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A compartment/population balance model is presented for describing heat transfer in gas-solid fluidized bed 
heat exchangers, modelling the particle-particle and particle-surface heat transfers by collisions. The results 
of numerical experimentation, obtained by means of a second order moment equation model indicate that the 
model can be used efficiently for analysing fluidised bed heat exchangers recovering heat either by direct 
particle-fluid heat exchange or indirect tube-in-bed operation mode. The population balance model is vali-
dated with physically measured data taken from the literature [6]. 

Introduction 
Fluidised bed heat exchangers, widely used in the 
metallurgical and process industries are important 
tools for recovering heat from hot solid particles [1-
7]. In these systems heat exchange with the wall usu-
ally is modelled by means of suspension-wall heat 
transfer coefficients which, in principle, are aggre-
gates of two transfer components: gas-wall and parti-
cle-wall heat transfers. 
However, because of intensive motion of particles, 
the particle-wall, and also the particle-particle heat 
transfers are collision induced processes thus it seems 
to be significant to model these processes by them-
selves. Using such modelling approach the gas-wall 
and particle-wall components can be separated that 
allows understanding the transfer mechanisms involved. 
For modelling and simulation of collisional heat 
transfer processes in gas-solid systems, an Eulerian-
Lagrangian approach, with Lagrangian tracking for 
the particle phase [8-11], and a population balance 
approach [12-16] have been applied.  
The population balance model, involving both the 
collisional particle-particle and particlewall heat 
transfers, was extended by Süle et al. [17, 18] for 
describing the spatial distributions of temperatures in 
deep or long fluidised beds developing a compart-
ment model. 
The aim of the paper is to extend the compartment 
population balance model to describe the heat transfer 
processes in fluidised bed heat exchangers in which 
the heat of hot solid particles is used to heat water 
flowing in tubes immersed in the bed. We apply a 
two-phase model of gas-solid fluidisation assuming 
that no bubbles are formed in the bed.  

The particle-particle and particle-tube heat transfers 
are modelled by collisions, while the gasparticle, gas-
tube and tube-water heat transfers are described as 
continuous processes using linear driving forces. 

1 Physical model 
Consider a shallow fluidised bed in which particles 
transported horizontally through the bed are fluidised 
by cross-flow air fed into the system in equally dis-
tributed gas streams along the bed. Cold water to be 
heated is flowing inside a tube immersed in the bed. 
The fluidising air induces intensive particle-particle 
and particle-tube collisions, and heat transfer between 
the gas, particles and water through the wall of the tube. 

The assumptions concerning the system are as fol-
lows: 1) The particles are of constant size and are not 
changed during the process; 2) The system is operat-
ed under steady state hydrodynamic conditions, and 
the influence of thermal changes on the hydrodynam-
ics is negligible. 3) There is no heat source inside the 
particles. 4) The heat transfer by radiation is negligible. 

The structure of the compartments, as well as of the 
mass and heat flows of the system is shown in Fig-
ure 1. In this system the following mass transport 
processes are distinguished. 

1. Volumetric cross-flow  of the fluidising gas 
through the ideally mixed cells between which 
some crossmixing occurs. The temperature of gas 
in the -th cell is denoted by , and there oc-
curs continuous heat transfer between the gas 
and particles, and the gas and wall, characterised 
by the heat transfer coefficients , . and 

, respectively. 
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2. Dispersed plug flow of particles through the bed 
modelled by the cells-in-series with back-flow 
model. Here,  denote the population 
density function for the th cell by means of 
which  provides the number of par-
ticles from the interval  in a unit 
volume of the cell at time . Inter-particle heat 
transfer occurs by collisions, and is described by 
the random variable  with probability 
density function , while the particle-wall heat 
transfer also occurs by collisions that are charac-
terised by the random variable with probability 
density function .  

3. The heat in the wall of the tube is transported by 
conduction, and the continuous wall-liquid heat 
transfer is characterised by the heat transfer coef-
ficient . 

4. The volumetric flow  of water inside the tube 
is modelled also by the cells-in-series with back-
flow model. It is assumed to be counter-current 
one with respect to the volumetric flow of particles. 

In the present model, as it is illustrated in Figure 1, all 
compartments (cells) describing the shallow fluidised 
bed are of the same volume , while, for the sake of 
computational simplicity, the number of discrete 
elements of the tube wall and of the cells of model of 
flowing liquid, although their volumes are quiet dif-
ferent, are the same as that of the bed compartments 
along the axial direction .  

2 Mathematical model 
Under these conditions, the mathematical model of 
the heat transfer processes of the system is formed by 
a mixed set of partial integral-differential, partial 
differential and ordinary differential equations. 

 The population balance equation, which governs the 
variation of the population density function of parti-
cle population in the individual cells, is a partial inte-
gral-differential equation and can be written as 

   

  

     

     

     

                     

     (1) 

where the variables 
 

 , and  

   (2) 

 

 

 
 

Figure 1 :the scheme of the system. 
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represent the realizations of the random variables  
and  which express, in principle, the efficiencies 
of the collisional particle-particle and particle-tube 
wall heat transfers [16].  

Here, ,  and  denote, respectively, the gas-
particle, particle-particle and particle-wall contact 
area, while  and  denote the corresponding 
contact times. Parameter  expresses the ratio of 
thermal properties of particles and the wall, while 
parameters  and  were introduced for characteris-
ing the compartmental structure of the system in a 
compact way where: ,  1, , 

, , . 

The first term on the left hand side of Eq.(1) denotes 
the rate of accumulation of particles having tempera-
ture , while the second term describes 
the change of the number of particles with tempera-
ture  due to the gas-particle heat trans-
fer. The first three terms on the right hand side repre-
sent the input and output rates of particles from and to 
the neighbouring cells, as well as to and from the 
system, the next two terms describe the variation of 
the population density function due to the collisional 
particle-tube wall heat transfer, while the last two 
terms describe the change of  because of the 
collisional heat exchange between the particles. 

The heat balance equations for the temperature of 
fluidising gas in the individual cells become 

  (3) 

        

        

        

 

  (4) 

        

        

        

        

  (5) 

         

        

        

where  denotes the bed voidage in the -th cell,  
stands for the volumetric gas flow between the cells 
causing some cross-mixing between the neighbour 
cells, and coefficient  represents the gas-wall heat 
transfer rate.  

Since the gas is assumed to be fed into the system 
equally distributed along the axial coordinate  we 
can write  for all . 

Heat in the wall of tube is transported with conduc-
tion hence the differential equation describing the 
temperature of the wall can be written in the form 

  

        

        

        

                   
     (6) 

subject to the boundary conditions 

  (7) 

Here,  denotes the thermal conductivity of the 
wall, while the coefficient  denotes the wall-liquid 
heat transfer rate. Parameters  and  denote the 
surface area of gas-wall and wall-liquid heat transfers 
in a unit length of tube. 

Finally, the set of differential equations for the tem-
perature of liquid phase compartments is written as 

  

        

        (8) 

where the values of the  and  parameters, character-
ising the structure of the system are: , 

, , , , 
. 
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The additional boundary conditions to (1) – (8) can 
be written as 

   and   (9) 

which, naturally, should be completed with the ap-
propriate initial conditions. 

3 Solutions of the model equation 

The mixed set of differential equations (1)-(9) was 
solved by reducing the population balance equation 
(1) and the heat conduction equation (6) into two sets 
of ordinary differential equations applying, respec-
tively, a moment equation reduction and a finite dif-
ference discretion, obtaining in this way together with 
the gas phase equations (3)-(5) and liquid phase equa-
tion (8) a closed set of ordinary differential equations.  

The moments and normalized moments of the tem-
perature of particle population are defined as 

  

  (10) 

which are useful for the basic characterisation of the 
temperature distribution of particles. The zero order 
moments  provide the total numbers of particles 
in a unit volume of cells by means of which the solids 
concentrations can also be computed, while the mean 
temperature of particles in the -th cell is expressed 
by .  
Completing the zero and first order moments  
and  with the second order one , the variance 
of temperature, defined as 

  (11) 

can also be computed. 

The infinite hierarchy of the moment equations gener-
ated by the population balance equation (1) has the form 

  

  

     

                      

     

     (12) 

where 

  

    and   (13) 

Since the infinite set of moment equations can be 
closed at any order, the second order moment equa-
tion reduction can be computed exactly by solving the 
equations for the first three leading moments. This 
reduction is obtained by using the following equations. 

The total number of particles in the -th cell:  

  

        (14) 

The first order moment of the particulate phase in the 
-th cell: 

  

        

        

        (15) 

The variance of temperature of the particulate phase 
in the -th cell: 

  

      

      

      

      

      

      (15) 

The set of equations provided with finite difference 
discretion of the heat conduction equation (6) for the 
wall has the form: 



+++ Model l ing Heat Transfer Processes  +++  t

29

N
SN

E 19/3-4, D
ecem

ber 2009

  

    

    

                (17) 

  

   

   

                (18) 

  

  

  

                (19) 

so that the integrals of variable x in (3 – 5) for the 
fluidising gas and (8) for the liquid flowing in the 
tube are also rewritten for the discrete values ,  
= 1, 2, …, . 

Finally, because of the second order moment equa-
tions reduction (14 – 16), in (3 – 5) for the fluidising 
gas and (17 – 19) for the wall in finite difference form 
the integrals of variable  have to be changed rewrit-
ing these integrals applying the moments of the tem-
perature of particle population: 

  

      (20) 

and 

  

      (21) 

4 Simulation results and discussion of 
the model 

A computer program was developed in MATLAB 
environment for solving the set of ordinary differen-
tial equations (3 – 5), (8) and (14 – 19) taking into 
account all modifications of the integral terms. The 
program can generate and handle a compart-
ment/moment equations model consisted of cells of 
arbitrary number, and the resulted set of ordinary 

differential equations is solved by means of an ode-
solver of MATLAB.  
The transient and steady state simulation results pre-
sented here were obtained for 9 cells using the basic 
constitutive expressions presented in detail in [16]. 
The predictions of the second order moment equation 
reduction model were validated using the experi-
mental data measured in a laboratory shallow fluid-
ized bed heat exchanger published by Pécora and 
Parise [6].  

 
Figure 2. The results of the compartment/population 

balance model compared with the experimental 
 data by Pécora and Parise [6] 

Figures 2 and 3 present the bed temperature profiles 
for 9 cells comparing the model data with the meas-
ured ones [6] when the input temperatures of particles 
were 650 °C and 708 °C, respectively. The parame-
ters were fitted to the measured values using a least 
squares method. The results in both cases show rather 
good correspondence but it has to be taken only as 
preliminary ones since the heat transfer coefficients 
have been compared yet. 

 
Figure 3. The results of the compartment/population  

balance model compared with the experimental  
data by Pécora and Parise [6] 
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Figure 4. Transients of the mean temperature of particles 

and the temperature of air in the cells 

 

 
 

Figure 5. Transients of the temperature of water  
flowing in the tube 

 
Figure 4 presents the transients of the mean tempera-
ture of particles and the temperature of the fluidizing 
air in the cells along the heat exchanger. It is seen that 
in steady state these temperatures become almost equal 
and the heat of hot particles becomes transferred to the 
cold water.  
Under such conditions, the temperature of gas passes 
a maximum in each cell but delayed to each other in 
time. Similar maxima can be observed also in the 
transient processes of the wall and in the temperature 
of liquid, as it is presented in Figure 5, heated by the 
hot particles through the tube wall.  
Figure 6 shows the variation of the variance of tem-
perature of particle population as a function of time. 
The temperature of particles at the input was homo-
geneous but it became strongly distributed during the 
transient process showing rather large variances. 

 
Figure 6. Transients of the variance of temperature of 

particle population. 
 
The simulation results have shown that the gas-
particle and particle-wall heat transfers induce inho-
mogeneities of the temperature of particles but the 
particle-particle collision heat transfer shows a strong 
indirect effect. 

 

5 Conclusions 
The compartment/population balance model, devel-
oped for describing heat transfer processes in gas-
solid fluidized bed heat exchangers, and modelling 
the particle-particle and particle-surface heat transfer 
processes by collisions can be used efficiently for 
analysing the fluidized bed heat exchangers recover-
ing heat from hot particles and heating some liquid 
flowing in a tube immersed in the bed.  

The model describes the temperature distribution of 
the particle population, and allows separating the 
effects of the fluidizing gas-immersed surface and 
particle-immersed surface heat transfers.  

The second order moment equation reduction, gener-
ated from the population balance equation has proved 
to be an efficient tool for studying the behaviour of 
heat exchangers. 
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Table of Symbols 
 surface area, m2 
 specific heat, J kg-1 K-1 
 width of the bed, m 
 diameter of the tube, m 
 thermal diffusivity, , m2 s-1  

 probability density function 
 heat transfer coefficient, W m-2 K-1 
 thermal conductivity, W m-1 K-1 
 mass, kg 
 -th order moment of particle temperature 
 normalised -th order moment of particle 

temperature 
 population density function, no m-3 K-1 
 parameter in Eq.(1),  

 
 

 
 
 

 parameter in Eq.(1),  

 volumetric flow rate, m3 s-1 
 back-flow ratio 
 temperature, K 
 time, s 

volume, m3 
axial variable, m 
contact time, s 
random variable of collision heat transfer 
viscosity, Pa s 
void fraction of the bed  

 variance of the temperature of particle popula-
tion 
density, kg m3 

 Parameter Basic value
Solid particles: 

 sand 
Diameter, 2.54 × 10-4 m
Density, 2650 kg m-3

Specific heat, 835 J kg-1 K-1 
Thermal conductivity, 0.35 W m-1 K-1 
Volumetric flow rate, 1.5 × 10-5 m3 s-1

Mean inlet temperature, 460
Gas: air Density, 0.946 kg m-3 

Specific heat, 1010 J kg-1 K-1 
Viscosity, 2.17 × 10-5 Pa s

Thermal conductivity, 2.39 × 10-2 W m-1 K-1
Volumetric flow rate, 1.4 × 10-2 m3 s-1

Inlet temperature, 25
Tube wall: 

stainless steel 
Diameter, 0.0065 m

Mass, 1.2 kg
Specific heat, 465 J kg-1 K-1 

Thermal conductivity, 44 W m-1 K-1 
Heated medium: 

water 
Density, 998 kg m-3

Specific heat, 4182 J kg-1 K-1 
Thermal conductivity, 0.606 W m-1 K-1 

Viscosity, 10-3 Pa s
Volumetric flow rate, 1.5 × 10-5 m3 s-1

Inlet temperature, 25
Fluidized bed Width, 0.15 m

Length, 0.9 m
Collision freq., 103 s-1, 10 s-1 

Heat transfer eff. 0.5, 0.8
Back flow ratio 1, 0.1, 0.01

 
Table 1. The basic constitutive and process parameters used in simulation 
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Table of subscripts and superscripts 

 gas 
 input 

 liquid 
 maximal value 

 incipient velocity of fluidisation 
 minimal value 

 particle 
 gas-particle 
 particle-particle 
 particle-wall 

 wall 
 gas-wall 
 wall-liquid 
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