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A metaheuristic based on scatter search for global dynamic optimization of chemical and bio-chemical pro-
cesses is presented. It is designed to overcome typical difficulties of nonlinear dynamic systems optimization 
such as noise, flat areas, non-smoothness and/or discontinuities. It balances between intensification and di-
versification by coupling a local search procedure with a global search and makes use of memory to avoid 
simulations in previously explored areas. Its application to three dynamic optimization case studies proves its 
efficiency and robustness, showing also a very good scalability. 

Introduction 
Dynamic optimization (or open loop optimal control) 
appears in many industrial applications to optimize a 
pre-defined performance index (e.g., profitability) 
subject to some specifications over a time interval. 
Objective functions and/or constraints formulated 
from mathematical models describing industrial pro-
cesses are usually highly nonlinear, which often caus-
es non-convexity. Besides, non-smoothness and dis-
continuities can be present, thus the use of global 
optimization methods is needed for many dynamic 
optimization problems from this field [7]. In recent 
years, a special class of stochastic global optimization 
methods called metaheuristics, which provide excel-
lent solutions (often the global optimum) in relatively 
short computation times, has appeared. 

Scatter search is a population-based metaheuristic 
introduced by Glover [12] which combines a global 
phase with an intensification method, usually a local 
search [16]. Compared to other evolutionary or genet-
ic algorithms, scatter search has a small population 
(called reference set or RefSet) consisting of high 
quality and diverse solutions which are systematically 
combined. Our scatter search-based algorithm has 
been written in Matlab under the name SSm. This 
study goes beyond a simple exercise of applying 
scatter search to dynamic optimization problems, but 
presents innovative mechanisms to obtain a good 
balance between intensification and diversification in 
a short-term search horizon. In many instances, dy-
namic optimization problems are non-convex and 
multimodal, thus the use of global optimization tech-
niques becomes crucial for solving them [7]. The 
application of our algorithm for solving nonlinear 
optimization problems arising from chemical and biolog-
ical systems has provided excellent results [10, 18]. 

This paper is organized as follows: Section 1 states 
the problem of dynamic optimization. Our algorithm 
is depicted in Section 2. Section 3 presents the three 
case studies used in this paper for our experiments as 
well as the results obtained. The paper finishes with 
some conclusions. 

1 Dynamic optimization: problem 
statement 

The general dynamic optimization problem has the 
following mathematical form: 
  (1) 

subject to the system’s dynamics: 

  (2) 

  (3) 
  (4) 
  (5) 
  (6) 

where , , ; 
 (with  = number of lumped 

state variables and  = number of distributed state 
variables) and  are the vectors of 
differential and algebraic states respectively; 

 is the vector of control (input) variables; 
 are time invariant parameters;  is the 

time (and tf is the final time);  is a functional to be 
minimized;  is the set of partial differential-
algebraic equations describing the systems dynamics; 
finally, , , and  are the values of the respective 
vectors at the initial time , and  is the value of  
at spatial boundary. 

Equality and inequality constraints may be imposed. 
Some of them must be satisfied over the whole pro-
cess time (path constraints), 
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  (7) 

  (8) 

while others must be only satisfied at the end of the 
process (endpoint constraints), 

  (9) 

  (10) 

The control variables and/or the time-invariant pa-
rameters may be subject to lower and upper bounds: 
  (11) 
  (12) 

In practice, the dynamic optimization of distributed 
systems typically involves transforming the original 
system into an equivalent lumped system and apply-
ing lumped-system dynamic optimization methods. 
Therefore, a spatial discretization approach is usually 
used to transform the original infinite dimension 
partial differential equations (PDE) into a large-scale, 
and possibly stiff, set of ordinary differential equa-
tions (ODEs) [4]. The accurate solution of the result-
ing ODE system then often requires the use of an 
implicit ODE solver. 

In this work we will consider the CVP approach [22] 
using the Piecewise Constant approximation, PC (i.e., 
zero order polynomial) with fixed-length time inter-
vals. Different number of intervals will be used for 
each problem in order to check the scalability of the 
different optimization methods.  

2 A scatter search algorithm for 
dynamic optimization of chemical 
and bioprocesses 

2.1 Diversification Generation Method 
SSm begins by generating an initial set of diverse 
vectors in the search space. The method makes use of 
memory taking into account the number of times that 
every decision variable appears in different parts of 
the search space [13]. 

2.2 Initial RefSet formation 
For building the initial RefSet, after generating the set 
of diverse solutions, a subset of high quality and diverse 
points is selected. The first step consists in evaluating 
all diverse vectors and selecting some of them in terms 
of quality. The RefSet is completed with the remain-
ing diverse vectors by maximizing the minimum Euclid-
ean distance to the included vectors in the RefSet. 

2.3 Subset Generation and Solution 
Combination methods 

After the initial RefSet is built, its solutions are sorted 
according to their quality and we apply the Subset 
Generation Method. In our implementation, it con-
sists in selecting all pairs of solutions in the RefSet to 
combine them. To avoid repeating combinations with 
the same pair of solutions, we use a memory term 
which keeps track of the pairs previously combined. 
Regarding the Solution Combination Method, we use 
a type of combination based on hyper-rectangles [21], 
which enhances the diversification. Depending on their 
position in the RefSet every pair of combined solu-
tions may generate from two up to four new solutions. 

2.4 Updating the RefSet 
As recommended by Laguna and Marti [17], we up-
date the RefSet considering the quality of the elements. 
This strategy may cause convergence to sub-optimal 
solutions or stagnation of the search in flat areas. To 
avoid these effects, we have implemented two filters 
[10] which restrict the incorporation of solutions that 
contribute only slight diversity to the RefSet. 

2.5 Improvement method 
The Improvement Method consists in a local search, 
selecting the initial points by means of different fil-
ters. In this work, we have considered a gradient-
based method [11] and the Nelder and Mead method 
implemented in Matlab [1]. In applications related to 
chemical and bioprocess engineering, we often face 
time-consuming evaluation problems or complex 
topologies which can make the local search ineffi-
cient. This implies that the application of the Im-
provement Method should be restricted to a low num-
ber of promising solutions. Here we use merit and 
distance heuristic filters introduced by Ugray et al. 
[21] to avoid performing local searches from poor 
quality solutions or from solutions which are likely to 
provide already found local minima. 

2.6 RefSet rebuilding 
Due to the memory term which avoids combinations 
between RefSet members previously combined, the 
optimization procedure may stop if no new solutions 
enter the RefSet in a given iteration. Advanced scatter 
search designs overcome this problem by resorting a 
mechanism to partially rebuild the RefSet. The meth-
od is usually the same as that used to create the initial 
RefSet, in the sense that it uses the max-min distance 
criterion for selecting diverse solutions.  
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We propose an alternative strategy to maximize the 
number of search directions.  

In this strategy, the vectors refilling the RefSet are 
chosen to maximize the number of relative directions 
defined by them and the existing vectors in the RefSet 
[10].  

2.7 Intensification strategies 
One of the filters mentioned above may prevent the 
search from focusing on intensification, especially 
during the first iterations.  

 

 
Figure 1. Optimal control profile for the ethanol production 

problem ( ). 

To allow combinations between high quality solutions 
(which do not apply to enter the RefSet because of the 
distance filter) and RefSet members, we store the 
solutions which can not enter the RefSet but have a 
better function value than the second RefSet member.  
These stored solutions are then combined with the 
best RefSet solution, increasing the probability of 
obtaining high quality solutions by combination in 
early stages of the search [10]. Another advanced 
strategy (the go beyond strategy) to enhance the in-
tensification of the search has been implemented in 
our algorithm. It consists in exploiting promising 
directions [9].  

 
Figure 2. Optimal control profile for the penicillin 

production problem ( ) 

  CMAES DE glcDirect OQNLP SRES SSm 

10 
Best 87.934 87.934 87.258 87.775 87.927 87.931 

Mean 87.837 87.914 – – 87.688 87.906 
Worst 87.340 87.835 – – 87.348 87.889 

20 
Best 87.948 88.013 84.490 87.400 87.671 87.998 

Mean 87.841 87.955 – – 86.900 87.885 
Worst 87.599 87.767 – – 85.064 87.796 

40 
Best 87.914 87.926 80.657 87.547 82.709 87.999 

Mean 87.861 87.802 – – 82.709 87.863 
Worst 87.745 87.565 – – 82.709 87.595 

Table 2. Results for the penicillin production problem. 

  CMAES DE glcDirect OQNLP SRES SSm 

10 
Best 20316.11 20316.08 20203.74 20316.11 20305.96 20316.11 
Mean 19889.67 20100.72 – – 20093.14 20291.38 
Worst 18996.02 19672.46 – – 19554.01 20192.48 

20 
Best 20412.14 20404.36 19738.01 20412.19 20327.11 20412.19 
Mean 20273.76 20383.95 – – 20237.58 20412.19 
Worst 19953.39 20341.29 – – 20095.71 20412.19 

40 
Best 20430.84 20375.32 19544.88 20444.47 20214.40 20444.86 
Mean 20360.73 20239.27 – – 19726.07 20444.86 
Worst 20110.08 19902.08 – – 19466.64 20444.86 

Table 1. Results for the ethanol production problem. 
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3 Computational experiments 
In this section, a set of bioprocess dynamic optimiza-
tion problems will be used as case studies to test the 
performance of the algorithm proposed in this work.  
A set of different state-of-the-art global optimization 
methods has been selected to compare their results 
with those obtained with the algorithm proposed in 
this study: CMAES [2], DE [20], SRES [19], DIRECT 
[14] and OQNLP [15]. Regarding stochastic solvers, 
ten runs were performed for each problem. 

3.1 Ethanol production in a fed-batch reactor 
This system is a fed-batch bioreactor for the produc-
tion of ethanol [6]. The objective is to find the feed 
rate which maximizes the yield of ethanol. Table 1 
presents results for every solver with the different 
levels of discretization considered. Figure 1 presents 
the optimal control profile for the highest level of 
discretization. 

3.2 Penicillin production in a fed-batch fermenter 
This problem deals with the dynamic optimization of 
a fed-batch fermenter for the production of penicillin 
[6]. The optimal control problem is to maximize the 
total amount of penicillin produced using the feed 
rate of substrate as the control variable.  

 
Figure 3. Optimal control profile for the drying  

process problem ( ) 
  

In our experiments, SSm provided the best solution 
for the levels of discretization . Table 2 
presents results for every solver with the different 
levels of discretization and Figure 2 presents the 
optimal control profile for the highest level of dis-
cretization.  

3.3 Drying operation 
In this section we consider a food convective drying 
problem, similar to the one formulated by Banga and 
Singh [5]. The aim is to dry a cellulose slab maximiz-
ing the retention of a nutrient.  

The dynamic optimization problem associated with 
the process consists of finding the dry bulb tempera-
ture along the time to maximize the nutrient retention 
at the final time. Table 3 presents results for every 
solver with the different levels of discretization and 
Figure 3 presents the optimal control profile for the 
highest level of discretization. 

 
Figure 4. Performance profiles 

  CMAES DE glcDirect OQNLP SRES SSm 

10 
Best 0.20002 0.20003 0.19979 0.19875 0.20001 0.20003 

Mean 0.19710 0.19683 – – 0.19894 0.19694 
Worst 0.19108 0.18939 – – 0.19579 0.18742 

20 
Best 0.19997 0.19913 0.19329 0.15483 0.19989 0.20010 

Mean 0.19696 0.19608 – – 0.19878 0.19687 
Worst 0.19298 0.19185 – – 0.19728 0.19326 

40 
Best 0.19952 0.19859 0.18848 0.15102 0.19001 0.19788 

Mean 0.19751 0.19442 – – 0.18796 0.19618 
Worst 0.19522 0.19103 – – 0.18623 0.19311 

Table 3. Results for the drying process problem. 
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4 Executive summary of results 
In this section we provide a summary of the results 
obtained in this work by making use of the perfor-
mance profiles methodology [8]. Following [3], we 
define the success performance  for a solver on a 
specific problem by: 

  (13) 

where a run is considered successful if it obtained the 
optimal solution with a relative error  (in 
our problems, we consider it as the best solution 
found by any of the solvers). With this definition, the 
best success performance  is given by the low-
est value of  for every problem. Figure 4 shows 
the empirical distribution function of the success 
performance  over all the problems. As 
shown in the performance profiles, SSm solves the high-
est percentage of problems compared with rest of solvers 
tested. 

5 Conclusions 
We have developed a scatter search-based methodol-
ogy which intends to be effective for solving global 
dynamic optimization problems from the biotechno-
logical and food industries. The procedure treats the 
objective function as a black box, making the search 
algorithm context-independent. We have expanded 
and advanced knowledge associated with the imple-
mentation of scatter search procedures.  

We have tested the proposed methodology over a set of 
dynamic optimization problems from the biotechnolog-
ical and food industries. In order to have an idea 
about their efficiency, they have been compared with 
other state-of-the-art global optimization methods. 
The results obtained showed that the proposed meth-
odology is adequate for the kind of problems intended 
to solve. In all cases our algorithm was competitive, 
providing the best solution among the tested solvers 
in many of the examples.  

It is to note that the algorithm's behaviour is not af-
fected by the problem size since it provides excellent 
results for every level of discretization considered in 
this study. 
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