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Recent advances in Biology have shown that the amount and heterogeneity of the (post-genomic) data now 
available call for new techniques able to cope with such input and to build high-level models of the complex 
systems involved [18]. 

Arguably two key open issues in this emerging area of Computational Systems Biology concern the integra-
tion of qualitative and quantitative models and the revision of such integrated models.  

The purpose of the Biochemical Abstract Machine (BIOCHAM) modelling environment is to provide for-
malisms to describe biological mechanisms, including both the studied system and its properties, at different 
abstraction levels. Based on these formalisms it gives access to a set of tools, mostly focused around model-
checking, that help the user in developing, curating, exchanging and refining his models. 

In this article we will take as an example invariant computation of the Petri net representing a biological re-
action system, and show both a new efficient method for this step, as resolution of a constraint problem, and 
also how this analysis brings both qualitative and quantitative information on the models, in the form of con-
servation laws, consistency checking, etc. ranging over all the above defined abstraction levels. 

Introduction 
Starting from the inspiring use of the -calculus in 
[25] to model signaling pathways in a cell, there has 
been a large amount of work around process calculi 
and of their stochastic extensions [23, 7] to formalize 
biochemical interactions. These stochastic versions 
allowed to link with the usual mathematical biology 
view of a system of ordinary differential equations 
(ODEs). However most of these formalisms only 
bring simulation tools to the modeller. On the other 
hand, the modelling of gene-regulatory networks 
through influence graphs along the work of Thomas 
[30] provided interesting analyses but often impossi-
ble to use for post-transcriptional regulation. 

The Biochemical Abstract Machine [5] (http:// 
contraintes.inria.fr/BIOCHAM) was built as a 
simplification of the process algebras, using instead a 
simple rule-based language focused on reactions to 
describe biological systems. This point of view is 
shared with all the Systems Biology Markup Lan-
guage (SBML) [17] community (see for instance 
databases like reactome.org, KEGG [19] or 
biomodels.net) and enables exchanging of models 
but also, as we shall see, reasoning at different levels 
on a same model. 

 

BIOCHAM also adds the use of Temporal Logics as a 
second formalism to encode the expected or observed 
properties of the system, from a purely qualitative 
view to a completely quantitative one. This allows to 
automatically check that the model behaves as speci-
fied through model-checking tools adapted to the 
considered level. 

The use of Petri-nets to represent those reaction mod-
els, taking into account the difference between com-
pounds and reactions in the graph, and make availa-
ble various kinds of analyses is quite old [24], how-
ever it remains somehow focused towards mostly 
qualitative and structural properties. Some have been 
used for module decomposition, like (I/O) T-
invariants [13, 14], related to dynamical notions of 
elementary flux modes [29]. However, there is, to our 
knowledge, very little use of P-invariant computation, 
which provides both qualitative information about 
some notion of module related to the “life cycle” of 
compounds, and quantitative information related to 
conservation laws and Jacobian matrix singularity. Con-
servation law extraction is actually already provided 
by a few tools, but then using numerical methods, 
based on the quantitative view of the model, and not 
integer arithmetic (as in direct P-invariant analysis). 
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After an illustration of the different views provided 
for a given reaction model, we present a very simple 
way to incorporate invariant computation in an exist-
ing biological modelling tool, using constraint pro-
gramming with symmetry detection and breaking. We 
compare it to other approaches and evaluate it, for the 
case of P-invariants, on some examples of various 
sizes, like the MAPK cascade models of [6] and [28]. 
This experimentation is done through an implementa-
tion of the described method in the BIOCHAM mod-
elling environment [3, 11]1 allowing to see the use of 
invariants for different abstraction levels of the same 
model, and illustrated on some examples and a few 
benchmarks. 

1 Boolean and bounded views 
The simplest view one can have of a system of reac-
tions is purely qualitative and relies on a boolean 
(presence/absence) semantics. For systems like 
Kohn’s map of the mammalian cell cycle regulation 
[20], with about 500 compounds and 800 reactions 
but very little quantitative information, this is the 
natural level. It is also the choice made in the Path-
way Logic of [8]. 

The parallel with electronic circuits becoming obvi-
ous when looking at the drawing of the map, the same 
tools can be applied with certain success: the reac-
tions define a concurrent transition system on which 
model-checking allows to verify very efficiently 
some quite complex properties. For instance, that the 
original map, as published, does not provide synthesis 
reactions for all cyclins. 

This method can also be turned into a machine learn-
ing system where a model not verifying a specification 
can be automatically revised into one that does [2]. 

Moreover under simple hypotheses on the possible 
kinetics of each reaction (and verified by Mass Action 
Law, Michaelis Menten or Hill kinetics for instance) 
[10] it is possible to automatically derive the influ-
ence graph between compounds from the reaction 
model. This result linking formally reaction graph 
and influence graph permits to benefit from the 
known necessary conditions for multi-stability or 
oscillations proven in that context, from a reaction 
network with very little knowledge on the kinetics, 
and especially no hypothesis of linearity.  
                                                           
1 The most advanced optimizations described in Section 6.3 
are currently only available in the Nicotine tool described in 
that section. 

This approach is quite complementary with Fein-
berg’s Chemical Reaction Network Theory, which 
also relies on the reaction graph. 

The same kind of view, but with an integer number of 
compounds, can be applied to smaller models, lead-
ing to a Petri-net representation of the system, places 
corresponding to compounds and transitions to reac-
tions in an immediate way [24]. Once again model-
checking can be used to ensure the reachability of 
some states. This level will be detailed further in 
Section 3 with invariant computation as a means to 
extract quantitative as well as qualitative information 
from the structure of the model. 

2 Continuous and Stochastic views 
Associating rates or kinetics to each reaction, one can 
view the system at a stochastic level, with simulation 
of the corresponding continuous time Markov chain 
thanks to Gillespie’s algorithm(s) and stochastic 
model-checking. 

For efficiency reasons, when the number of com-
pounds considered is big enough, the continuous view 
of that same system, with ODEs derived automatical-
ly from the reactions, is preferred. If the dimension is 
small enough, mathematical tools like bifurcation theory 
will bring results about ranges of parameters for 
which a specific dynamical behavior can be obtained. 

In any case, we can use simulations as a basis for 
continuous model-checking [1, 2] to once again pro-
vide automatic verification that the model behaves as 
specified for either high dimensional systems or for 
properties outside of the usual scope (e.g. properties 
about the maximal concentration reached by a transi-
tory peak of the system and its time frame). 

Recent works generalizing this model-checking step 
to constraint-solving allowed us to define a continu-
ous degree of satisfaction of a specification by a 
model. Using it as a fitness function one can apply 
state of the art optimization techniques to obtain pa-
rameter learning with respect to both qualitative and 
quantitative information coded as a specification [26]. 
The same technique also allows to define some new 
notion of robustness, with respect to a given temporal 
logic specification. 
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3 Petri-net view of a reaction model 
A Petri-net is a bipartite oriented (weighted) graph of 
transitions, usually represented as square boxes, and 
places, usually represented as circles, that defines a 
(actually not only one) transition relation on markings 
of the net, i.e. multisets of tokens associated to plac-
es. The relation is defined by firings of transitions, i.e. 
when there are tokens (as many as the weight of the 
incoming arc) in all pre-places of a transition, they 
can be consumed and as many tokens as the weight 
on the outgoing arc are added to each post-place. 

The classical Petri-net view of a reaction model is 
simply to associate biochemical species to places and 
biochemical reactions to transitions. 

Example 1. For instance the enzymatic reaction 
written (in BIOCHAM-like syntax), 
  corresponds to the 
Petri-net depicted in Figure 1. 

In this Petri-net, starting from a marking with at least 
one token in A and in E, one can remove one of each 
to produce one token in A-E (firing of ) and then 
either remove it to add again one token to A and one 
to E (firing of ), or to add one B and one E (firing 
of ). 

P (resp. T) invariants are defined, as usual, as vectors 
 representing a multiset of places (resp. of transi-

tions) such that  (resp. ) where  is 
the incidence matrix of the Petri net, i.e.  is the 
number of arcs from transition  to place , minus the 
number of arcs from place  to transition . Intuitively, 
a P-invariant is a multiset representing a weighting of 
the places and such that any such weighted marking 
remains invariant by any firing; a T-invariant repre-
sents a multiset of firings that will leave invariant any 
marking (see also Section 5). 

 
Figure 1. Petri-net corresponding to the biochemical  

model of example 1. 

As explained in introduction, for reaction models 
these invariants are used for flux analysis, variable 
simplification through conservation law extraction, 
module decomposition, etc. More precisely, invari-
ants, being based on the structure, provide of course 
qualitative information that can be used for instance 
for model-checking (e.g. reachability analysis). It is 
however interesting to note that some non-trivial 
quantitative information is also captured. For instance 
a semi-positive P-invariant defines a (quantitative) con-
servation law, whatever the dynamics of the system. 

Note that there are other ones, like the following 
when : 

. 
. 

Where MA(k) denotes that the kinetics of the reaction 
follow the Mass Action law with rate k. The resulting 
ODEs would have the following property: 

  

In the same manner, as pointed out in Section 1 links 
have been found between the structure of the graph 
and the dynamical behavior (through positive and 
negative cycles in the influence graph or CRNT) from 
the structure of the reaction model. 

There is also information lying between quantitative 
and qualitative, like the definition of modules from T-
invariants as explored recently in [13, 14], and to sum 
this up, the structure of the reaction model contains 
information that can be used at any abstraction level. 

4 Related work 
To compute the invariants of a Petri net, especially if 
this computation is combined with other Petri-net 
analyses, like sinks and sources, traps, deadlocks, etc. 
the most natural solution is to use a Petri-net dedicat-
ed tool like INA, PiNA, or Charlie for instance 
through the interface of Snoopy [15], which will soon 
allow the import of SBML models as Petri-nets. 
Standard integer methods like Fourier-Motzkin elim-
ination will then provide an efficient means to com-
pute P or T-invariants. These methods however generate 
lots of candidates which are afterwards eliminated 
and also need to incorporate some means (like equali-
ty class definition) to avoid combinatorial explosion 
at least in some simple cases, as explained in Section 6. 
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Another way to extract the minimal semi-positive 
invariants of a model is to use one of the software 
tools that provide this computation for biological 
systems, generally as “conservation law” computa-
tion, and based on linear algebra methods like QR 
factorization [31]. This is the case for instance of the 
METATOOL [32] and COPASI [16] tools. The idea is 
to use a linear relaxation of the problem, which suits 
well very big graphs, but needs again a posteriori 
filtering of the candidate solutions. Moreover, these 
methods do not incorporate any means of symmetry 
elimination (see section 6). 

5 Finding invariants as a Constraint 
Solving Problem 

We will illustrate our new method for computing the 
invariants with the case of P-invariants (but T-
invariants, being dual, work in the same fashion). For 
a Petri net with  places and  transitions ( ), a 
P-invariant is a vector  s.t. , i.e. 

. Since those vectors all 
live in , it is quite natural to see this as a Constraint 
Solving Problem (CSP) with  (linear) equality con-
straints on  Finite Domains variables. 

Example 2. Using the Petri-net of example 1 we 
have: 

 
 
 

This results in the following equations: 

        (1) 
   (2) 
   (3) 

where obviously equations (2) is redundant. 

The task is actually to find invariants with minimal 
support (a linear combination of invariants belonging 
to  also being an invariant), i.e. having as few non-
zero components as possible, these components being 
as small as possible, but of course non trivial, we thus 
add the constraint that . 

Example 3. In our running example we thus add 
. 

Now, to ensure minimality the labelling is invoked 
from small to big values and a branch and bound 
procedure is wrapped around it, maintaining a partial 

base  of P-invariant vectors and adding the con-
straint that a new vector  is solution if  

, which means that its support is not 
bigger than that of any vector of the base. 

Unfortunately, even with the last constraint, no search 
heuristic was found that makes removing subsumed 
Pinvariants unnecessary. Thus, if a new vector is 
added to , previously found vectors with a bigger 
support must be removed. 

This algorithm was implemented directly into BIO-
CHAM [3], which is programmed in GNU-Prolog, 
and allowed for immediate testing. 

Example 4. In our running example we find two 
minimal semi-positive P-invariants: 

•   and   
•    and   

6 Equality classes 

6.1 A hard problem 
The problem of nding minimal semi-positive invari-
ants clearly suffers from a computational blowup 
since there can be an exponential number of such 
invariants. For instance the model given in example 5 
has 2n minimal semi-positive P-invariants (each one 
with either Ai or Bi equal to 1 and the other equal to 
0). 

Example 5. The model: 

 

 

… 

 

is depicted in gure 2 

 
Figure 2. Example net with 2n minimal semi-positive P-

invariants. 
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6.2 CSP-like Symmetry breaking 
A rst remark is that in this example, there is a varia-
ble symmetry [12] between all the pairs (Ai,Bi) of 
variables corresponding to places. This symmetry is 
easy to detect (purely syntactical) and can be elimi-
nated through the usual ordering of variables, by 
adding the constraints Ai  Bi. 

This classical CSP optimization is enough to avoid 
most of the trivial exponential blow-ups and corre-
sponds to the initial phase of parallel places detection 
and merging of the equality classes optimization for 
the standard Fourier-Motzkin algorithm [21]. Note 
however that in that method, classes of equivalent 
variables are detected and eliminated before and 
during the invariant computation, which would corre-
spond to local symmetry detection and was not im-
plemented in our prototype. 

Moreover, in [21], equality class elimination is done 
through replacement of the symmetric places by a 
represen-tative place. The full method reportedly 
improves by a factor two the computation speed. 
Even if in the context of the original article this is 
done only for ordinary Petri-nets (only one edge from 
one place to a transition and from one transition to 
one place), we can see that it can be even more 
ef cient to use this replacement technique in our 
case: 

Example 6 

… 

 

… 

Instead of simply adding  to our constraints, 
which will lead to 3 solutions when C = 1 before 
symmetry expansion: , 
replacing  and  by  will reduce to a single solu-
tion  before expansion of the subproblem 

. 

This partial detection of independent subproblems, 
which can be seen as a complex form of symmetry 
identi ca-tion, can once again be done syntactically 
at the initial phase, and can be stated as follows: re-
place by a single variable  if all the  
occur only in the context of this sum i.e. in our Petri 
net all pre-transitions of  are connected to  with 

 edges and to all other  with  edges and same 
for post-transitions. For a better constraint propaga-
tion, another intermediate variable can be introduced 

such that . In our experiments the 
simple case of parallel places (i.e. all  equal to 1 in 
the sum) was however the one encountered most 
often. 

6.3 Going farther 
In our Nicotine tool (available at 
http://contraintes.inria.fr/˘soliman/nicotine

/), we extended SBML support to also include APNN 
and PNML import/export. We then proceeded to add 
one more step of optimization. 

The point is to note that if a place (in the case of P-
invariants)  has only one single input transition  
and one single output transition , and if there exists 
a path between  and  such that it goes only through 
such places (with single input and output) , whatev-
er the intermediate transitions, then there is a bijec-
tion between minimal semi-positive P-invariants such 
that  and those where  and 

. 

It is thus possible to look only for solutions where 
 and to obtain the other ones by “symmetry”. 

Actually this bijection consists in mapping all  to 
 and  from  to . Intuitively 

the “ ow” going through the  is redirected through 
. More precisely, for the intermediate transitions we 

get equations of the form , 
which are unchanged by our bijection, and for I (resp. 

),  replaces the rst (resp. last) . The bijection 
only maps minimal invariants to minimal invariants 
(since at least one of the  gets removed from the 
support when  gets added and reciprocally). 

7 Example, the MAPK Cascade 
The MAPK signal transduction cascade is a well 
studied system that appears in lots of organisms and 
is very important for regulating cell division [27]. It is 
composed of layers, each one activating the next, and 
in detailed models shows two intertwined pathways 
conveying EGF and NGF signals to the nucleus. 

A simple MAPK cascade model, that of [22] without 
scaffold, is used here as an example to show the re-
sults of P-invariant computation. 
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Figure 3: 3 of the 7 P-invariants found in the MAPK cas-
cade model of [22]. The blue one (RAF), the pink one 

(MEK) and the green one (MAPK) with intersections in 
purple (blue+pink) and khaki (pink+green). 

 

Seven minimal semi-positive P-invariants are found 
almost instantly: RAFK, RAFPH, RAF, MEKPH, 
MEK, MAPKPH, MAPK. Three of them are depicted 
in gure 3, the full list is given in table 1. 

Note that these 7 P-invariants de ne 7 algebraic con-
servation rules and thus decrease the size of the corre-
sponding ODE model from 22 variables and equations 

to only 15. 

8 Evaluation on other examples 
Schoeberl’s model is a more detailed version 
of the MAPK cascade, which is quite com-
prehensive [28], but too big to be studied by 
hand. It can however be easily broken down 
into fourteen more easily understandable 
units formed by P-invariants, as shown in 
table 

 2, along other examples representing 
amongst the biggest reaction networks pub-
licly available in Systems Biology. 

All the curated models in the December 2008 
release of biomodels.net were also tested and 
none of them required more than 1s to compute 
all its minimal P-invariants. All the Petri-nets 
of www.petriweb.org were also tested, though 
they do not correspond to reaction models, only 
one took more than 1s: model 1516, which 
took about 3s to compute 1133 minimal P-
invariants. We think that the structure of this 
kind of net is however very different from that 
of usual biochemical reaction models and in-
tend to explore this distinction further in the 
future. 

We could not compare our results with those 
provided in [31] since the models they use, 
coming from metabolic pathways ux analyses, 
do not have an integer stoichiometry matrix, 
however the examples of table 2 show the 
feasibility of P-invariant computation by con-
straint programming for quite big networks. 

Note that for networks of this size, the upper 
bound of the domain of variables had to be set 
manually (to a reason-able value like 8 since 
actually only 2 or 3 was needed in all the bio-
logical models we have encountered up to 

now). Otherwise, the only over-approximation of the 
upper bound found was the product of the l.c.m. of 
stoichiometric coef cients of each reaction, which 
explodes really fast and leads to unnecessarily long 
computation. We thereby lose completeness, but it is 
not enforced either by QR-factorization methods, and 
does not seem to miss anything on real life examples. 
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RAFK, RAF-RAFK 
RAFPH, RAFPH-RAF {p1} 
RAF, MEK-RAF {p1}, RAF-RAFK, RAFPH-RAF {p1}, 
MEK {p1}-RAF {p1},   RAF {p1}
MEKPH, MEKPH-MEK {p1}, MEKPH-MEK {p1, p2} 
MEK, MAPK-MEK {p1, p2}, MEK-RAF {p1}, MEKPH-MEK {p1}, 
MEKPH-MEK {p1, p2}, MAPK {p1}-MEK {p1, p2}, MEK {p1}-RAF {p1}, 
MEK {p1}, MEK {p1, p2} 
MAPKPH, MAPKPH-MAPK {p1}, MAPKPH-MAPK {p1, p2} 
MAPK, MAPK-MEK {p1, p2}, MAPKPH-MAPK {p1}, MAPK {p1, p2} 
MAPK {p1}-MEK {p1, p2}, MAPK {p1}, MAPKPH-MAPK {p1, p2},

Table 1: P-invariants of the MAPK cascade model of [22] 

9 Conclusion 
After the genome sequencing, building and correcting 
System Biology models is a new and rich domain 
where lots of mathematics and computer science tools 
can be used. We argue that to encompass the hetero-
geneity of the available data it is necessary to provide 
formal languages for different levels of abstractions 
and to relate them precisely [9] but also to formalize 
the properties of the studied system in order to lever-
age all the automatic tools from machine learning and 
optimization. 

This amounts to more initial work for the modeller 
who should now both represent his system as a set of 
reactions but also the experimental data available 
(either directly in temporal logic or through tools that 
will extract such speci cation from other kinds of 
data like, for instance time series). However after this 
initial step, lots of different tools, which will com-
plement simulation, become available to automatical-
ly curate, re ne, modularize, ...his model. 

Model transit places P-invar. Invariant size 
Schoeberl’s  
MAPK [28] 125 105 14 from 2 to44 

Curie’s  
E2F/Rb [4] ~500 ~400 79 from size 1 (EP300) to 

about 230 (E2F1 box) 
Kohn’s  
map [20] ~800 ~500 65 from size 1 (Myt1) to 

about 200 (pRb or cdk2) 

Table 2: Minimal semi-positive P-invariant computation on 
bigger models of biochemical reaction networks, all < 1s 

In the BIOCHAM environment we have implemented 
some of the tools we thought most useful from the 
modelling point of view, but through SBML im-
port/export it is also possible to rely on the vast body 
(see http://www.sbml.org for a list) of software 
handling reaction-based biochemical models. The 
crucial point here is the multiple abstraction levels 
that can be used to reason about a single reaction 
model. 

We have illustrated this point through invariant com-
putation. We have shown that P-invariants of a bio-
logical reaction model are not dif cult to compute in 
most cases.  

They do however carry information about conserva-
tion laws that are useful for ef cient and precise dy-
namical simulation of the system, and provide some 
notion of module, which is related to the life cycle of 
molecules. T-invariants are already used more com-
monly, and get more and more focus recently. 

We introduced a new method to ef ciently compute P 
and T-invariants of a reaction network, based on 
Finite Domain constraint programming. It includes 
symmetry detection and breaking and scales up well 
to the biggest reaction networks found. 

The idea of applying constraint based methods to 
classical problems of the Petri-net community is not 
new, but seems currently mostly applied to the model-
checking. We argue that structural problems (invari-
ants, sinks, attrac-tors, etc.) can also bene t from the 
know-how developed for nite domain CP solving, 
like symmetry breaking, search heuristics, etc. and 
thus intend to generalize our approach to other prob-
lems of this category, hoping to bring more and more 
qualitative and quantitative information from the pure 
structure of the reaction models. 
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