate networks, many additional 
modules and functions have been implemented.  
The IBKSim clear differentiates between user and 
object developer which is particularly important for 
the usability and automatic simulation series. In this 
context a user is a person or a program which gener-
ates a simulation scenario using the implemented 
simulation objects. The implementation of simulation 
object is the object developer’s main task. 

1.1 User perspective 
From the user’s point of view, IBKSim takes a con-
figuration file as input and generates a logging file. If 



+++ IBKSim Network Simulator +++  t

17

N
SN

E 20/1, A
pril 2010

the simulator runs in the so called debugging mode it 
additionally generates output to the terminal. In the 
configuration file, which is written in XML, the user 
can describe the whole simulation scenario. Listing 1 
depicts an example of such a XML file. After config-
uring the maximum simulation duration and the ini-
tial random function seed, the user models the net-
work. A network consists of nodes which are contain-
ers for components. Every node and every component 
within this node has a unique name. Additionally 
each component has a specific type and an optional 
debugging parameter. The type describes to which 
simulation object class the component belongs to. 
The debugging parameter is just used in the debug-
ging mode. Depending on the value of the parameter, 
the component generates trace information on the 
terminal. 

Since components are the actual simulation objects, 
every node needs at least one component. The con-
cept that a node is a group of simulation objects, as 
shown in Figure 1, allows to simulate different net-
work layers as different objects. Each component can 
have different additional parameters which are spe-

cific to it. The component description follows the 
configuration of the connections.  

After the description of all network nodes, the nodes 
can be linked using their unique names. In contrast to 
the intra node links within nodes the inter node links 
represent physical links and therefore they support 
the additional parameters delay, jitter and loss-rate. 

The last configuration concerns the logging function. 
The logging function collects cyclical logging infor-
mation from the selected components. This allows to 
monitor certain user defined component parts over 
the time. The logging information which is again in  
XML format is saved in the specified log file as pic-
tured in Figure 2. 

The user must know which components are imple-
mented in the simulator and  which parameters they 
have, without possessing any knowledge about the 
code. The benefit of using XML for configuration and 
cyclical logging is described in Section 3. 

1.2 Developer perspective 
To implement a new simulation object the developer 
has to create a new class which is derived from sim-
Entity. Furthermore he can use additional functions 
which have been implemented into the simulator. 

Component factory   Following start-up, the simula-
tor parses the input file and generates a network of 
simulation objects which are commonly connected by 
links. This is realized using a component factory. For 
every component specified in the configuration file, 
the factory calls the static build function of the class 
which is associated with the type of the component. 
This function generates a simulation object and con-
figures it depending on the additional parameters in 
the XML file. Afterwards it returns the new object to. 

The usage of this so called factory pattern has some 
benefits for the developers. Since every class of simu-
lation object has its own build function, and the build 
function gets the complete XML-content between the 
start and the end tag of the component, the developer 

Figure 1. Visualization of the network described in 
Listing 1. 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<simulation>
  <paramlist> 
    <duration value="100"/> 
    <initialseed value="1"/> 
  </paramlist> 
  <network name="net1"> 
    <node name="source"> 
      <component name="source0" type="source" debug="0">
        <source prio="0" rate="10"> 
        </source> 
      </component> 
      <component name="wait" type="delay" debug="1"> 
      </component> 
      <clink src="source0" dst="wait" direction="both"/>
    </node> 
    <node name="sink"> 
      <component name="sink0" type="sink" debug="0"> 
      </component> 
    </node> 
  </network> 
  <linklist> 
    <link name="src-sink" direction="both"> 
      <src net="net1" node="source" cmp="wait"/> 
      <dst net="net1" node="sink" cmp="sink0"/> 
    </link> 
  </linklist> 
  <loglist> 
    <logging type="file" interval="10"> 
     <config filename="logfile.xml"/> 
     <log net="net1" node="source" cmp="source0" v="1"/>
     <log net="net1" node="sink" cmp="sink0" v="1"/> 
    </logging> 
  </loglist> 
</simulation>

Listing 1. Example description of a simulation scenario. 



+++ IBKSim Network Simulator +++ 
SN

E 
20

/1
, A

pr
il 

20
10

 
tN

18

can easily specify new XML-tags for the component 
configuration. Additionally he can use the build func-
tion to trigger init functions in the newly generated 
objects.
The developer does not need to use the component 
factory if it is not required. This is useful, e.g., when 
a simulation object is just started by another simula-
tion object. One specific example is a server object 
which dynamically starts new simulation objects to 
handle requests. If the developer wants to use the 
component factory, he must implement an own build 
function and register the class with the factory. 

Static connections   As mentioned previously, it is 
possible to describe connections between components 
in the configuration file. To implement this function-
ality, the basic simEntity class implements the func-
tion connect. The component factory calls  this func-
tion automatically to perform the linking between 
components which is basically an exchange of point-
ers. Using the pointers, a simulation object can 
transmit an event to another object. To simulate a 
physical link between two nodes the simulator places 
an additional simulation object between them which 
simulates the delay and the loss rate of the physical link. 

Layered architecture   IBKSim supports layered 
architectures by providing a class which has a special 
implementation of the already mentioned connect 
function. It automatically connects the components 
within a node derived from this class. 

Messages and timer   The reception of messages in 
the form of packets or frames are common events in 
communication networks. By including objects into 
events, it is possible to combine the transmission of 
events and messages between the simulation objects 
in an intuitive way. It is also an efficient way to im-
plement preemptive timers. One option to implement 
a timer in an event based simulator is to send an event 
from a simulation object to itself. In the case that the 
timer must be deleted, the simulator searches for the 
event in the event list to remove it. To avoid the 
search, this is solved in a different way in IBKSim. 
Every timer includes a small object with a flag which 
states if the timer is active. To delete a timer the flag 
must be disabled. When the event occurs, the simula-
tion object can ignore the event when the flag is not 
set. Using this concept, the search in the event list can 
be avoided. 

Logging. The simulator supports two ways of log-
ging. If the simulator runs in the debug mode and the 

debug level for a component is set, the component 
can output traces to the terminal. This event triggered 
logging function is intended mainly for evaluating 
single simulations and for development. For simula-
tion series the cyclic logging function has been de-
veloped. 

For the cyclic logging function each simulation object 
implements a function called getLogs().This func-
tion returns an XML string sharing statistical infor-
mation. A special simulation object called logger
calls this function on a regular basis, collects all the 
strings and writes them to a log file. This time trig-
gered logging function is useful to monitor the change of 
different simulation object variables over time. 

2 The benefit of XML as configuration 
and logging language 

XML is a markup language to structure data in text 
files. This system and vendor independent language is 
a royalty free open standard [1]. IBKSim uses XML 
files for configuration and for logging due to the 
benefits it offers to the user of the simulator as well as 
for the development of additional simulator tools. 

By using XML for configuration a user is not bound 
to a specific tool or editor to generate simulation 
scenarios. There are a number of XML editors, i.e. 
XPontus [5] and Altova XMLSpy [6], specifically 
designed to generate and validate xml files. Alterna-

<ibkSimLog>
  <logentry time="10"> 
    <log net="net1" node="source" cmp="source0"> 
      <source sentPackets="102"/> 
    </log> 
    <log net="net1" node="sink" cmp="sink0"> 
      <sink receivedPackets="89" averageDelay="0.452"/> 
    </log> 
  </logentry> 
  <logentry time="20"> 
    <log net="net1" node="source" cmp="source0"> 
      <source sentPackets="98"/> 
    </log> 
    <log net="net1" node="sink" cmp="sink0"> 
      <sink receivedPackets="92" averageDelay="0.483"/> 
    </log> 
  </logentry> 
  <logentry time="30"> 
    <log net="net1" node="source" cmp="source0"> 
      <source  sentPackets="105"/> 
    </log> 
    <log net="net1" node="sink" cmp="sink0"> 
      <sink receivedPackets="102" averageDelay="0.464"/>
    </log> 
  </logentry> 
  ... 
</ibkSimLog>

Listing 2. Example of a log file. 



+++ IBKSim Network Simulator +++ t

19

N
SN

E 20/1, A
pril 2010

tively, one can use a text editor to write a simulation 
scenario.  

Since XML does not use a binary file format, simple 
scripts can be used to generate series of simulation 
scenarios. Additionally there exist a number of librar-
ies for different programming languages to handle 
XML files in programs, i.e. Xerces [7] for C++, Java 
and Perl which simplifies the development of tools 
for the generation of complex simulation scenarios. 

The usage of XML as log file format has some addi-
tional advantages. Microsoft Excel 2007 can directly 
handle XML files, which eases post-simulation proc-
essing and analysis. 

Additionally XML processors can convert XML-files 
into other XML or human readable file types. One 
type of XML file is SVG [8] (Scalable Vector Graph-
ics), a file format specifying vector graphics and 
animations using XML. By converting the log-file 
into a SVG file, a XML processor can generate an 
animation for presentation. With the same technique 
the log file can be converted into a comma separated 
values file (csv). This is useful if the user wants to 
analyze the data with statistic tools like R [9] which 
expects this data format as input.  

Summarizing, we consider XML to be the most ap-
propriate and flexible choice, both for scenario gen-
eration and for logging.  

3 Work experience using IBKSim 
The workflow for single simulations is straight for-
ward. A user generates a simulation scenario in XML 
by using a text or XML editor. He starts the simula-
tion and afterwards analyses the log file using e.g. 
Excel. Additionally he can analyze the simulator’s 
debugging output if the components are configured 
accordingly.  

For simulation series we are using a Beowulf cluster 
with 20 CPUs running Debian GNU/Linux 4.0 [10]. 
To manage the work load the sun grid engine [11] is 
used which accepts jobs in the form of shell scripts. 
To perform a simulation series the cluster uses three 
files: a template of the simulation scenario, a template 
of a job script which should be processed by the grid 
engine and a generation script.  

A template is a XML configuration file where pa-
rameter values have been replaced by keywords. For 
instance the file in Listing 1 could be transformed to a 
template by replacing the initial seed value in line 

Figure 2. Overview over IBKSim. 



+++ IBKSim Network Simulator +++ 
SN

E 
20

/1
, A

pr
il 

20
10

 
tN

20

five from 1 to --seed--. The generation script can use 
this template to generate e.g. 100 simulation scenar-
ios by copying the template and replacing the key-
word --seed--  with numbers from 1 to 100. The in-
serted value also becomes part of the name of the 
configuration and log file. 

Additionally the generation script produces for each 
generated configuration file a job script using the job 
template. To perform solely the simulation a call of 
the simulator with the according configuration file in 
the job script is sufficient. Since in most cases a sta-
tistical analysis follows the simulation series, the job 
script is frequently used to pre-process logging data. 
A typical example is the calculation of the median 
and the quartiles of a logged parameter. For such 
operations r (“little R”), the command line version of 
R, is used.  After generation of job scripts and con-
figuration files, the generation script submits all jobs 
to the grid engine. When all simulations are proc-
essed, the log files or the files containing the preproc-
essed data are analyzed. 

4 Summary 
In this paper we presented the network simulator 
IBKSim.  We outlined the architecture of this discrete 
event based simulator and described selected func-
tions in detail. Particularly the advantages of XML as 
configuration and logging file format have been de-
scribed in detail. Additionally typical examples of the 
simulation workflow using IBKSim were given. Con-
cluding, the integration of XML has shown to be 
efficient and rewarding both for the user and the de-
velopers of IBKSim. 

Acknowledgement 
The authors would like to thank Jon Schuringa for the 
development of the IKNSim and all the other mem-
bers of the Institute of Broadband Communications 
who were involved in the IKNSim and IBKSim projects. 

References 
[1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, 

F. Yergeau: Extensible markup language (XML) 1.0., 
W3C recommendation, vol. 5, 2008. 

[2] S. McCanne, et al.: The Network Simulator - ns-2,
online: http://www.isi.edu/nsnam/ns/, visited: April 
2009

[3] A. Varga, et al.: The OMNeT++ discrete event simu-
lation system, Proceedings of the European Simula-
tion Multiconference (ESM’2001), 319-324, 2001 

[4] O. Spaniol, S. Hoff: Ereignisorientierte Simulation,
Thomson Publishing, 37, 1995 

[5] Y. Zoundi.: XPontus XML Editor, online: 
http://xpontus.sourceforge.net/, visited: April 2009 

[6] Altova Inc.: XMLSpy - XML Editor for Modeling, Ed-
iting, Transforming, & Debugging XML Technolo-
gies, online: http://www.altova.com/xml-editor/, vis-
ited: April 2009 

[7] The Apache Software Foundation.: Xerces-C++ XML 
Parser, online: http://xerces.apache.org/, visited: April 
2009

[8] J. Ferraiolo, F.Jun, D. Jackson: Scalable Vector 
Graphics (SVG) 1.1 Specification, W3C recommenda-
tion, 2003 

[9] R.Ihaka, R. Gentleman: R: a language for data analy-
sis and graphics, Journal of Computational and 
graphical statistics, American Statistical Association, 
Institute of Mathematical Statistics, and Interface 
Foundation of North America,299-314, 1996 

[10] Debian-Project: Debian – The Universal Operating 
System, online: http://www.debian.org/, visited: April 
2009

[11] W. Gentzsch: Sun grid engine: Towards creating a 
compute power grid, First IEEE/ACM International 
Symposium on Cluster Computing and the Grid, 
2001. Proceedings, 35-36, 2001 

Corresponding author: Lukas Wallentin 
Vienna University of Technology 
Institute of Broadband Communications 
Wiedner Hauptstraße 8 – 10, 1040 Vienna, Austria 
Lukas.Wallentin@tuwien.ac.at

Received: March 10, 2009

Revised: January 20, 2010

Accepted: February 20, 2010


