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The established Discrete Event System Specification (DEVS) offers opportunities to comprehensively 
describe discrete event systems. In this paper the classic DEVS approach is extended with specifications and 
methods for continuous and variable structure modelling to hybrid models with a variable modular, hierar-
chical structure. To let engineers benefit from these powerful modelling instruments, they are integrated into 
the well-accepted and popular scientific and technical computing environment (SCE) Matlab. Furthermore, in-
tegration with other computing methods provided by the chosen SCE is obvious and can be accomplished. We 
appreciate DEVS based algorithms for modelling and simulation in SCEs as a complement and addition to exis-
ting tools as Simulink, Stateflow and SimEvents for engineering tasks such as e. g. discrete eventbased control 
design. Moreover, a SCE provides a prototyping environment for the evolution of the DEVS approach itself. 

Introduction 
Since Zeigler et al. introduced the Discrete Event 
System Specification (DEVS) in the seventies [8], 
many extensions of the DEVS formalism where de-
signed. This paper presents an approach for dynamic 
structure hybrid DEVS, the DSDEVS-hybrid formal-
ism, depicts its formal modelling and simulation 
concepts and gives an overview on the implementa-
tion of the DSDEVS-hybrid toolbox for Matlab. 

Our modelling approach for modular hierarchical 
hybrid systems with structural variability at the cou-
pled system level is based on the work in [6, 1, 4] and 
classic DEVS theory [9]. A dynamic structure system 
in DEVS context is a modular hierarchical system 
whose structure changes during simulation time. 
Hierarchical models are composed of two system 
types, atomic and coupled models. Coupled models 
consist of other coupled models and/or atomic mod-
els. The dynamic behaviour of a system is reflected in 
atomic models, while dynamic structure is defined at 
the coupled system level. Dynamic structure changes 
are e.g. creation, deletion and exchange of models. 
Hybrid means that besides discrete model fractions, 
continuous model parts are contained, as well. 

There are two ways to approach those kinds of sys-
tems, resulting from the two general worldviews. One 
approach starts from the continuous modelling and 
simulation worldview and therefore extends a contin-
uous model to a hybrid one. Discrete events are ex-
pressed as root-finding problems. The model is then 
simulated by a continuous simulation engine, i.e. it is 
processed by an ODE solver with discontinuity detec-
tion and localisation.  

Usually, in modular hierarchical modelling and simu-
lation environments, the model structure is flattened 
before execution. Hence, hierarchical structure infor-
mation is partly not available during simulation time 
and dynamic structure behaviour needs to be elabo-
rately modelled at atomic system level. It seems to be 
more promising to gain access to the problem through 
the second worldview, the discrete event worldview. 
In that case a discrete simulator rules the simulation 
engine and calls an ODE solver to compute continu-
ous model fractions. Among descriptions for discrete 
event system models and their simulators, we have 
chosen and enhanced the Discrete Event System 
Specification (DEVS). In contrast to other ongoing 
research, e.g. integration of DEVS into the Modelica 
language [7] that employs DEVS for the description 
of only the discrete part of hybrid models, the de-
scribed approach takes DEVS as the basis. DEVS 
itself and particularly its related simulator concepts 
are extended with hybrid and at the same time dy-
namic structure features. 

1 Formal modelling concept 
An overview of the formalisms that underpin and 
extend DEVS theory is given by Zeigler et al. in [9]. 
One of several extensions of the basic DEVS forma-
lism is the hybrid DEVS formalism presented by 
Praehofer [6]. Another approach for hybrid DEVS 
modelling was introduced by Kofman [3, 2], who 
proposes quantisation of the state variables instead of 
time discretisation to approximate differential equa-
tions. The suitability for dynamic structure modelling 
of this approach is not followed up in this paper.  
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1.1 Atomic model specification 
Praehofer [6] defined a hybrid atomic system by the tuple 
  (1) 

where , , and  specify the set of inputs, outputs 
and states which may be continuous or discrete. Con-
tinuous dynamics are mapped by the rate of change 
function  and the continuous output function . 
Discrete events are internal, external and state events. 
State event conditions are defined using the state 
event condition function . External events and 
state events induce state transitions using the function 

. Internal events activate the discrete output func-
tion  and also the internal state transition function  
int . After each discrete state transition internal events 
are rescheduled by the time advance function . 
Local structural changes of the continuous dynamics 
can be modelled by structuring the dynamic descrip-
tion using logic variables inside the rate of change 
function , the state event condition function  and 
the continuous output function  . This definition for 
hybrid atomic DEVS fits for being combined with a 
coupled system definition for dynamic structure mod-
els. Hybrid behaviour is defined on atomic system 
level, while dynamic structure is modelled at coupled 
system level. 

1.2 Coupled model specification 
In order to allow dynamic structure behaviour, e.g. 
the creation, deletion and exchange of submodels, 
additional data structures to represent this dynamic 
need to be established. Barros [1] proposes to add a 
special atomic model called network executive to 
each coupled model which holds the structure infor-
mation and describes the structure dynamics. In con-
trast to this approach we favour the extension of the 
classic DEVS coupled model definition in way that 
allows to hold structure information directly in the 
coupled model. The specification of a classic DEVS 
coupled model [6, 9] is as follows: 
  
   (2) 

where  is the set of input values and  is the set of 
output values. The index  stands for network model 
as synonym for coupled model.  is the set of the 
component names, while  represents a dynamic 
subsystem. The property of closure under coupling, 
which is ensured for classic coupled DEVS, enables 
the representation of every coupled DEVS as an 
atomic DEVS. Thus, dynamic subsystems may be 
other coupled DEVS models or atomic DEVS mod-

els. ,  and  define the coupling relations. 
The external coupling relation  connects external 
inputs to component inputs, the external output cou-
pling  connects component outputs to external 
outputs and the internal coupling  defines connec-
tions among components, i.e. component outputs are 
connected to component inputs. For couplings no 
direct feedback loops are allowed. Finally,  
acts as a special function to prioritise one subsystem 
in case of simultaneous internal events in subsystems. 

To allow structure variability, some extensions of this 
coupled system’s definition have to be introduced. In 
the context of this work, possible structural changes 
at the coupled system level are 

• Creation, Cloning, Deletion and 
• Replacement of atomic or coupled subsystems, 
• Their movement between coupled systems and 
• Changes of couplings between system components. 

We call the actual composition of a subsystem set and 
its coupling relations the structure state. A dynamic 
structure DEVS can have different structure states 

. Furthermore, structure dynamics 
information, e.g. the number and kind of structure 
changes already achieved, needs to be stored. The set 
of structural variables  holds this information. For 
a dynamic structure coupled DEVS the  func-
tion can depend on the structure state and structure 
dynamics information. Consequently, we define the 
set of sequential structure states  of a dynamic 
structure coupled DEVS as:  
  
   (3) 

This set of sequential structure states extends the 
formal definition of classic coupled DEVS without 
structure variability to the dynamic structure DEVS 
definition. We define a dynamic structure DEVS as 
follows: 
  (4) 

Note that coupling information as well as  
rules are now capsuled in the set of structure states 

. The name of the coupled system is stored in . 
Furthermore, a dynamic structure hybrid DEVS im-
plies the functions , ,  and . The 
transition, output and time advance functions until 
now were defined for atomic hybrid DEVS only. 
These functions provide operations similar but not 
identical to those for atomic systems.  
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In analogy to event-oriented dynamic behaviour of 
classic atomic DEVS systems, dynamic structure 
changes in coupled DEVS are induced by events. 
Relevant events are external, internal or state events. 
If an external event occurs, it will be sent to the af-
fected subsystems, as known from classic DEVS. If it 
influences the structure dynamics of the coupled 
system, its state transition function  is executed. 
After that the time advance function  is called to 
recalculate the time until the next internal event. State 
events that affect structure can be caused by output 
events of subsystems or threshold events of (i) con-
tinuous outputs of subsystems, (ii) continuous inputs 
of the coupled system or (iii) structure related states 
of the set . 

For state events first  is executed, and then  
is called. The time advance function  for coupled 
DEVS also schedules events triggered by the internal 
structure of a coupled DEVS. The structure changes 
to be accomplished are specified with the structure 
state transition function . For the generation of 
structure related output events caused by internal 
events, the discrete output function  is introduced. 
Presented specifications for atomic and coupled 
DEVS models together with a new simulation con-
cept form the DSDEVS-hybrid formalism. The for-
mal approach and its application on a real engineering 
system are described in detail in [5]. 

2 Simulation concept 
In dynamic structure as well as static structure hybrid 
DEVS formalisms and associated simulator concepts 
the continuous part of the model causes events to 
occur in the DEVS part. The model is simulated by a 
modified discrete event simulation engine which calls 
an ODE solver during simulation cycles. Structure 
information of the hybrid modular hierarchical model 
remains available during simulation time. Thus, the 
design and simulation of dynamic structure hybrid 

models becomes imaginable. Computation algo-
rithms for modular hierarchical DEVS models 
including dynamic structure and hybrid system 
extensions were established in [9, 6, 1, 5]. The 
key idea is to map a model specification to inter-
acting program objects to reflect the system 
components and their coupling relations. This 
means for each part of the hierarchical model a 
program object exists which exclusively handles 
the dynamics, i.e. the simulation of this model 
part. These program objects are referred to as 
simulation objects of the computing model. On 

top of the hierarchically organised computing model 
the root coordinator initiates and controls the simula-
tion cycles. Figure 1 illustrates the relations between 
the specified model and resulting program objects. 
The regions highlighted in grey are not part of classic 
DEVS formalisms, but extensions introduced with the 
DSDEVS-hybrid formalism. 

Until now, problems arised for the effective calculati-
on of continuous model parts if they are distributed 
over different program objects. Current approaches 
work with the Euler method and do not support the 
use of other ODE solvers. However, engineers ask for 
advanced ODE solvers with implicit integration me-
thods, predictor/ corrector integration methods and 
automatic step width control to solve e.g. stiff sys-
tems. The proposed DSDEVS-hybrid formalism ba-
sed on [5] comprises new data structures and methods 
which automatically generate the description of the 
continuous model equations and continuous state 
vectors of all model components in a closed form. 
This closed description is prerequisite for the efficient 
use of advanced ODE solver methods. To achieve a 
closed description we make use of wrapper concepts. 
On top of the simulation engine the root coordinator 
is extended by the ODE-wrapper method. The ODE-
wrapper method allows the closed model representa-
tion by using additional data structures. These data 
structures hold by the root coordinator are the vector 
of references to all continuous state variables cSc and 
the vectors cSimObj and aSimObj filled with refe-
rences to all atomic and coupled models. These refe-
rences provide a dynamic representation of the modu-
lar hierarchical model in the required closed form. In 
Figure 1 data structures and newly introduced me-
thods are highlighted in grey. Taking benefit of the 
wrapper concept leads to possibilities for defining 
interfaces to advanced ODE solvers which are e.g. 
provided by programmable scientific and technical 
computing environments (SCEs). 

Figure 1. Mapping elements of a model structure to  
simulation objects of a computing model 
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3 Implementation of the DSDEVS-
Hybrid Toolbox for Matlab 

Unlike other modelling methodologies for discrete 
event systems such as Petri nets or state charts, DEVS 
formalisms have not been widely accepted by engine-
ers, although they are to be seen as powerful tools to 
solve engineering problems. To help eliminating this 
lack of acceptance we propose the employment of 
SCEs. Since engineers, unlike scientists, are rather 
familiar with the use of SCEs such as Matlab than of 
high level programming language simulation librari-
es, the integration of DEVS algorithms into those 
environments is overdue. Furthermore, SCEs provide 
a large number of predefined advanced ODE solvers 
which can be involved to compute the continuous 
parts of hybrid models. Our research aims to integrate 
advanced DEVS algorithms into SCEs and to take 
benefit of combination with other computing methods 
and toolboxes, e.g. for distributed and parallel com-
puting, HLA modelling and for simulation based 
reactive control of discrete event systems. Moreover, 
a SCE provides a prototyping environment for the 
evolution of the DEVS approach itself. 

For Matlab a prototype implementation of dynamic 
structure hybrid DEVS modelling and simulation 
exists which is named DSDEVS-hybrid toolbox. Prac-
ticability of the formal approach is therewith proofed 
and verified. Major class definitions for the Matlab 
DSDEVS-hybrid toolbox reflecting the formal defini-
tions for dynamic structure hybrid atomic and coup-
led DEVS models can be found in [4]. 

4 Conclusions 
The described modelling and simulation approach 
extends and brings together DEVS-based formalisms 
for dynamic structure and hybrid modelling. The 
improvements of the simulation engine by employing 
the ODEwrapper method avoids from the need to 
flatten the model before execution. Hence, structure 
information remains available and dynamic structure 
modifications are possible. Nevertheless, the closed 
form required to take benefit of advanced ODE sol-
vers can be provided. Thus, the proposed formalism 
is applicable to complex engineering problems. To 
enlarge application field, further research will add 
ports and parallel extensions to DSDEVS-hybrid. By 
integrating DSDEVS-hybrid into SCEs, engineers are 
encouraged to break new ground in modelling and 
simulation while staying in their familiar software 
environment. 

Current toolbox implementation is done with previ-
ous Matlab releases, where supplied object oriented 
programming features were rather poor and leaded to 
a complex file hierarchy. To define a new class, the 
programmer needed to establish a directory for the 
class, where all M-files which included the methods 
for the class were collected. For each class method a 
separate M-file had to be created so that class defini-
tions became complicated and hard to follow up. 
Since 2008, Matlab offers enhanced features for ob-
ject oriented programming. So, reimplementation 
with taking benefit of these features is obvious. 
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