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T E C H N I C A L  N O T E S

Towards an Object-oriented Implementation of  
VON MISES’ Motor Calculus Using Modelica 

Tobias Zaiczek, Olaf Enge-Rosenblatt, Fraunhofer Institute for Integrated Circuits, Dresden, Germany 
{Tobias.Zaiczek, Olaf.Enge}@eas.iis.fraunhofer.de  

This paper deals with a first implementation of the socalled motor calculus within Modelica. The motor cal-
culus can be used to describe the dynamical behaviour of spatial multibody systems in an efficient way. This 
method represents an alternative approach to modelling of multibody systems. In the paper, some fundamen-
tals of motor calculus are summarized. Furthermore, a simple implementation of motor algebra by special 
additional Modelica code within some components of the Modelica Multibody Standard Library is presented. 
This approach fully corresponds with the paradigm of object-oriented modelling. However, the present reali-
sation is not equation-based in its full sense because of the missing possibility of operator overloading (at 
least in the available Modelica simulator environment). Instead of this, some functions are used carrying out 
the necessary calculations. Using this implementation, some examples are given to prove the applicability 
and correctness of the implemented approach. 

Introduction 
The notion of motor, composed of the words moment 
and rotor, was coined by Clifford in 1873 in his alge-
bra of biquaternions [4]. But Clifford did apply his 
concept neither to the modelling of motion of a single 
rigid body nor to the modelling of spatial multibody 
systems. The approach of motor calculus to 3D me-
chanics was suggested by von Mises in 1924 [11, 12]. 
In the first part [11], von Mises introduces the dual 
motor product. He indicates the role of the dual motor 
product as a measure of the instantaneous change of a 
motor associated to a rigid body by the action of a 
second motor. In the second part [12], von Mises 
applied the motor calculus in the derivation of a gen-
eral form of the equations of motion of a rigid body. 
Due to this work, translations and rotations, velocities 
and angular velocities, forces and torques, etc. can be 
described by motor calculus (or motor algebra). 
Hence, this approach is well suited to investigate the 
behaviour of spatial multibody systems. 
One of the authors studied motor calculus in his Di-
ploma thesis [22] initiated and supervised by Prof. K. 
Reinschke from the Technical University Dresden 
(one of the former institutes of R. von Mises). Recent 
publications dealing with this subject can rarely be 
found (exept e.g. for [8, 18]). In the context of the 
modelling language for heterogenous systems Mode-
lica (see e.g. [5, 13, 19]), the motor calculus has not 
been taken into account up to now. 

Within the Modelica community, spatial multibody 
systems are usually modelled using the Modelica 
Multibody Standard Library (see [14] or [15]). 
Meanwhile, many researchers apply this library to 
model different kinds of – partially very complex – 
multibody systems [2, 9, 10, 16, 20]. This library has 
proven to be a well suited resource to modelling such 
systems. However, applying the motor calculus, the 
equations of motion for a rigid body become more 
concise and clearer, e.g. 

= (1)

(  – momentum motor,  – force motor). Despite the 
formal equivalence to Newton’s Second Law for a 
point mass, this equation fully describes the three-
dimensional mechanics of a rigid body. 

The motivation to follow up the motor calculus in the 
Modelica context is to investigate the possible simpli-
fication of handling spatial mechanical systems. A 
test realisation within the Modelica Multibody Stan-
dard Library has been carried out by implementing 
special additional Modelica code within some com-
ponents of this library. These modifications take ad-
vantage of the built-in feature of inheritance. Hence, 
it is possible to compare both approaches e. g. with 
respect to numerical correctness. 

In the following section, some fundamentals of motor 
calculus are shortly sketched. Some of the most im-
portant mathematical operations are defined. The test 
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implementation is presented in Section 2. It fully 
corresponds with the paradigm of object-oriented 
modelling (see e.g. [3]). In modelling and simulation, 
one usually distinguishes between equations and 
assignments. In this context, the test implementation 
is not completely equation-based because some spe-
cial mathematical operations had to be realised by 
functions. Some examples in section 3 show the prin-
cipal applicability of the motor calculus approach. 

1 Fundamentals of motor calculus 
A motor 

o

=
g
h

(2) 

is an ordered pair of vectors, oh  and g , that define a 
vector field 

( ) = + ×oh r h g r (3) 

in the three-dimensional Euclidean space. In this 
definition, r  is the position vector of any point in 
space, while the vectors h and g  are called the mo-
ment and the resultant vector of the motor, respec-
tively. Accordingly, oh  stands for the moment of the 
motor at the origin O of the reference coordinate 
system. 

For every motor, an infinite number of points exists, 
for which the moment of the motor h is parallel to 
the resultant vector g . All these points exhibit the 
same moment nh  and lie on a straight line  given 
by: 

2( )
| |

oλ λ×= +n
g hr g
g

(4) 

Geometrical interpretation   A very strong goal of 
the motor calculus is the fact that motors and all op-
erations with motors (that will be defined later on) 
can be interpreted as geometrical objects or construc-

tions. Hence, all motors can be seen as abstract ob-
jects that do not depend on the choice of a reference 
frame. R. von Mises emphasises this fact by giving 
the definition of motors in terms of geometrical ob-
jects describing them. Here, just an interpretation of 
the foregoing definition is given. 

For every pair of straight lines ( 1  and 2 ) defined in 
Euclidean space, there exists a straight line  con-
necting them and being orthogonal to both of them 
(see Figure 1). For a pair of non-parallel lines,  is 
uniquely defined. Otherwise, there exists an infinite 
number of such connecting lines that are parallel to 
each other. Now, every ordered pair of straight lines 
( 1 , 2 ) can be mapped to a motor (see Figure 1). In 
this case,  is denoted as motor axis, according to 
von Mises. The oriented segment of the axis  be-
tween the intersection with 1  and the intersection 
with 2  can be interpreted as the moment nh  of the 
motor on its axis. The smaller one of both angles 
included by the lines 1  and 2  is understood as a 
measure for the orientation and is simultaneously 
interpreted as the length of the resultant vector g. The 
tangent of this angle α  is equal to the length of the 
resultant vector, while the direction of the resultant 
vector is defined in such a manner that 1  can be 
transferred into 2  by a mathematically positive 
screw motion across the resultant vector. The map-
ping from an ordered pair of straight lines to a motor 
is not a one-to-one mapping because all ordered pairs 
of straight lines that can be transferred into each other 
by a screw motion across  define the same motor. 

1.1 Motor calculus 
In the following, some computational rules of motor 
calculus are recalled. 
Let h , 1h  and 2h  be three motors given by 

1 2
1 2

1 2

, ,= = =h h h
o o o

g g g
h h h

(5)

Then, according to von Mises, the following mathe-
matical operations can be defined: 

Addition 
The addition of motors is performed component-wise 
according to: 

1 2
1 2

1 2

+
+ =

+
h h

o o

g g
h h

(6)

The neutral element of the addition is the zero motor 

Figure 1. Geometrical interpretation of motors.
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=o
0
0

 (7) 

Multiplication 
For the multiplication of motors the following three 
cases can be distinguished: 

Multiplication with a scalar   The scalar multiplica-
tion is defined component-wise 

α
α

α
h=

o

g
h

 (8) 

Inner product   The result of the inner product of 
two motors is a scalar. Thus, the product corresponds 
to the scalar product of the vector calculus. The defi-
nition is 

1 2 1 2 2 1( , ) ( , ) ( , )= +h h o og h g h  (9) 

while ( , )g h  is the scalar product of two vectors. 
Using matrix notation, the equation 

( ) 1
1 2 1 1

2

( , ) T T= Γh h o
o

g
g h

h
holds, where Γ  is a well-chosen matrix according to: 

3

3

Γ =
0 I
I 0

and 3I  denotes the (3 3)×  identity matrix. 

Outer product   The outer product of two motors 
results in another motor, which is composed as fol-
lows: 

1 2
1 2

1 1 2 1

×
×

× + ×
h h =

o o

g g
g h h g

 (10) 

The outer product is also referred to as motorial 
product or as dual motor product [6]. In terms of 
vectors and vector dyads, the product can be written as 

1 2
1 2

1 1 2

× Γh h =
o o

0 G g
G H h

 (11) 

where 1G  and 1oH  are the cross product matrices of 
the vectors 1g  and 1oh , respectively. 

Motor dyads 
In analogy to the vector calculus, von Mises declared 
dyads for the motor calculus by linear vector func-
tions mapping motors to motors. Referred to a con-
crete coordinate system, such a dyad can be repre-
sented as a (6 6)×  matrix. 
The mapping can be described in the following manner: 

1 11 1 12 111 12
1

1 21 1 22 121 22

+
= Γ =

+
T h o

o o

g T h T gT T
h T h T gT T

. (12) 

The neutral element of the dyadic multiplication in 
motor calculus is the identity motor dyad G  that can 
be represented in every frame as 

3

3

G=
0 I
I 0

 (13) 

Now, all calculation rules for the motor calculus can 
be derived readily, some of which are presented here 
for any arbitrarily chosen motors 1h , 2h , 3h .and α∈ :

1 2 2 1

1 2 2 1

1 2 3 1 2 1 3

1 2 3 1 2 1 3

1 2 1 2

1 2 1 2

1 2 3 2 3 1 3 1 2

( , ) ( , )

( , ( )) ( , ) ( , )
( )
( , ) ( , )

( )
( , ) ( , ) ( , )

α α
α α

=
× = − ×

+ = +
× + = × + ×

=
× = ×

× = × = ×

h h h h

h h h h

h h h h h h h

h h h h h h h

h h h h

h h h h

h h h h h h h h h

 (14) 

Remark:   Due to the definition of addition and sca-
lar multiplication, motors span a vector space over 
the field of real numbers. Moreover, by the introduc-
tion of the outer product, motors form a Lie-Algebra 
(Named after the mathematician Sophus Lie *1842, 
†1899) since all the following conditions are fulfilled:

1. The bilinearity of the motorial product is given, i. 
e., for all real α  and β , the motors 1h , 2h , and 3h

satisfy the equations 

1 2 3 1 3 2 3( )α β α β+ × = × + ×h h h h h h h

and

1 2 3 1 2 1 3( )α β α β× + = × + ×h h h h h h h

2. The motorial multiplication is skew commuta-
tive, i. e., 

1 2 2 1× = − ×h h h h

3. The Jacobian Identity holds, i. e. for arbitrarily 
chosen motors 1h , 2h , and 3h , the equation: 

1 2 3 2 3 1 3 1 2) ) ( ) 0× × + × × + × × =h (h h h (h h h h h

is true. 

Coordinate Transformations 
For concrete calculations with motors, it is necessary 
to introduce a coordinate system, also called frame, in 
which the components of the motor are given. Con-
sidering two different frames 1  and 2 , it may be of 
interest how to transform the components of a motor 
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h given in frame 1  into the components referred to 
frame 2  and vice versa. So let vector 12r  denote the 
position vector of the origin of 2  declared in frame 

1 . Furthermore, let the rotation from frame 1  to 
frame 2  be given by the direction cosine matrix A .
Then, the transformation is performed by the equation 

2

1
12

[ ] =
−

h h
0 A
A AR

 (15) 

Here, the matrix 12R  is the cross product matrix of the 
vector 12r .

Differentiation with respect to real-valued parameters 
Consider a motor h  that depends on a real parameter 
t  (e. g. the time). Then, the first derivative of this 
motor with respect to t can be computed component-
wise:

Tdd d
dt dt dt

=h ohg  (16) 

Differentiation in moving frames 
The temporal change of a motor seen from two dif-
ferent frames will, in general, lead to differing results 
if one frame, say 1 , moves relatively to the other 
frame, say 0 . The relative motion of the origin of 
frame 1  measured in frame 0  shall be given by the 
velocity vector 0v , while the angular velocity vector 
of frame 1  with respect to frame 0  is denoted by 

. Then, the equation 

0

= + ×h h h
v

 (17) 

holds for the derivation with respect to time observed 
in frame 0 . In Eq. (6), h  denotes the derivation w. r. 
t. time of the motor h  observed in frame 1 .

1.2 Applications of motor calculus 
The most important application of motor calculus is 
the description and analysis of the static and dynamic 
behaviour of rigid bodies subject to external forces 
and torques. Following the ideas of von Mises, the 
next paragraphs will give an overview, how to de-
scribe the rigid body movements in the three-
dimensional space in a very effective way using the 
motor calculus. 

Before that, some definitions have to be explained 
that are essential for the succeeding subsections. To 
describe the motion of a rigid body in three-dimensio-
nal space, one chooses a reference point O  of the bo-

dy. The motion of point O  can be expressed w. r. t. a 
reference frame  by the position vector 0r  (see 
Figure 2). The origin of frame  is denoted by O .

For the description of all other points of the rigid 
body, it is suitable to introduce a body fixed frame, 
called body frame , with the origin located in the 
reference point O . To distinguish the position vectors 
of both frames, the position vectors of the inertial 
frame are underlined. The position of an arbitrarily 
chosen point P  of the body is therefore given by 

0= +r r r  (18) 

The motion of the rigid body is fully described by the 
velocity of the reference point 0 0=v r  and the angular 
velocity  the body frame  is rotating w. r. t. .

Definition of physically motivated motors 
The introduction of motor calculus is justified by the 
comfortable applicability to mechanical rigid body 
issues in three-dimensional space. As already de-
scribed before, some physical quantities for the de-
scription of rigid body movements can be composed 
to motors. Hence, the motion laws of rigid body me-
chanics can be written in a very compact and clear 
form. This will be shown in the subsequent paragraphs. 

We introduce some motors that are able to describe 
the motion sequence of a rigid body as well as the 
acting torques and forces in a physically meaningful 
manner.  

The first motor is called the force motor f combining 
the resulting force f  and torque od  (referred to the 
reference point O ) acting on the rigid body, i. e. 

o

f
d

f =  (19) 

Figure 2. Definition of vectors at the rigid body. 
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For any rigid body, every single force if  and torque 
jd  can be assigned to a force motor according to 

, ,andi
f i d j

ji i

= =
×

0f
dr f

f f  (20) 

respectively. The resulting force motor can then be 
simply calculated as the sum of all single force motors 

, ,
( ) ( )

f i d j
i j

+f = f f  (21) 

Please note that the overall torque do as well as the 
representation of the motor depend upon the chosen 
reference pointO . Hence, the torque referred to any 
other point with the position vector r is calculated by  

( ) = + ×od r d f r  (22) 

That is exactly the relationship stated in Eq. (1). This 
characteristic can be interpreted as a force screw (see 
e.g. [1]), since there always exists an instantaneous 
line on which the force and the torque vectors act 
parallel. A second motor, the so-called velocity motor, 
is able to describe the whole motion of a rigid body. It 
consists of the velocity vector 0v  of the chosen refer-
ence point O  and the angular velocity vector  rep-
resenting the rotation of the body w. r. t. an inertial frame: 

0v
v=  (23) 

This motor is able to describe the velocity v  of any 
point r  of the rigid body by the equation 

( ) = + ×ov r v r  (24) 

Two other important vectors in the description of 
dynamic mechanical systems are the momentum 
vector p  and the angular momentum vector ol . Both 
are combined in the momentum motor p  with 

o

p
l

p=  (25) 

Similar to the force motor, the representation of mo-
mentum motor depends upon the chosen reference 
point. Between the angular momentum ol  referred to 
O  and the angular momentum vector ( )l r  referred to 
any other point at position r , the relationship 

( ) = + ×ol r l p r  (26) 

holds. This statement can be proven by using the 
definition of the vectors p  and ol  according to 

o

o s o s

dm dm dm

m m m m

= = + ×

= − × = − ×

p r r r

r r v r
 (27) 

( )dm dm dm

m

= × = × + × ×

= × +
o o

s o o

l r r r r r r

r v
 (28) 

where m  denotes the mass of the body and o  the 
inertia tensor w. r. t. the reference point O . The vec-
tor sr  is the position vector of the centre of mass 
referred to the body frame given by /s dm dm=r r .

Some fundamental laws of mechanics in terms of 
motor calculus 
With the definitions above, a relationship between the 
velocity motor v and the momentum motor p  can be 
derived by introducing the inertia dyad M  for the 
motor calculus: 

m m
m

− s

s o

I R
R

p=M v= v  (29) 

The new symbol sR  describes the cross product dyad 
of the vector sr .

Referred to a concrete frame in u , v  and w , the dyad 
can be written as a (6 6)×  matrix of the following form: 

0 0 0
0 0 0
0 0 0
0

0
0

s s

s s

s s

s s uu uv uw

s s vu vv vw

s s wu wv ww

m mw mv
m mw mu

m mv mu
mw mv

mw mu
mv mu

−
−

−
− Θ Θ Θ

− Θ Θ Θ
− Θ Θ Θ

M=

where su , sv , and sw  are the coordinates of centre of 
mass. Choosing the body frame parallel to the body’s 
principal axes of inertia and selecting the centre of 
mass as the reference point, M  becomes a diagonal 
matrix. With the help of the foregoing motor rela-
tions, the main mechanical laws can be rewritten in 
terms of motors. 

The first law describes the change of momentum and 
angular momentum in the presence of external forces 
and torques in a very efficient and short way, namely 

=

Here,  denotes the time derivative of the momentum 
motor  observed in an inertially fixed reference 
frame. 

The unique simplicity and shortness of this equation 
is doubtless a goal of this calculus, even more consid-
ering that it formally takes exactly the form of New-
ton’s Second Law for mass points. Unfortunately, this 
formula is not very practical, since the derivation has 
to be done w. r. t. the inertial frame. However, the 
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momentum motor is much easier to determine in a 
body fixed frame, because the inertia dyad M  is 
therein constant. So, a much more applicable form for 
concrete calculations can be derived using (6) to 
express the time derivation w. r. t. the body frame 

×p+v p= f (30) 

where p , v, and f  are referred to the origin of the 
body frame. 

Replacement of the momentum motor using Eq. (7) 
yields the following relationship: 

×M v+v (M v)= f  (31) 

The kinetic energy of a rigid body can be expressed 
by means of motor calculus as follows: 

1 with
2

T = (v,p) p=M v (32) 

Again, this expression agrees formally with the equa-
tion of the kinetic energy of a mass point, if therein 
the mass is substituted by the inertia dyad M  and the 
vectors are substituted by their corresponding motors. 

Similarly, the equation for the power performed by 
the applied forces and torques is given by 

(P = f,v) (33)

so that the energy law for a rigid body results in 
1 ( , ) ( , )
2

dT d
dt dt

= =v M v f v (34) 

2  Object-oriented implementation 
The test implementation presented here is based on 
the Modelica Multibody Standard Library. Hence, it 
fully corresponds with the paradigm of object-
oriented modelling. Due to some limitations of the 
Modelica language, compromises had to be made 
during implementation of the motor calculus. Be-
cause of the necessarily used functions, the realisation 
is not a completely equation-based formulation. 

2.1 Motor library 
The first step of the implementation towards a de-
scription of rigid body motion by means of motor 
calculus is the realisation of a general motor class. 
From the view of data structure, motors are nothing 
more than a combination of six scalars. According to 
the definition of motors provided above, the first idea 
of arranging these scalars within the motor class was 
to group them into two vectors of type Real. The first 
vector would represent the resultant vector and the 
second vector would be the moment vector of the 

motor at the reference point: 

record Motor "Motor"
  Real[3] res "resultant vector";
  Real[3] mom "moment vector at O"; 
end Motor;

Unfortunately, this approach, similar to the imple-
mentation of the complex numbers in [7], prohibits 
the use of basic mathematical operators on the newly 
defined data types. A solution would be the overload-
ing of these operators as it is possible in C++ [17]. 
However, Modelica does still not support this feature. 
Thus, an alternative implementation has been chosen, 
where all six scalars are stored within one vector: 

type Motor = Real[6] 
"Motor: [Resultant;Moment at r0]"; 

The reason for the chosen implementation was the 
ability to keep at least the operators “+” and “ ” as 
well as the multiplication with scalars for the motor 
calculus in its original sense. Within the context of 
inheritance, no real specialization concerning the 
physical units of the quantities can be made. Hence, 
the child classes of velocity motor, force motor, and 
momentum motor have also a quite simple definition, 
namely: 

type VelocityMotor = Motor  "Velocity motor"; 
type ForceMotor    = Motor  "Force motor";
type MomentumMotor = Motor  "Momentum motor";

All the other calculation rules introduced in section 
1.1 had to be implemented using Modelica functions. 
The first function has been written to perform the 
inner product between two motors according to Eq. (2): 

function dot "Inner product of motor calculus"
  input Motor m1 "First motor";
  input Motor m2 "Second motor";
  output Real r3 "Resulting scalar";
  algorithm 
     r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3]; 
end dot;

Similarly, the outer product has been implemented as 
stated in Eq. (3): 

function ’x’ "Outer product of motor calculus"
  input Motor m1 "First motor";
  input Motor m2 "Second motor";
  output Motor m3 "Resulting motor"; 
  algorithm 
     m3 := vector([cross(m1[1:3],m2[1:3]);

cross(m1[1:3],m2[4:6])
+cross(m1[4:6],m2[1:3])]);

end ’x’;

A function that returns the moment of the motor for 
any position vector r  has also been realised to sim-
plify the motor handling: 
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function mom "Moment of the motor referred to position r"
  input Motor m      "Motor"; 
  input Modelica.SIunits.Position[3] r
                     "Position vector";
  output Real[3] mom "Moment of the motor";
  algorithm 
     mom := m[4:6] + cross(m[1:3],r);
end mom;

The foregoing reasons for the simple implementation 
of the motor class apply for the implementation of the 
motor dyads, too. Hence, a motor dyad given w. r. t. a 
given frame can be expressed as a (6 6)×  matrix: 

type MotorDyad = Real[6,6] "Motor Dyad"; 

To apply a motor dyad to a motor, another function 
has been created. Referring to Eq. (4), the function 
has been defined by: 

function times "Application of a Motor Dyad on Motor"
  input MotorDyad m1 "Motor dyad to be applied";
  input Motor m2     "Input motor";
  output Motor m3     "Output motor";
algorithm
  m3 := m1[:,1:3]*m2[4:6] + m1[:,4:6]*m2[1:3]; 
end times;

Finally, there exist two functions that are able to 
transform the components of a motor from one frame 
to another and vice versa (refer to section 2.1.4): 

function coordChange1
"Transforms motor from frame a to frame b"

import F= Modelica.Mechanics.MultiBody.Frames; 
  input Modelica.SIunits.Position[3] r_0 
           "Vector pointing from origin of frame a to  

origin of frame b, resolved in frame a";
  input F.Orientation R

"Orientation object of frame b resolved in frame a";
  input Motor m1   "Motor resolved in frame a";
  output Motor m2  "Motor resolved in frame b";
algorithm
  m2 := vector([R.T*m1[1:3];R.T*mom(m1,r_0)]);
end coordChange1;

function coordChange2
"Transforms motor from frame b to frame a"

import F= Modelica.Mechanics.MultiBody.Frames; 
  input Modelica.SIunits.Position[3] r_0 
           "Vector pointing from origin of frame a to  

origin of frame b, resolved in frame a";
  input F.Orientation R

"Orientation object of frame b resolved in frame a";
  input Motor m1   "Motor resolved in frame a";
  output Motor m2  "Motor resolved in frame b";
algorithm
  m2 := vector([transpose(R.T)*m1[1:3];
          transpose(R.T)*m1[4:6]
        + cross(r_0,transpose(R.T)*m1[1:3])]);
end coordChange2;

2.2 Multibody implementation 
After implementing the most important operations of 
the motor calculus, we were able to take advantage of 
the efficient description of the rigid body motion. 
Therefore, as a first step, the existing implementation 
of a rigid body object from the Modelica Multibody 
Standard Library was adapted to the motor algebra. 
To simplify the implementation, all interfaces and all 
existing variables were kept. Only some small 
changes had to be made within the so-called Body
class. The first changes were the declaration of the 
following physically motivated Motor and MotorDyad
objects: 

// Motor Dyads 
Real[3,3]  I0       "Inertia dyad wrt. B"; 
MotorDyad I_mot    "Motorial inertia dyad wrt. B";

// Motors
VelocityMotor vel_B "Velocity motor wrt. B"; 
MomentumMotor mom   "Momentum motor wrt. B"; 
ForceMotor f_g   "Gravity force motor wrt B"; 
ForceMotor f_a   "Cut force motor wrt. B"; 

Afterwards, all declared motors and motor dyads had 
to be defined using the following statements: 

// force motors
f_g = vector([ m*frame_a.R.T*g_0; 
             cross(r_CM, m*frame_a.R.T*g_0)]); 
f_a = vector([frame_a.f; frame_a.t]); 

// velocity motor
vel_B = vector([ frame_a.R.w; 
               frame_a.R.T*der(frame_a.r_0)]);

// inertia matrices
I0 = I + m*(diagonal(r_CM*r_CM*ones(3))
               - [r_CM]*transpose([r_CM]));
I_mot = [diagonal({m, m, m}), -skew(m*r_CM);
               skew(m*r_CM) , I0]; 

// momentum motor
mom = vector(times(I_mot, vel_B)); 

Finally, the equations of motion originally imple-
mented according to 

frame_a.f = m*(Frames.resolve2(frame_a.R, 
                               a_0 - g_0) 
     + cross(z_a, r_CM) 
     + cross(w_a, cross(w_a, r_CM))); 
frame_a.t = I*z_a + cross(w_a, I*w_a) 
     + cross(r_CM, frame_a.f); 

have been replaced by the very clear and short Eq. (8): 

f_a = der(mom) + ’x’(vel_B,mom) - f_g; 

Because of the object-oriented structure of the Mode-
lica Standard Library, the changes had to be imple-



+++ von Mises’ Motor  Calculus  –  OO Implementat ion us ing Modelica +++  
SN

E 
20

/1
, 

Ap
ri

l 2
01

0

tN

12

mented only once. All subclasses of the Body class,
like BodyShape, BodyBox, or BodyCylinder inherit 
the changes automatically. 

3 Examples and verification 
As a first example, the movable double pendulum 
(Fig. 3) was chosen to show the correctness of the 
implemented body classes based on motor calculus. 
The pendulum consists of a trolley with the mass 0M
and two rigid bodies with masses 1M  and 2M . The 
trolley is able to move horizontally. The first body is 
suspended on the trolley by a revolute joint. The 
second body is suspended on the first body via a 
revolute joint, too. Both axes of rotation are parallel 
to the z -axis which lies perpendicular to the xy -
plane (see Figure 3). The moments of inertia of both 
bodies around the axis of rotation w. r. t. their particu-
lar centre of mass are given by 1J  and 2J .

The pendulum moves from an initial deflection of 
1(0) 90ϕ = °  and 2 (0) 0ϕ = ° due to the earth’s gravity 

field. A viscous friction, acting in every joint, damps 
the motion of the pendulum. As a reference, the same 
pendulum system has been implemented using the 
Modelica Standard Library. A sketch of the structure 
is shown in the lower part of Figure 5. The upper part 
of this figure shows the pendulum using the modified 
Body objects adapted to the motor calculus. 

Figure 4 shows the trajectory for the positions of the 
trolley. Figures 6 and 7 depict the time histories of the 
revolute joint angles 1ϕ  and 2ϕ . In every diagram, the 
trajectory of both systems, the double pendulum us-
ing the motor calculus and the double pendulum us-
ing the Modelica Standard Library, were plotted to-
gether. 

Figure 4. Trajectory of the trolley position s.

Figure 6. Trajectory of the first pendulum angle 1ϕ .

Figure 3. Sketch of double pendulum. Figure 5. Implementation of the double pendulum. 

Figure 7. Trajectory of the first pendulum angle 2ϕ .
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Figure 8 presents the deviation for all corresponding 
variables (residue_s, residue_phi1/2). Apparently, 
the deviation of the position stays smaller than 

111.2 10 m−⋅  for the given simulation time of 10s. The 
deviations of both pendulum angles are also very 
small. They do not exceed 1110 rad− . Hence, these 
differences can be interpreted as numerical errors of 
the simulator, because for simulations with a lower 
error tolerance, the deviations decrease. For a com-
parison even a third implementation within the simu-
lation system Matlab (refer to [21]) was consulted 
that led to very similar results. 

3.1 Fourfold pendulum on two movable sliders 
The second example is a fourfold pendulum. It con-
sists of two trolleys and a chain of four rigid bodies 
between them. Both trolleys are guided along straight 
tracks (see Figure 10). Hence, this example contains a 
closed kinematic loop. Similar to the foregoing ex-
ample, the pendulum moves from an initial deflection 
due to the gravity field of the earth and is damped by 
a viscous friction in every joint. The initial values for 
the pendulum angles are 

1 2

3 4

(0) 45deg (0) 15deg
(0) 30deg (0) 37.5deg

ϕ ϕ
ϕ ϕ

= = −
= = −

(35)

As before, the pendulum system was implemented 
twice. The first pendulum system works on the basis 
of the modified Mechanical Multibody Library, while 
the second one uses the Multibody Standard Library 
and serves as a reference. Hence, the deviations to the 
modified model can be calculated. They have the 
same order of magnitude as in the example before 
and can thus be explained by numerical errors. 

For the rough illustration of the simulation results, 
Figure 9 shows the configuration of the pendulum at 
ten different time instances (the time interval is 1 s). 
The dashed lines show the tracks of both trolleys. The 

Figure 11. Position of both trolleys for the motors calculus 
implementation.

Figure 8. Deviation of the most interesting coordinates 
between the motor calculus and the Modelica Standard 

Library implementation.

Figure 10. Sketch of the fourfold 
pendulum.

Figure 12. Sketch of the fourbar mechanism. 

Figure 9. Sequence of configurations of the fourfold pendulum. 
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bold plotted polygon consists of four segments. It 
represents the idealized shape of the chain. In Fig-
ure 11, the position of both trolleys are plotted against 
the time. 

3.2 Fourbar mechanism 
The last example is a so-called fourbar mechanism 
from the Modelica Standard Library, that, again, sets 
up a closed kinematic loop (see Figure 12). However, 
in this example, the rigid bodies do not perform pla-
nar motions any more and, hence, the whole com-
plexity of the three-dimensional mechanics is necessary. 

The fourbar mechanism moves under the influence of 
the earth’s gravitational field. The initial condition of 
the angular velocity of the first revolute joint (j1) is 
set to 300deg/ s . In opposite to the foregoing exam-
ples, this system is completely undamped. As in the 
paragraphs before, the example was implemented 
twice in one model. One system has just been kept in 
its original form while in the second system, all Body-
Cylinder objects have been replaced by the modified 
BodyCylinder objects. The difference between both 
implementations is shown in Figure 13. The numeri-
cal results of the simulation show an increasing de-
viation with advancing time. The reason for this fact 
may be the absence of any damping elements. Indi-
cated by this result, further investigations on numeri-
cal accuracy seem to be necessary for the future. 

4 Summary and outlook 
The paper traces the idea of applying the so-called 
motor calculus within Modelica modelling language 
to handle models of spatial multibody systems in an 
efficient way. This method represents an alternative 
approach to modelling such systems. This approach is 
characterized by a clear and concise formulation of 
the equations of motion. 

To get some experiences with possibilities and limits 
of this approach, a first test implementation was car-
ried out. The Modelica Multibody Standard Library 
was used to implement appropriate extensions within 
some selected submodels. This implementation al-
lows a comparison of the standard library implemen-
tation and the motor calculus implementation by 
means of simple simulation tasks. Appropriate results 
are presented in the paper. 

These results seem to encourage the idea of motor 
calculus usage within Modelica. Nevertheless, there 
are open challenges to be solved in the future. Oper-

and overloading would be a very helpful feature in 
this context. Furthermore, efficient methods have to 
be adapted to compute actual position and orientation 
of a rigid body from its velocity motor. That’s why 
further investigations as well as implementation work 
will still have to be carried out for a full support of 
rigid-body motion equation by means of motor calcu-
lus in Modelica. 
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