
+++ Dynamic Structure Hybrid DEVS for Computing Environments +++ S

75

N
SN

E 19/3-4, D
ecem

ber 2009

Towards Dynamic Structure Hybrid DEVS for
Scientific and Technical Computing Environments

C. Deatcu, T. Pawletta, Hochschule Wismar – Univ. of Technology, Business & Design, Germany
SNE Simulation Notes Europe SNE 19(3-4), 2009, 75-78, doi: 10.11128/sne.19.sn.09959

The established Discrete Event System Specification (DEVS) offers opportunities to comprehensively
describe discrete event systems. In this paper the classic DEVS approach is extended with specifications and
methods for continuous and variable structure modelling to hybrid models with a variable modular, hierar-
chical structure. To let engineers benefit from these powerful modelling instruments, they are integrated into
the well-accepted and popular scientific and technical computing environment (SCE) Matlab. Furthermore, in-
tegration with other computing methods provided by the chosen SCE is obvious and can be accomplished. We
appreciate DEVS based algorithms for modelling and simulation in SCEs as a complement and addition to exis-
ting tools as Simulink, Stateflow and SimEvents for engineering tasks such as e. g. discrete eventbased control
design. Moreover, a SCE provides a prototyping environment for the evolution of the DEVS approach itself.

Introduction
Since Zeigler et al. introduced the Discrete Event
System Specification (DEVS) in the seventies [8],
many extensions of the DEVS formalism where de-
signed. This paper presents an approach for dynamic
structure hybrid DEVS, the DSDEVS-hybrid formal-
ism, depicts its formal modelling and simulation
concepts and gives an overview on the implementa-
tion of the DSDEVS-hybrid toolbox for Matlab.

Our modelling approach for modular hierarchical
hybrid systems with structural variability at the cou-
pled system level is based on the work in [6, 1, 4] and
classic DEVS theory [9]. A dynamic structure system
in DEVS context is a modular hierarchical system
whose structure changes during simulation time.
Hierarchical models are composed of two system
types, atomic and coupled models. Coupled models
consist of other coupled models and/or atomic mod-
els. The dynamic behaviour of a system is reflected in
atomic models, while dynamic structure is defined at
the coupled system level. Dynamic structure changes
are e.g. creation, deletion and exchange of models.
Hybrid means that besides discrete model fractions,
continuous model parts are contained, as well.

There are two ways to approach those kinds of sys-
tems, resulting from the two general worldviews. One
approach starts from the continuous modelling and
simulation worldview and therefore extends a contin-
uous model to a hybrid one. Discrete events are ex-
pressed as root-finding problems. The model is then
simulated by a continuous simulation engine, i.e. it is
processed by an ODE solver with discontinuity detec-
tion and localisation.

Usually, in modular hierarchical modelling and simu-
lation environments, the model structure is flattened
before execution. Hence, hierarchical structure infor-
mation is partly not available during simulation time
and dynamic structure behaviour needs to be elabo-
rately modelled at atomic system level. It seems to be
more promising to gain access to the problem through
the second worldview, the discrete event worldview.
In that case a discrete simulator rules the simulation
engine and calls an ODE solver to compute continu-
ous model fractions. Among descriptions for discrete
event system models and their simulators, we have
chosen and enhanced the Discrete Event System
Specification (DEVS). In contrast to other ongoing
research, e.g. integration of DEVS into the Modelica
language [7] that employs DEVS for the description
of only the discrete part of hybrid models, the de-
scribed approach takes DEVS as the basis. DEVS
itself and particularly its related simulator concepts
are extended with hybrid and at the same time dy-
namic structure features.

1 Formal modelling concept
An overview of the formalisms that underpin and
extend DEVS theory is given by Zeigler et al. in [9].
One of several extensions of the basic DEVS forma-
lism is the hybrid DEVS formalism presented by
Praehofer [6]. Another approach for hybrid DEVS
modelling was introduced by Kofman [3, 2], who
proposes quantisation of the state variables instead of
time discretisation to approximate differential equa-
tions. The suitability for dynamic structure modelling
of this approach is not followed up in this paper.

+++ Dynamic Structure Hybrid DEVS for Computing Environments +++

SN
E

19
/3

-4
,

D
ec

em
be

r
20

09

S N

76

1.1 Atomic model specification
Praehofer [6] defined a hybrid atomic system by the tuple
 (1)

where , , and specify the set of inputs, outputs
and states which may be continuous or discrete. Con-
tinuous dynamics are mapped by the rate of change
function and the continuous output function .
Discrete events are internal, external and state events.
State event conditions are defined using the state
event condition function . External events and
state events induce state transitions using the function

. Internal events activate the discrete output func-
tion and also the internal state transition function
int . After each discrete state transition internal events
are rescheduled by the time advance function .
Local structural changes of the continuous dynamics
can be modelled by structuring the dynamic descrip-
tion using logic variables inside the rate of change
function , the state event condition function and
the continuous output function . This definition for
hybrid atomic DEVS fits for being combined with a
coupled system definition for dynamic structure mod-
els. Hybrid behaviour is defined on atomic system
level, while dynamic structure is modelled at coupled
system level.

1.2 Coupled model specification
In order to allow dynamic structure behaviour, e.g.
the creation, deletion and exchange of submodels,
additional data structures to represent this dynamic
need to be established. Barros [1] proposes to add a
special atomic model called network executive to
each coupled model which holds the structure infor-
mation and describes the structure dynamics. In con-
trast to this approach we favour the extension of the
classic DEVS coupled model definition in way that
allows to hold structure information directly in the
coupled model. The specification of a classic DEVS
coupled model [6, 9] is as follows:

 (2)

where is the set of input values and is the set of
output values. The index stands for network model
as synonym for coupled model. is the set of the
component names, while represents a dynamic
subsystem. The property of closure under coupling,
which is ensured for classic coupled DEVS, enables
the representation of every coupled DEVS as an
atomic DEVS. Thus, dynamic subsystems may be
other coupled DEVS models or atomic DEVS mod-

els. , and define the coupling relations.
The external coupling relation connects external
inputs to component inputs, the external output cou-
pling connects component outputs to external
outputs and the internal coupling defines connec-
tions among components, i.e. component outputs are
connected to component inputs. For couplings no
direct feedback loops are allowed. Finally,
acts as a special function to prioritise one subsystem
in case of simultaneous internal events in subsystems.

To allow structure variability, some extensions of this
coupled system’s definition have to be introduced. In
the context of this work, possible structural changes
at the coupled system level are

• Creation, Cloning, Deletion and
• Replacement of atomic or coupled subsystems,
• Their movement between coupled systems and
• Changes of couplings between system components.

We call the actual composition of a subsystem set and
its coupling relations the structure state. A dynamic
structure DEVS can have different structure states

. Furthermore, structure dynamics
information, e.g. the number and kind of structure
changes already achieved, needs to be stored. The set
of structural variables holds this information. For
a dynamic structure coupled DEVS the func-
tion can depend on the structure state and structure
dynamics information. Consequently, we define the
set of sequential structure states of a dynamic
structure coupled DEVS as:

 (3)

This set of sequential structure states extends the
formal definition of classic coupled DEVS without
structure variability to the dynamic structure DEVS
definition. We define a dynamic structure DEVS as
follows:
 (4)

Note that coupling information as well as
rules are now capsuled in the set of structure states

. The name of the coupled system is stored in .
Furthermore, a dynamic structure hybrid DEVS im-
plies the functions , , and . The
transition, output and time advance functions until
now were defined for atomic hybrid DEVS only.
These functions provide operations similar but not
identical to those for atomic systems.

+++ Dynamic Structure Hybrid DEVS for Computing Environments +++ S

77

N
SN

E 19/3-4, D
ecem

ber 2009

In analogy to event-oriented dynamic behaviour of
classic atomic DEVS systems, dynamic structure
changes in coupled DEVS are induced by events.
Relevant events are external, internal or state events.
If an external event occurs, it will be sent to the af-
fected subsystems, as known from classic DEVS. If it
influences the structure dynamics of the coupled
system, its state transition function is executed.
After that the time advance function is called to
recalculate the time until the next internal event. State
events that affect structure can be caused by output
events of subsystems or threshold events of (i) con-
tinuous outputs of subsystems, (ii) continuous inputs
of the coupled system or (iii) structure related states
of the set .

For state events first is executed, and then
is called. The time advance function for coupled
DEVS also schedules events triggered by the internal
structure of a coupled DEVS. The structure changes
to be accomplished are specified with the structure
state transition function . For the generation of
structure related output events caused by internal
events, the discrete output function is introduced.
Presented specifications for atomic and coupled
DEVS models together with a new simulation con-
cept form the DSDEVS-hybrid formalism. The for-
mal approach and its application on a real engineering
system are described in detail in [5].

2 Simulation concept
In dynamic structure as well as static structure hybrid
DEVS formalisms and associated simulator concepts
the continuous part of the model causes events to
occur in the DEVS part. The model is simulated by a
modified discrete event simulation engine which calls
an ODE solver during simulation cycles. Structure
information of the hybrid modular hierarchical model
remains available during simulation time. Thus, the
design and simulation of dynamic structure hybrid

models becomes imaginable. Computation algo-
rithms for modular hierarchical DEVS models
including dynamic structure and hybrid system
extensions were established in [9, 6, 1, 5]. The
key idea is to map a model specification to inter-
acting program objects to reflect the system
components and their coupling relations. This
means for each part of the hierarchical model a
program object exists which exclusively handles
the dynamics, i.e. the simulation of this model
part. These program objects are referred to as
simulation objects of the computing model. On

top of the hierarchically organised computing model
the root coordinator initiates and controls the simula-
tion cycles. Figure 1 illustrates the relations between
the specified model and resulting program objects.
The regions highlighted in grey are not part of classic
DEVS formalisms, but extensions introduced with the
DSDEVS-hybrid formalism.

Until now, problems arised for the effective calculati-
on of continuous model parts if they are distributed
over different program objects. Current approaches
work with the Euler method and do not support the
use of other ODE solvers. However, engineers ask for
advanced ODE solvers with implicit integration me-
thods, predictor/ corrector integration methods and
automatic step width control to solve e.g. stiff sys-
tems. The proposed DSDEVS-hybrid formalism ba-
sed on [5] comprises new data structures and methods
which automatically generate the description of the
continuous model equations and continuous state
vectors of all model components in a closed form.
This closed description is prerequisite for the efficient
use of advanced ODE solver methods. To achieve a
closed description we make use of wrapper concepts.
On top of the simulation engine the root coordinator
is extended by the ODE-wrapper method. The ODE-
wrapper method allows the closed model representa-
tion by using additional data structures. These data
structures hold by the root coordinator are the vector
of references to all continuous state variables cSc and
the vectors cSimObj and aSimObj filled with refe-
rences to all atomic and coupled models. These refe-
rences provide a dynamic representation of the modu-
lar hierarchical model in the required closed form. In
Figure 1 data structures and newly introduced me-
thods are highlighted in grey. Taking benefit of the
wrapper concept leads to possibilities for defining
interfaces to advanced ODE solvers which are e.g.
provided by programmable scientific and technical
computing environments (SCEs).

Figure 1. Mapping elements of a model structure to
simulation objects of a computing model

+++ Dynamic Structure Hybrid DEVS for Computing Environments +++

SN
E

19
/3

-4
,

D
ec

em
be

r
20

09

S N

78

3 Implementation of the DSDEVS-
Hybrid Toolbox for Matlab

Unlike other modelling methodologies for discrete
event systems such as Petri nets or state charts, DEVS
formalisms have not been widely accepted by engine-
ers, although they are to be seen as powerful tools to
solve engineering problems. To help eliminating this
lack of acceptance we propose the employment of
SCEs. Since engineers, unlike scientists, are rather
familiar with the use of SCEs such as Matlab than of
high level programming language simulation librari-
es, the integration of DEVS algorithms into those
environments is overdue. Furthermore, SCEs provide
a large number of predefined advanced ODE solvers
which can be involved to compute the continuous
parts of hybrid models. Our research aims to integrate
advanced DEVS algorithms into SCEs and to take
benefit of combination with other computing methods
and toolboxes, e.g. for distributed and parallel com-
puting, HLA modelling and for simulation based
reactive control of discrete event systems. Moreover,
a SCE provides a prototyping environment for the
evolution of the DEVS approach itself.

For Matlab a prototype implementation of dynamic
structure hybrid DEVS modelling and simulation
exists which is named DSDEVS-hybrid toolbox. Prac-
ticability of the formal approach is therewith proofed
and verified. Major class definitions for the Matlab
DSDEVS-hybrid toolbox reflecting the formal defini-
tions for dynamic structure hybrid atomic and coup-
led DEVS models can be found in [4].

4 Conclusions
The described modelling and simulation approach
extends and brings together DEVS-based formalisms
for dynamic structure and hybrid modelling. The
improvements of the simulation engine by employing
the ODEwrapper method avoids from the need to
flatten the model before execution. Hence, structure
information remains available and dynamic structure
modifications are possible. Nevertheless, the closed
form required to take benefit of advanced ODE sol-
vers can be provided. Thus, the proposed formalism
is applicable to complex engineering problems. To
enlarge application field, further research will add
ports and parallel extensions to DSDEVS-hybrid. By
integrating DSDEVS-hybrid into SCEs, engineers are
encouraged to break new ground in modelling and
simulation while staying in their familiar software
environment.

Current toolbox implementation is done with previ-
ous Matlab releases, where supplied object oriented
programming features were rather poor and leaded to
a complex file hierarchy. To define a new class, the
programmer needed to establish a directory for the
class, where all M-files which included the methods
for the class were collected. For each class method a
separate M-file had to be created so that class defini-
tions became complicated and hard to follow up.
Since 2008, Matlab offers enhanced features for ob-
ject oriented programming. So, reimplementation
with taking benefit of these features is obvious.

References
[1] Barros, F. J.: The Dynamic Structure Discrete Event

System Specification Formalism. Transactions of the
SCS International, 1996, 13(1), 35 – 46.

[2] Cellier, F. E. and Kofman, E.: Continuous System
Simulation. Springer Pub., 2006

[3] Kofman, E.: Discrete Event Simulation of Hybrid Sys-
tems. SIAM Journal on Scientific Computing, 2004,
25(5), 1771-1797

[4] Pawletta, T., Deatcu, C., Pawletta, S., Hagendorf, O.
and Colquhoun, G.: DEVS-Based Modeling and Simu-
lation in Scientific and Technical Computing Envi-
ronments. In: Proceedings of SpringSim 2006 (DEVS
Symposium), Huntsville, AL, USA, 2006, 151 - 158

[5] Pawletta, T., Lampe, B., Pawletta, S. and Drewelow,
W.: A DEVS Based Approach for Modeling and Simu-
lation of Hybrid Variable Structure Systems. Lecture
Notes in Control and Information Science (Eds.:S.
Engel et.al.), Springer Pub., 2002, Vol. 279, 107 – 130

[6] Praehofer, H.: System Theoretic Foundations for
Combined Discrete-Continuous System Simulation.
PhD thesis, VWGÖ, Vienna, 1992

[7] Sanz, V., Urquia, A. and Dormido, S.: Introducing
Messages in Modelica for Facilitating Discrete-Event
System Modeling. In: Proc. 2nd Int. Workshop on
Equation-Based Object-Oriented Languages and
Tools, Paphos, Cyprus, 2008, 83 – 93

[8] Zeigler, B. P., Kim, T. G. and Praehofer, H.: Theory
of Modeling and Simulation, 1st Edition. Academic
Press, 1976.

[9] Zeigler, B. P., Kim, T. G. and Praehofer, H.: Theory
of Modeling and Simulation, 2nd Edition. Academic
Press, 2000.

Corresponding author: Christina Deatcu,
Univ. Applied Sciences Wismar
RG Computational Engineering & Automation
PF 1210, D-23952 Wismar, Germany
christina.deatcu@hs-wismar.de

Received & Accepted: MATHMOD 2009
Revised: September 15, 2009
Accepted: November 3, 2009

