
+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

5

N
 SN

E 20/1, April 2010

T E C H N I C A L N O T E S

Towards an Object-oriented Implementation of
VON MISES’ Motor Calculus Using Modelica

Tobias Zaiczek, Olaf Enge-Rosenblatt, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
{Tobias.Zaiczek, Olaf.Enge}@eas.iis.fraunhofer.de

This paper deals with a first implementation of the socalled motor calculus within Modelica. The motor cal-
culus can be used to describe the dynamical behaviour of spatial multibody systems in an efficient way. This
method represents an alternative approach to modelling of multibody systems. In the paper, some fundamen-
tals of motor calculus are summarized. Furthermore, a simple implementation of motor algebra by special
additional Modelica code within some components of the Modelica Multibody Standard Library is presented.
This approach fully corresponds with the paradigm of object-oriented modelling. However, the present reali-
sation is not equation-based in its full sense because of the missing possibility of operator overloading (at
least in the available Modelica simulator environment). Instead of this, some functions are used carrying out
the necessary calculations. Using this implementation, some examples are given to prove the applicability
and correctness of the implemented approach.

Introduction
The notion of motor, composed of the words moment
and rotor, was coined by Clifford in 1873 in his alge-
bra of biquaternions [4]. But Clifford did apply his
concept neither to the modelling of motion of a single
rigid body nor to the modelling of spatial multibody
systems. The approach of motor calculus to 3D me-
chanics was suggested by von Mises in 1924 [11, 12].
In the first part [11], von Mises introduces the dual
motor product. He indicates the role of the dual motor
product as a measure of the instantaneous change of a
motor associated to a rigid body by the action of a
second motor. In the second part [12], von Mises
applied the motor calculus in the derivation of a gen-
eral form of the equations of motion of a rigid body.
Due to this work, translations and rotations, velocities
and angular velocities, forces and torques, etc. can be
described by motor calculus (or motor algebra).
Hence, this approach is well suited to investigate the
behaviour of spatial multibody systems.
One of the authors studied motor calculus in his Di-
ploma thesis [22] initiated and supervised by Prof. K.
Reinschke from the Technical University Dresden
(one of the former institutes of R. von Mises). Recent
publications dealing with this subject can rarely be
found (exept e.g. for [8, 18]). In the context of the
modelling language for heterogenous systems Mode-
lica (see e.g. [5, 13, 19]), the motor calculus has not
been taken into account up to now.

Within the Modelica community, spatial multibody
systems are usually modelled using the Modelica
Multibody Standard Library (see [14] or [15]).
Meanwhile, many researchers apply this library to
model different kinds of – partially very complex –
multibody systems [2, 9, 10, 16, 20]. This library has
proven to be a well suited resource to modelling such
systems. However, applying the motor calculus, the
equations of motion for a rigid body become more
concise and clearer, e.g.

= (1)

(– momentum motor, – force motor). Despite the
formal equivalence to Newton’s Second Law for a
point mass, this equation fully describes the three-
dimensional mechanics of a rigid body.

The motivation to follow up the motor calculus in the
Modelica context is to investigate the possible simpli-
fication of handling spatial mechanical systems. A
test realisation within the Modelica Multibody Stan-
dard Library has been carried out by implementing
special additional Modelica code within some com-
ponents of this library. These modifications take ad-
vantage of the built-in feature of inheritance. Hence,
it is possible to compare both approaches e. g. with
respect to numerical correctness.

In the following section, some fundamentals of motor
calculus are shortly sketched. Some of the most im-
portant mathematical operations are defined. The test

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++
SN

E
20

/1
,

Ap
ri

l 2
01

0

tN

6

implementation is presented in Section 2. It fully
corresponds with the paradigm of object-oriented
modelling (see e.g. [3]). In modelling and simulation,
one usually distinguishes between equations and
assignments. In this context, the test implementation
is not completely equation-based because some spe-
cial mathematical operations had to be realised by
functions. Some examples in section 3 show the prin-
cipal applicability of the motor calculus approach.

1 Fundamentals of motor calculus
A motor

o

=
g
h

(2)

is an ordered pair of vectors, oh and g , that define a
vector field

() = + ×oh r h g r (3)

in the three-dimensional Euclidean space. In this
definition, r is the position vector of any point in
space, while the vectors h and g are called the mo-
ment and the resultant vector of the motor, respec-
tively. Accordingly, oh stands for the moment of the
motor at the origin O of the reference coordinate
system.

For every motor, an infinite number of points exists,
for which the moment of the motor h is parallel to
the resultant vector g . All these points exhibit the
same moment nh and lie on a straight line given
by:

2()
| |

oλ λ×= +n
g hr g
g

(4)

Geometrical interpretation A very strong goal of
the motor calculus is the fact that motors and all op-
erations with motors (that will be defined later on)
can be interpreted as geometrical objects or construc-

tions. Hence, all motors can be seen as abstract ob-
jects that do not depend on the choice of a reference
frame. R. von Mises emphasises this fact by giving
the definition of motors in terms of geometrical ob-
jects describing them. Here, just an interpretation of
the foregoing definition is given.

For every pair of straight lines (1 and 2) defined in
Euclidean space, there exists a straight line con-
necting them and being orthogonal to both of them
(see Figure 1). For a pair of non-parallel lines, is
uniquely defined. Otherwise, there exists an infinite
number of such connecting lines that are parallel to
each other. Now, every ordered pair of straight lines
(1 , 2) can be mapped to a motor (see Figure 1). In
this case, is denoted as motor axis, according to
von Mises. The oriented segment of the axis be-
tween the intersection with 1 and the intersection
with 2 can be interpreted as the moment nh of the
motor on its axis. The smaller one of both angles
included by the lines 1 and 2 is understood as a
measure for the orientation and is simultaneously
interpreted as the length of the resultant vector g. The
tangent of this angle α is equal to the length of the
resultant vector, while the direction of the resultant
vector is defined in such a manner that 1 can be
transferred into 2 by a mathematically positive
screw motion across the resultant vector. The map-
ping from an ordered pair of straight lines to a motor
is not a one-to-one mapping because all ordered pairs
of straight lines that can be transferred into each other
by a screw motion across define the same motor.

1.1 Motor calculus
In the following, some computational rules of motor
calculus are recalled.
Let h , 1h and 2h be three motors given by

1 2
1 2

1 2

, ,= = =h h h
o o o

g g g
h h h

(5)

Then, according to von Mises, the following mathe-
matical operations can be defined:

Addition
The addition of motors is performed component-wise
according to:

1 2
1 2

1 2

+
+ =

+
h h

o o

g g
h h

(6)

The neutral element of the addition is the zero motor

Figure 1. Geometrical interpretation of motors.

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

7

N
 SN

E 20/1, April 2010

=o
0
0

 (7)

Multiplication
For the multiplication of motors the following three
cases can be distinguished:

Multiplication with a scalar The scalar multiplica-
tion is defined component-wise

α
α

α
h=

o

g
h

 (8)

Inner product The result of the inner product of
two motors is a scalar. Thus, the product corresponds
to the scalar product of the vector calculus. The defi-
nition is

1 2 1 2 2 1(,) (,) (,)= +h h o og h g h (9)

while (,)g h is the scalar product of two vectors.
Using matrix notation, the equation

() 1
1 2 1 1

2

(,) T T= Γh h o
o

g
g h

h
holds, where Γ is a well-chosen matrix according to:

3

3

Γ =
0 I
I 0

and 3I denotes the (3 3)× identity matrix.

Outer product The outer product of two motors
results in another motor, which is composed as fol-
lows:

1 2
1 2

1 1 2 1

×
×

× + ×
h h =

o o

g g
g h h g

 (10)

The outer product is also referred to as motorial
product or as dual motor product [6]. In terms of
vectors and vector dyads, the product can be written as

1 2
1 2

1 1 2

× Γh h =
o o

0 G g
G H h

 (11)

where 1G and 1oH are the cross product matrices of
the vectors 1g and 1oh , respectively.

Motor dyads
In analogy to the vector calculus, von Mises declared
dyads for the motor calculus by linear vector func-
tions mapping motors to motors. Referred to a con-
crete coordinate system, such a dyad can be repre-
sented as a (6 6)× matrix.
The mapping can be described in the following manner:

1 11 1 12 111 12
1

1 21 1 22 121 22

+
= Γ =

+
T h o

o o

g T h T gT T
h T h T gT T

. (12)

The neutral element of the dyadic multiplication in
motor calculus is the identity motor dyad G that can
be represented in every frame as

3

3

G=
0 I
I 0

 (13)

Now, all calculation rules for the motor calculus can
be derived readily, some of which are presented here
for any arbitrarily chosen motors 1h , 2h , 3h .and α∈ :

1 2 2 1

1 2 2 1

1 2 3 1 2 1 3

1 2 3 1 2 1 3

1 2 1 2

1 2 1 2

1 2 3 2 3 1 3 1 2

(,) (,)

(, ()) (,) (,)
()
(,) (,)

()
(,) (,) (,)

α α
α α

=
× = − ×

+ = +
× + = × + ×

=
× = ×

× = × = ×

h h h h

h h h h

h h h h h h h

h h h h h h h

h h h h

h h h h

h h h h h h h h h

 (14)

Remark: Due to the definition of addition and sca-
lar multiplication, motors span a vector space over
the field of real numbers. Moreover, by the introduc-
tion of the outer product, motors form a Lie-Algebra
(Named after the mathematician Sophus Lie *1842,
†1899) since all the following conditions are fulfilled:

1. The bilinearity of the motorial product is given, i.
e., for all real α and β , the motors 1h , 2h , and 3h

satisfy the equations

1 2 3 1 3 2 3()α β α β+ × = × + ×h h h h h h h

and

1 2 3 1 2 1 3()α β α β× + = × + ×h h h h h h h

2. The motorial multiplication is skew commuta-
tive, i. e.,

1 2 2 1× = − ×h h h h

3. The Jacobian Identity holds, i. e. for arbitrarily
chosen motors 1h , 2h , and 3h , the equation:

1 2 3 2 3 1 3 1 2)) () 0× × + × × + × × =h (h h h (h h h h h

is true.

Coordinate Transformations
For concrete calculations with motors, it is necessary
to introduce a coordinate system, also called frame, in
which the components of the motor are given. Con-
sidering two different frames 1 and 2 , it may be of
interest how to transform the components of a motor

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++
SN

E
20

/1
,

Ap
ri

l 2
01

0

tN

8

h given in frame 1 into the components referred to
frame 2 and vice versa. So let vector 12r denote the
position vector of the origin of 2 declared in frame

1 . Furthermore, let the rotation from frame 1 to
frame 2 be given by the direction cosine matrix A .
Then, the transformation is performed by the equation

2

1
12

[] =
−

h h
0 A
A AR

 (15)

Here, the matrix 12R is the cross product matrix of the
vector 12r .

Differentiation with respect to real-valued parameters
Consider a motor h that depends on a real parameter
t (e. g. the time). Then, the first derivative of this
motor with respect to t can be computed component-
wise:

Tdd d
dt dt dt

=h ohg (16)

Differentiation in moving frames
The temporal change of a motor seen from two dif-
ferent frames will, in general, lead to differing results
if one frame, say 1 , moves relatively to the other
frame, say 0 . The relative motion of the origin of
frame 1 measured in frame 0 shall be given by the
velocity vector 0v , while the angular velocity vector
of frame 1 with respect to frame 0 is denoted by

. Then, the equation

0

= + ×h h h
v

 (17)

holds for the derivation with respect to time observed
in frame 0 . In Eq. (6), h denotes the derivation w. r.
t. time of the motor h observed in frame 1 .

1.2 Applications of motor calculus
The most important application of motor calculus is
the description and analysis of the static and dynamic
behaviour of rigid bodies subject to external forces
and torques. Following the ideas of von Mises, the
next paragraphs will give an overview, how to de-
scribe the rigid body movements in the three-
dimensional space in a very effective way using the
motor calculus.

Before that, some definitions have to be explained
that are essential for the succeeding subsections. To
describe the motion of a rigid body in three-dimensio-
nal space, one chooses a reference point O of the bo-

dy. The motion of point O can be expressed w. r. t. a
reference frame by the position vector 0r (see
Figure 2). The origin of frame is denoted by O .

For the description of all other points of the rigid
body, it is suitable to introduce a body fixed frame,
called body frame , with the origin located in the
reference point O . To distinguish the position vectors
of both frames, the position vectors of the inertial
frame are underlined. The position of an arbitrarily
chosen point P of the body is therefore given by

0= +r r r (18)

The motion of the rigid body is fully described by the
velocity of the reference point 0 0=v r and the angular
velocity the body frame is rotating w. r. t. .

Definition of physically motivated motors
The introduction of motor calculus is justified by the
comfortable applicability to mechanical rigid body
issues in three-dimensional space. As already de-
scribed before, some physical quantities for the de-
scription of rigid body movements can be composed
to motors. Hence, the motion laws of rigid body me-
chanics can be written in a very compact and clear
form. This will be shown in the subsequent paragraphs.

We introduce some motors that are able to describe
the motion sequence of a rigid body as well as the
acting torques and forces in a physically meaningful
manner.

The first motor is called the force motor f combining
the resulting force f and torque od (referred to the
reference point O) acting on the rigid body, i. e.

o

f
d

f = (19)

Figure 2. Definition of vectors at the rigid body.

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

9

N
 SN

E 20/1, April 2010

For any rigid body, every single force if and torque
jd can be assigned to a force motor according to

, ,andi
f i d j

ji i

= =
×

0f
dr f

f f (20)

respectively. The resulting force motor can then be
simply calculated as the sum of all single force motors

, ,
() ()

f i d j
i j

+f = f f (21)

Please note that the overall torque do as well as the
representation of the motor depend upon the chosen
reference pointO . Hence, the torque referred to any
other point with the position vector r is calculated by

() = + ×od r d f r (22)

That is exactly the relationship stated in Eq. (1). This
characteristic can be interpreted as a force screw (see
e.g. [1]), since there always exists an instantaneous
line on which the force and the torque vectors act
parallel. A second motor, the so-called velocity motor,
is able to describe the whole motion of a rigid body. It
consists of the velocity vector 0v of the chosen refer-
ence point O and the angular velocity vector rep-
resenting the rotation of the body w. r. t. an inertial frame:

0v
v= (23)

This motor is able to describe the velocity v of any
point r of the rigid body by the equation

() = + ×ov r v r (24)

Two other important vectors in the description of
dynamic mechanical systems are the momentum
vector p and the angular momentum vector ol . Both
are combined in the momentum motor p with

o

p
l

p= (25)

Similar to the force motor, the representation of mo-
mentum motor depends upon the chosen reference
point. Between the angular momentum ol referred to
O and the angular momentum vector ()l r referred to
any other point at position r , the relationship

() = + ×ol r l p r (26)

holds. This statement can be proven by using the
definition of the vectors p and ol according to

o

o s o s

dm dm dm

m m m m

= = + ×

= − × = − ×

p r r r

r r v r
 (27)

()dm dm dm

m

= × = × + × ×

= × +
o o

s o o

l r r r r r r

r v
 (28)

where m denotes the mass of the body and o the
inertia tensor w. r. t. the reference point O . The vec-
tor sr is the position vector of the centre of mass
referred to the body frame given by /s dm dm=r r .

Some fundamental laws of mechanics in terms of
motor calculus
With the definitions above, a relationship between the
velocity motor v and the momentum motor p can be
derived by introducing the inertia dyad M for the
motor calculus:

m m
m

− s

s o

I R
R

p=M v= v (29)

The new symbol sR describes the cross product dyad
of the vector sr .

Referred to a concrete frame in u , v and w , the dyad
can be written as a (6 6)× matrix of the following form:

0 0 0
0 0 0
0 0 0
0

0
0

s s

s s

s s

s s uu uv uw

s s vu vv vw

s s wu wv ww

m mw mv
m mw mu

m mv mu
mw mv

mw mu
mv mu

−
−

−
− Θ Θ Θ

− Θ Θ Θ
− Θ Θ Θ

M=

where su , sv , and sw are the coordinates of centre of
mass. Choosing the body frame parallel to the body’s
principal axes of inertia and selecting the centre of
mass as the reference point, M becomes a diagonal
matrix. With the help of the foregoing motor rela-
tions, the main mechanical laws can be rewritten in
terms of motors.

The first law describes the change of momentum and
angular momentum in the presence of external forces
and torques in a very efficient and short way, namely

=

Here, denotes the time derivative of the momentum
motor observed in an inertially fixed reference
frame.

The unique simplicity and shortness of this equation
is doubtless a goal of this calculus, even more consid-
ering that it formally takes exactly the form of New-
ton’s Second Law for mass points. Unfortunately, this
formula is not very practical, since the derivation has
to be done w. r. t. the inertial frame. However, the

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++
SN

E
20

/1
,

Ap
ri

l 2
01

0

tN

10

momentum motor is much easier to determine in a
body fixed frame, because the inertia dyad M is
therein constant. So, a much more applicable form for
concrete calculations can be derived using (6) to
express the time derivation w. r. t. the body frame

×p+v p= f (30)

where p , v, and f are referred to the origin of the
body frame.

Replacement of the momentum motor using Eq. (7)
yields the following relationship:

×M v+v (M v)= f (31)

The kinetic energy of a rigid body can be expressed
by means of motor calculus as follows:

1 with
2

T = (v,p) p=M v (32)

Again, this expression agrees formally with the equa-
tion of the kinetic energy of a mass point, if therein
the mass is substituted by the inertia dyad M and the
vectors are substituted by their corresponding motors.

Similarly, the equation for the power performed by
the applied forces and torques is given by

(P = f,v) (33)

so that the energy law for a rigid body results in
1 (,) (,)
2

dT d
dt dt

= =v M v f v (34)

2 Object-oriented implementation
The test implementation presented here is based on
the Modelica Multibody Standard Library. Hence, it
fully corresponds with the paradigm of object-
oriented modelling. Due to some limitations of the
Modelica language, compromises had to be made
during implementation of the motor calculus. Be-
cause of the necessarily used functions, the realisation
is not a completely equation-based formulation.

2.1 Motor library
The first step of the implementation towards a de-
scription of rigid body motion by means of motor
calculus is the realisation of a general motor class.
From the view of data structure, motors are nothing
more than a combination of six scalars. According to
the definition of motors provided above, the first idea
of arranging these scalars within the motor class was
to group them into two vectors of type Real. The first
vector would represent the resultant vector and the
second vector would be the moment vector of the

motor at the reference point:

record Motor "Motor"
 Real[3] res "resultant vector";
 Real[3] mom "moment vector at O";
end Motor;

Unfortunately, this approach, similar to the imple-
mentation of the complex numbers in [7], prohibits
the use of basic mathematical operators on the newly
defined data types. A solution would be the overload-
ing of these operators as it is possible in C++ [17].
However, Modelica does still not support this feature.
Thus, an alternative implementation has been chosen,
where all six scalars are stored within one vector:

type Motor = Real[6]
"Motor: [Resultant;Moment at r0]";

The reason for the chosen implementation was the
ability to keep at least the operators “+” and “ ” as
well as the multiplication with scalars for the motor
calculus in its original sense. Within the context of
inheritance, no real specialization concerning the
physical units of the quantities can be made. Hence,
the child classes of velocity motor, force motor, and
momentum motor have also a quite simple definition,
namely:

type VelocityMotor = Motor "Velocity motor";
type ForceMotor = Motor "Force motor";
type MomentumMotor = Motor "Momentum motor";

All the other calculation rules introduced in section
1.1 had to be implemented using Modelica functions.
The first function has been written to perform the
inner product between two motors according to Eq. (2):

function dot "Inner product of motor calculus"
 input Motor m1 "First motor";
 input Motor m2 "Second motor";
 output Real r3 "Resulting scalar";
 algorithm
 r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3];
end dot;

Similarly, the outer product has been implemented as
stated in Eq. (3):

function ’x’ "Outer product of motor calculus"
 input Motor m1 "First motor";
 input Motor m2 "Second motor";
 output Motor m3 "Resulting motor";
 algorithm
 m3 := vector([cross(m1[1:3],m2[1:3]);

cross(m1[1:3],m2[4:6])
+cross(m1[4:6],m2[1:3])]);

end ’x’;

A function that returns the moment of the motor for
any position vector r has also been realised to sim-
plify the motor handling:

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

11

N
 SN

E 20/1, April 2010

function mom "Moment of the motor referred to position r"
 input Motor m "Motor";
 input Modelica.SIunits.Position[3] r
 "Position vector";
 output Real[3] mom "Moment of the motor";
 algorithm
 mom := m[4:6] + cross(m[1:3],r);
end mom;

The foregoing reasons for the simple implementation
of the motor class apply for the implementation of the
motor dyads, too. Hence, a motor dyad given w. r. t. a
given frame can be expressed as a (6 6)× matrix:

type MotorDyad = Real[6,6] "Motor Dyad";

To apply a motor dyad to a motor, another function
has been created. Referring to Eq. (4), the function
has been defined by:

function times "Application of a Motor Dyad on Motor"
 input MotorDyad m1 "Motor dyad to be applied";
 input Motor m2 "Input motor";
 output Motor m3 "Output motor";
algorithm
 m3 := m1[:,1:3]*m2[4:6] + m1[:,4:6]*m2[1:3];
end times;

Finally, there exist two functions that are able to
transform the components of a motor from one frame
to another and vice versa (refer to section 2.1.4):

function coordChange1
"Transforms motor from frame a to frame b"

import F= Modelica.Mechanics.MultiBody.Frames;
 input Modelica.SIunits.Position[3] r_0
 "Vector pointing from origin of frame a to

origin of frame b, resolved in frame a";
 input F.Orientation R

"Orientation object of frame b resolved in frame a";
 input Motor m1 "Motor resolved in frame a";
 output Motor m2 "Motor resolved in frame b";
algorithm
 m2 := vector([R.T*m1[1:3];R.T*mom(m1,r_0)]);
end coordChange1;

function coordChange2
"Transforms motor from frame b to frame a"

import F= Modelica.Mechanics.MultiBody.Frames;
 input Modelica.SIunits.Position[3] r_0
 "Vector pointing from origin of frame a to

origin of frame b, resolved in frame a";
 input F.Orientation R

"Orientation object of frame b resolved in frame a";
 input Motor m1 "Motor resolved in frame a";
 output Motor m2 "Motor resolved in frame b";
algorithm
 m2 := vector([transpose(R.T)*m1[1:3];
 transpose(R.T)*m1[4:6]
 + cross(r_0,transpose(R.T)*m1[1:3])]);
end coordChange2;

2.2 Multibody implementation
After implementing the most important operations of
the motor calculus, we were able to take advantage of
the efficient description of the rigid body motion.
Therefore, as a first step, the existing implementation
of a rigid body object from the Modelica Multibody
Standard Library was adapted to the motor algebra.
To simplify the implementation, all interfaces and all
existing variables were kept. Only some small
changes had to be made within the so-called Body
class. The first changes were the declaration of the
following physically motivated Motor and MotorDyad
objects:

// Motor Dyads
Real[3,3] I0 "Inertia dyad wrt. B";
MotorDyad I_mot "Motorial inertia dyad wrt. B";

// Motors
VelocityMotor vel_B "Velocity motor wrt. B";
MomentumMotor mom "Momentum motor wrt. B";
ForceMotor f_g "Gravity force motor wrt B";
ForceMotor f_a "Cut force motor wrt. B";

Afterwards, all declared motors and motor dyads had
to be defined using the following statements:

// force motors
f_g = vector([m*frame_a.R.T*g_0;
 cross(r_CM, m*frame_a.R.T*g_0)]);
f_a = vector([frame_a.f; frame_a.t]);

// velocity motor
vel_B = vector([frame_a.R.w;
 frame_a.R.T*der(frame_a.r_0)]);

// inertia matrices
I0 = I + m*(diagonal(r_CM*r_CM*ones(3))
 - [r_CM]*transpose([r_CM]));
I_mot = [diagonal({m, m, m}), -skew(m*r_CM);
 skew(m*r_CM) , I0];

// momentum motor
mom = vector(times(I_mot, vel_B));

Finally, the equations of motion originally imple-
mented according to

frame_a.f = m*(Frames.resolve2(frame_a.R,
 a_0 - g_0)
 + cross(z_a, r_CM)
 + cross(w_a, cross(w_a, r_CM)));
frame_a.t = I*z_a + cross(w_a, I*w_a)
 + cross(r_CM, frame_a.f);

have been replaced by the very clear and short Eq. (8):

f_a = der(mom) + ’x’(vel_B,mom) - f_g;

Because of the object-oriented structure of the Mode-
lica Standard Library, the changes had to be imple-

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++
SN

E
20

/1
,

Ap
ri

l 2
01

0

tN

12

mented only once. All subclasses of the Body class,
like BodyShape, BodyBox, or BodyCylinder inherit
the changes automatically.

3 Examples and verification
As a first example, the movable double pendulum
(Fig. 3) was chosen to show the correctness of the
implemented body classes based on motor calculus.
The pendulum consists of a trolley with the mass 0M
and two rigid bodies with masses 1M and 2M . The
trolley is able to move horizontally. The first body is
suspended on the trolley by a revolute joint. The
second body is suspended on the first body via a
revolute joint, too. Both axes of rotation are parallel
to the z -axis which lies perpendicular to the xy -
plane (see Figure 3). The moments of inertia of both
bodies around the axis of rotation w. r. t. their particu-
lar centre of mass are given by 1J and 2J .

The pendulum moves from an initial deflection of
1(0) 90ϕ = ° and 2 (0) 0ϕ = ° due to the earth’s gravity

field. A viscous friction, acting in every joint, damps
the motion of the pendulum. As a reference, the same
pendulum system has been implemented using the
Modelica Standard Library. A sketch of the structure
is shown in the lower part of Figure 5. The upper part
of this figure shows the pendulum using the modified
Body objects adapted to the motor calculus.

Figure 4 shows the trajectory for the positions of the
trolley. Figures 6 and 7 depict the time histories of the
revolute joint angles 1ϕ and 2ϕ . In every diagram, the
trajectory of both systems, the double pendulum us-
ing the motor calculus and the double pendulum us-
ing the Modelica Standard Library, were plotted to-
gether.

Figure 4. Trajectory of the trolley position s.

Figure 6. Trajectory of the first pendulum angle 1ϕ .

Figure 3. Sketch of double pendulum. Figure 5. Implementation of the double pendulum.

Figure 7. Trajectory of the first pendulum angle 2ϕ .

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

13

N
SN

E 20/1, April 2010

Figure 8 presents the deviation for all corresponding
variables (residue_s, residue_phi1/2). Apparently,
the deviation of the position stays smaller than

111.2 10 m−⋅ for the given simulation time of 10s. The
deviations of both pendulum angles are also very
small. They do not exceed 1110 rad− . Hence, these
differences can be interpreted as numerical errors of
the simulator, because for simulations with a lower
error tolerance, the deviations decrease. For a com-
parison even a third implementation within the simu-
lation system Matlab (refer to [21]) was consulted
that led to very similar results.

3.1 Fourfold pendulum on two movable sliders
The second example is a fourfold pendulum. It con-
sists of two trolleys and a chain of four rigid bodies
between them. Both trolleys are guided along straight
tracks (see Figure 10). Hence, this example contains a
closed kinematic loop. Similar to the foregoing ex-
ample, the pendulum moves from an initial deflection
due to the gravity field of the earth and is damped by
a viscous friction in every joint. The initial values for
the pendulum angles are

1 2

3 4

(0) 45deg (0) 15deg
(0) 30deg (0) 37.5deg

ϕ ϕ
ϕ ϕ

= = −
= = −

(35)

As before, the pendulum system was implemented
twice. The first pendulum system works on the basis
of the modified Mechanical Multibody Library, while
the second one uses the Multibody Standard Library
and serves as a reference. Hence, the deviations to the
modified model can be calculated. They have the
same order of magnitude as in the example before
and can thus be explained by numerical errors.

For the rough illustration of the simulation results,
Figure 9 shows the configuration of the pendulum at
ten different time instances (the time interval is 1 s).
The dashed lines show the tracks of both trolleys. The

Figure 11. Position of both trolleys for the motors calculus
implementation.

Figure 8. Deviation of the most interesting coordinates
between the motor calculus and the Modelica Standard

Library implementation.

Figure 10. Sketch of the fourfold
pendulum.

Figure 12. Sketch of the fourbar mechanism.

Figure 9. Sequence of configurations of the fourfold pendulum.

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++
SN

E
20

/1
,

Ap
ri

l 2
01

0

tN

14

bold plotted polygon consists of four segments. It
represents the idealized shape of the chain. In Fig-
ure 11, the position of both trolleys are plotted against
the time.

3.2 Fourbar mechanism
The last example is a so-called fourbar mechanism
from the Modelica Standard Library, that, again, sets
up a closed kinematic loop (see Figure 12). However,
in this example, the rigid bodies do not perform pla-
nar motions any more and, hence, the whole com-
plexity of the three-dimensional mechanics is necessary.

The fourbar mechanism moves under the influence of
the earth’s gravitational field. The initial condition of
the angular velocity of the first revolute joint (j1) is
set to 300deg/ s . In opposite to the foregoing exam-
ples, this system is completely undamped. As in the
paragraphs before, the example was implemented
twice in one model. One system has just been kept in
its original form while in the second system, all Body-
Cylinder objects have been replaced by the modified
BodyCylinder objects. The difference between both
implementations is shown in Figure 13. The numeri-
cal results of the simulation show an increasing de-
viation with advancing time. The reason for this fact
may be the absence of any damping elements. Indi-
cated by this result, further investigations on numeri-
cal accuracy seem to be necessary for the future.

4 Summary and outlook
The paper traces the idea of applying the so-called
motor calculus within Modelica modelling language
to handle models of spatial multibody systems in an
efficient way. This method represents an alternative
approach to modelling such systems. This approach is
characterized by a clear and concise formulation of
the equations of motion.

To get some experiences with possibilities and limits
of this approach, a first test implementation was car-
ried out. The Modelica Multibody Standard Library
was used to implement appropriate extensions within
some selected submodels. This implementation al-
lows a comparison of the standard library implemen-
tation and the motor calculus implementation by
means of simple simulation tasks. Appropriate results
are presented in the paper.

These results seem to encourage the idea of motor
calculus usage within Modelica. Nevertheless, there
are open challenges to be solved in the future. Oper-

and overloading would be a very helpful feature in
this context. Furthermore, efficient methods have to
be adapted to compute actual position and orientation
of a rigid body from its velocity motor. That’s why
further investigations as well as implementation work
will still have to be carried out for a full support of
rigid-body motion equation by means of motor calcu-
lus in Modelica.

References
[1] R.S. Ball. A Treatise on the Theory of Skrews. Cam-

bridge University Press, 1900.
[2] F. Casella, M. Lovera. High-accuracy orbital dynam-

ics simulation through Keplerian and equinoctial pa-
rameters. In Proc. 6th Int. Modelica Conference, Bie-
lefeld, Germany, March 3–4, 2008, pages 505–514.
The Modelica Association, 2008.

[3] F.E. Cellier. Continuous System Modeling. Springer,
1991.

[4] W.K. Clifford. Preliminary sketch of bi-quaternions.
Proc. London Math. Soc., 4:381–395, 1873.

[5] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
2003.

[6] J. Gallardo-Alvarado. Kinematics of a hybrid manipu-
lator by means of screw theory. Journal Multibody
System Dynamics, 14(3–4):345–366, 2005

[7] A. Haumer, C. Kral, J.V. Gragger, H. Kapeller. Qua-
sistationary modeling and simulation of electrical cir-
cuits using complex phasors. In Proc. 6th Int. Modelica
Conference, Bielefeld, Germany, March 3–4, 2008,
pages 229–236. The Modelica Association, 2008.

[8] C. Heinz. Motorrechnung im X1+3+3. Zeitschrift für
Angewandte Mathematik und Mechanik (ZAMM),
67(11):537–544, 1987.

[9] C. Knobel, G. Janin, A. Woodruff. Development and
verification of a series car Modelica/Dymola multi-
body model to investigate vehicle dynamics systems.
In Proc. 5th Int. Modelica Conference, Vienna, Aus-

Figure 13. Deviation of the slider position between the
motor calculus and the Modelica Standard Library

implementation.

+++ von Mises’ Motor Calculus – OO Implementat ion us ing Modelica +++ t

15

N
SN

E 20/1, April 2010

tria, September 4–5, 2006, pages 167–173. The Mode-
lica Association, 2006.

[10] I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, and
M.S. Stavrovskaya. Multibody systems dynamics:
Modelica implementation and Bond Graph represen-
tation. In Proc. 5th Int. Modelica Conference, Vienna,
Austria, September 4–5, 2006, pages 213–223. The
Modelica Association, 2006.

[11] R. von Mises. Motorrechnung, ein neues Hilfsmittel
der Mechanik. Zeitschrift für Angewandte Mathema-
tik und Mechanik (ZAMM), 4(2):155–181, 1924.

[12] R. von Mises. Anwendungen der Motorrechnung.
Zeitschrift für Angewandte Mathematik und Mecha-
nik (ZAMM), 4(3):193–213, 1924.

[13] www.modelica.org/documents. 2008-04-22
[14] www.modelica.org/libraries/Modelica/, 2008-04-22
[15] M. Otter, H. Elmqvist, and S. E. Mattsson. The New

Modelica MultiBody Library. In Proc. 3rd Int. Mode-
lica Conference, Linköping, Sweden, November 3–4,
2003, pages 311–330. The Modelica Association,
2003.

[16] T. Pulecchi, M. Lovera. Object-oriented modelling of
the dynamics of a satellite equipped with single gim-
bal control moment gyros. In Proc. 4th Int. Modelica
Conference, Hamburg, Germany, March 7–8, 2005,
Proc., pages 35–44. The Modelica Association, 2005.

[17] B. Stroustrup. The C++ Programming Language –
Special Edition. Addison-Wesley, 2007.

[18] H. Stumpf, J. Badur. On the non-abelian motor calcu-
lus. Zeitschrift für Angewandte Mathematik und Me-
chanik (ZAMM), 70(12):551–555, 1990.

[19] M.M. Tiller. Introduction to Physical Modeling with
Modelica. Springer, 2001.

[20] L. Viganò, G. Magnani. Acausal modelling of helicop-
ter dynamics for automatic flight control applications.
In Proc. 5th Int. Modelica Conference, Vienna,
Austria, September 4–5, 2006, pages 377–384. The
Modelica Association, 2006.

[21] T. Zaiczek. Modellbildung für mechanische Systeme
mit einer endlichen Anzahl von Freiheitsgraden und
Steuerungsentwurf mithilfe von 1m ≥ Aktuatoren.
Technical report, 2006.

[22] T. Zaiczek. Modellierung, Regelung und Simulation
mechanischer Starrkörpersysteme im dreidimension-
alen Raum. Diploma thesis, TU Dresden, Germany,
2007.

Corresponding author: Tobias Zaiczek
Fraunhofer Institute for Integrated Circuits,
Design Automation Division, Dresden, Germany
Tobias.Zaiczek@eas.iis.fraunhofer.de

Accepted EOOLT 2007, June 2007
Received: August 10, 2007
Accepted: August 20, 2007

