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Dynamic models are of central importance in engineering design for many fields of application but, within 
some areas, surprisingly little attention is given to the confidence that can be placed on predictions from such 
models and the implications of model quality, or the lack of it, for design. In recent years the growth of inter-
est in the possible benefits that generic models and model component re-use provide has stimulated new in-
terest in questions of model quality and in the closely associated issues of model testing, verification and 
validation. This paper considers the link between model quality and the quantitative testing of continuous 
system simulation models in product engineering and reviews techniques available for the verification and 
validation of such models. Recent developments and current trends in this field are emphasised, with particu-
lar reference to generic models and the re-use of model components. The paper also considers some of the 
problems inherent in applying rigorous testing and validation procedures. Implications for the education and 
training of engineering students in the areas of modelling and simulation are considered. 

Introduction 
In the context of product engineering applications the 
purpose of a model is to explain complex behaviour, 
to assist in decision-making processes, or to provide a 
basis for design. In creating a representation that is 
appropriate for the intended application there is usu-
ally a trade-off between the level of detail included in 
the model and the speed of solution.  

Continuous system dynamic models for the type of 
product engineering applications under consideration 
in this paper are most often based on the underlying 
physics of the system in question but may, to a greater 
or lesser extent, also involve sub-models that are 
functional input-output descriptions (i.e. “black-box” 
models). These may, in turn, be derived from other 
more detailed physically-based models or may be 
identified from tests carried out on the corresponding 
elements of the real system. The models under con-
sideration thus range from completely transparent 
descriptions based on physical principles, through the 
intermediate “grey-box” descriptions, to the entirely 
empirical black-box form of model. 

For engineering design applications a good model can 
have many possible benefits, including early assess-
ment of performance, both within the normal operat-
ing envelope and beyond it. Understanding of pa-
rameter inter-dependencies and knowledge of key 
sensitivities within the model can also be of critical 
importance for design optimisation. 

Since a model is, by definition, only an abstraction of 
the system it represents, perfect accuracy cannot be 
expected and the key question becomes one of deter-
mining the model quality level necessary for the ap-
plication and assessing the adequacy of a chosen 

model for some intended use.  This implies reducing 
errors to defined levels for specified regions of the 
operating envelope of the system. The role of testing, 
verification and validation procedures can then be 
regarded as defining boundaries within which a 
model must operate to specified levels of accuracy. 
These topics associated with practical issues of model 
testing are thus of central importance in considering 
issues of quality in mathematical models and related 
computer simulations.  
As has been pointed out by Sargent (e.g. [1]), Balci 
(e.g. [2, 3, 4]), Ören [5], Brade [6, 7] and many oth-
ers, model validation cannot be separated from the 
model building process. Model building is iterative 
and, if appropriate methods are used and validation is 
applied at each stage, confidence in the model should 
increase from iteration to iteration.  
In the early stages of a product engineering design 
project relatively simple conceptual models are used 
to examine “what if” situations and allow design 
trade-off studies to be performed. At this stage little, 
if any, formal model validation is possible and, inevi-
tably, the error bounds on model predictions are rela-
tively large. Any assessment of model quality and 
fitness-for-purpose at this point is likely to be based 
on general design experience and on comparisons 
with earlier models of other systems having charac-
teristics that are in some way similar. However, as the 
project moves forward, more complex models may be 
integrated more fully into the design process and 
more and more data should become available for 
model testing. This is likely to involve data at the 
component level initially, then data resulting from 
tests on larger blocks and, at a much later stage, data 
from the testing of complete prototype systems. 
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Thus, as test data become available, a flow of infor-
mation starts to be established from the real system to 
the model, in contrast to the situation at the start of 
the engineering design process where the flow is 
entirely from the model to the system being designed. 
This bi-directional transfer of information is a charac-
teristic of all the later stages of the design and devel-
opment process. It ensures that the model is being 
updated continuously as knowledge about the real 
system is accumulated. 
One important development in recent years has been 
the adoption of a more generic approach to modelling 
in several engineering fields, including power elec-
tronic systems (e.g. [8, 9]) and gas turbine systems 
(e.g. [10]). In this context the word “generic” is de-
fined as meaning “general” or “not specific” and 
implies the use of a standard structure and standard 
building blocks within a model. This approach is 
likely to become more and more widespread and may 
be applied in many different application areas in 
future. The most significant benefit of the generic 
approach is a more rapid and less costly development 
process for new models compared with the conven-
tional situation which involves the development, on a 
one-off basis, of new models for each new design 
task. Other benefits arise because of the fact that the 
development and use of a generic model demands a 
more systematic and rigorous approach to issues of 
model validation together with better documentation. 

Making a model generic in any application area can 
present difficulties. The essential requirements must 
be identified first of all and a suitable framework 
established which provides the necessary flexibility to 
allow a variety of more detailed needs to be satisfied. 
Within the generic approach a given system may need 
to be represented at several different levels of detail at 
different stages of a design project. This means that 
sub-models, representing specific parts of the com-
plete physical system, may need to be available at 
several different levels of complexity, ranging from 
purely functional forms at the initial stage to highly 
detailed and fully validated model components for 
use in the final stages of the project life-cycle. The 
models at different levels of resolution will, inevita-
bly, all have strengths and shortcomings and need to 
be mutually calibrated in some way [11]. Ideally, the 
structures for the different levels of model will be 
directly related and the models at different resolutions 
will form an integrated group. The relationship be-
tween the different levels of each sub-model within 
the generic structure must be fully understood by users. 

Issues that can arise in the development of a generic 
model for a new application area have been consid-
ered in detail in two recent papers dealing with the 
modelling of electro-optic sensor systems [12, 13]. 
The generic model is, in this case, intended to be used 
in the design of specific types of electro-optic sys-
tems such as infra-red search and track systems, mis-
sile warning systems and thermal imager system. 

The approach adopted for these electro-optic applica-
tions involved developing models of specific systems 
as an integral part of the development of the generic 
model. Specific configurations of the generic model 
could then be evaluated and tested, as could modules 
within the generic description. As confidence in the 
generic model increased new modules within the 
generic model structure could be added. However, as 
the generic model became larger it became more and 
more important to avoid major changes in the overall 
structure of the model.  Any modifications to a ge-
neric model of this kind have to be comprehensively 
tested using regressive testing methods, similar to 
those used in software engineering, for particular 
configurations of the model investigated in earlier tests. 

In applying a generic approach to model develop-
ment, a need may arise to create a model of a new 
system, not considered already using an available 
generic structure. This introduces new challenges 
which encourage re-use of established sub-models but 
further test the generic philosophy. If the approach 
fails at any point with a new application then either a 
flaw has been found in the engineering design or a 
limitation has been found in the generic model. In the 
latter case the generic model has to be modified and 
its capabilities extended.  

Modelling errors and uncertainties arise in many 
different ways, including unjustified modelling as-
sumptions, errors in a priori information such as 
parameter values, inaccuracies in the numerical solu-
tion of the model equations and errors in experimen-
tal data. 
Complex simulation models are sometimes developed 
and used without rigorous testing and model docu-
mentation is often non-existent or inadequate. Poorly 
tested and undocumented models also may get passed 
from project to project and thus may end up being 
used in ways that the original model developer never 
intended. This contrasts strongly with accepted good 
practice in the software engineering field where rig-
orous testing, documentation and version control are 
all integral elements of the required process for soft-
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ware development. Such methods do not completely 
eliminate inappropriate or incorrect use of software 
but they do provide a level of regulation that is often 
missing in the case of simulation models. 
The importance of model quality for product engi-
neering applications was highlighted, about fifteen 
years ago, in a UK Office of Science and Technology 
report [14] by the Technology Foresight Panel in the 
Defence and Aerospace sector. This report includes a 
statement that “Improved modelling of physical and 
manufacturing processes will improve our ability to 
predict the behaviour, costs and risks of future sys-
tems and dramatically reduce the development time-
scale”.  The report continues with a statement “While 
it is essential that modelling and simulation is sup-
ported by validation trials, improvements will reduce 
the need for costly and time-consuming developmen-
tal testing” [14]. Since that time phrases such as 
“simulation-based acquisition” and “smart procure-
ment” have entered widespread use within companies 
involved in defence contracts and have been the focus 
of discussions within other sectors of industry. In the 
USA, in particular, the work of the Defense Modeling 
and Simulation Office (DMSO) within the US De-
partment of Defense (DoD), had significant influence 
on issues of model testing and of verification, valida-
tion and accreditation (VV&A) of models. Although 
the role of DMSO has been taken over by the Model-
ing and Simulation Coordination Office (M&SCO) 
the issues of model quality and VV&A methodology 
continue to be given priority. M&SCO is involved 
with annual DoD Modeling and Simulation Confer-
ences and DMSO organised a series of specialist 
workshops involving staff from government estab-
lishments, companies and universities for broad rang-
ing discussions on issues of model quality and tech-
niques for verification and validation (e.g. [15, 16]). 

In the USA a SMART initiative (Simulation and 
Modeling for Acquisition Requirements and Training) 
has also been established which calls for reuse of 
models to promote validity, reliability and efficiency 
of development in areas such as missile systems [17]. 
The US Office of Naval Research (ONR) has also 
been very active in promoting new work in this area, 
especially in the context of power electronic systems 
and electrical drives. ONR has been responsible for 
active support of the concept that “the model is the 
specification” [9]. In other words, it is being sug-
gested that as part of the process of preparing formal 
specifications for complex new systems a simulation 
model has to be prepared and that this model be-

comes the point of reference in determining whether 
or not the performance of the proposed system is 
acceptable (e.g. [18, 19]). This means that modelling 
and simulation activities become a vital element of 
the acquisition process from the Request for Proposal 
(RFP) stage onwards. For the customer, the provision 
of simulation models by competing contractors al-
lows for the comparison of different approaches in a 
quantitative way at the tendering stage. However, 
simulations used for such competitive evaluation 
must have a high degree of transparency and must 
involve similar sets of assumptions.  

US Government laboratories, such as the Los Alamos 
National Laboratory, the Sandia National Laborato-
ries and the Lawrence Livermore National Laboratory 
have large research programmes in the general area of 
model validation methods. Reports on some aspects 
of the work being undertaken in these programmes 
may be found in papers presented at the DMSO 
Foundations `04 V&V Workshop [16]. 

Within this paper general issues relating to model 
quality are first reviewed and this leads to a closely-
related section of the paper in which methods of veri-
fication and validation are outlined. Within a sub-
section dealing specifically with validation a number 
of graphical methods are described, together with 
discussion of quantitative measures and several other 
approaches to model and system comparison and 
model analysis. The control systems applications area 
receives some specific attention. The paper includes a 
section in which important questions of model docu-
mentation are reviewed. This leads to a section in-
volving discussion about the way in which most en-
gineering students are introduced to system modelling 
concepts within their academic studies and to the 
inevitable problems if inadequate consideration is 
given to issues of model verification, validation and 
documentation at an early stage. The final discussion 
section attempts to bring together the most important 
aspects of the review. 

1 Model Quality Issues in Product 
Engineering 

There are good examples, often in safety-critical 
application areas, such as the nuclear industry and the 
aerospace, defence and marine sectors, where rigor-
ous model testing and formal approval schemes are 
routinely applied. However, the model development 
process used within many engineering organisations 
often involves surprisingly little systematic investiga-
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tion to establish the quality of the models in terms of 
their useful range and limits of accuracy. Also, there 
are many cases where models are justified in a spuri-
ous way, possibly on the grounds that the model is 
one that “has always been used” or is “based on well-
established physical principles so must be right” or is 
“based on an industry standard”. 
The use of models that are in some ways inadequate 
for an intended application can often lead to expen-
sive redesign at late stages in the development cycle. 
The more complex the system being developed, the 
more likely it is that problems of this kind will arise. 
Modelling and simulation activities are important 
from the concept development stage through re-
quirements analysis to trade-off studies and detailed 
design. The real system and the associated simulation 
models generally mature together and the level of 
model fidelity should increase as a design and devel-
opment project progresses. Whatever the approach 
being used for design, experience gained with the real 
system should be incorporated into the models at 
every stage. 
Many modern developments in engineering involve a 
“system of systems” design and often require a num-
ber of design teams working together. Such collabora-
tive development work means that there is no longer 
a single “designer” and soundly based, well-
understood and well-documented models are essential 
if all involved in the design effort are to be effective. 

Helicopter flight control system design is one exam-
ple of a field in which model limitations are recog-
nised as a factor that affects the achievable overall 
performance of the system. Here it is accepted that, 
until now, the success of modern methods of design 
has been limited significantly by the accuracy of 
available models for the vehicle (e.g. [19, 20]). Simi-
lar conclusions can be drawn in other application 
areas in which the eventual performance limits of a 
new system relate directly to the accuracy of the 
mathematical model upon which the design is based. 

One of the issues that can arise in discussing model 
quality and validation in the context of control engi-
neering applications is that models used for design 
are often developed using a combination of physics-
based modelling and the experimentally based ap-
proaches of system identification and parameter esti-
mation. For example, the structure of the model may 
be established using physical principles, but values of 
some of the key parameters of the model may have to 
be estimated from analysis of results of experiments 

and tests on the real system. This means that, prior to 
any experimental work aimed at assessment of model 
accuracy, a form of testing might have to be carried 
out as part of the model development process. It is 
therefore vitally important to ensure that data used in 
the system identification and parameter estimation 
stage of model development are not reused at any 
stage to investigate model quality. However, it is also 
important that in designing tests for the external vali-
dation of such models careful consideration should be 
given to the range and distribution of the data upon 
which the identification was based. 

It is thus necessary to distinguish carefully between 
the processes of system identification and parameter 
estimation that are applied for model development 
purposes from the processes involved in establishing 
the quality of the resulting model. The term “model 
calibration” has therefore been introduced to describe 
the processes of parameter estimation and other forms 
of interactive tuning that may be applied to a model 
during its development. Model calibration is not the 
same as model validation and these processes take 
place at different points in the model development cycle. 

2 Internal Verification and External 
Validation of Models 

Reasons for errors and uncertainties in models in-
clude incorrect assumptions, errors in a priori infor-
mation (e.g. model parameter values), errors in nu-
merical solutions of model equations and errors in 
experimental procedures and measurements. Much 
effort has been devoted to trying to separate different 
aspects of the model development, testing and check-
ing process and to categorise simulation model errors 
according to their origins [21]. Nevertheless, uncer-
tainty is inevitable since we do not have a complete 
understanding of the natural world and our measure-
ments and calculations are limited in their accuracy. 
An unvalidated model produces results involving 
unknown and potentially unbounded errors. Even if 
the user has confidence that the model produces accu-
rate answers most of the time, the situations in which 
it does not produce accurate output cannot readily be 
recognised or predicted. 
It is important to be precise about the use of words 
describing the model testing process. It is particularly 
important to distinguish between the processes of 
“internal verification” and “external validation”. The 
words “internal verification” describe a process that 
involves establishing that a computer simulation is 



+++ Simulation Model  Qual i ty  I ssues  in  Product Engineer ing:  A Review +++  t

51

N
SN

E 19/2, A
ugust 2009

consistent with the underlying mathematical model 
while “external validation” is the process of demon-
strating that a mathematical model representing a 
given real world system is adequate for the intended 
application [21]. Internal verification is, therefore, the 
part of the process concerned with establishing 
whether or not the model is solved correctly, whereas 
external validation deals with issues of correctness in 
terms of the structure and parameters of the underly-
ing model description in mathematical and logical 
terms. This convention is completely consistent with 
a well-established set of recommendations made in 
1979 by the SCS Technical Committee on Model 
Credibility [22]. Unfortunately, the words “verifica-
tion” and “validation” are often used in an imprecise 
fashion. There are also specialist areas (especially in 
some defence applications such as missile system 
modelling) where, in the past at least, traditional 
usage by engineers in some countries reversed the 
meaning of these two words, compared with the SCS 
Committee recommendations. It is believed that the 
inclusion of the adjectives “internal” and “external” helps 
to reduce the confusion that may otherwise exist when 
model quality and testing issues are being discussed. 

The processes of internal verification of a simulation 
model are similar to the more general processes of 
software testing [23] and many of the principles and 
methods of software testing can be applied. On the 
other hand, external validation is a more demanding 
and open-ended task that involves comparisons be-
tween the behaviour of the model and the correspond-
ing behaviour of the real system for chosen sets of 
experimental conditions. This can involve quantita-
tive comparisons of the model’s performance with the 
real system or a subjective judgement by someone 
who has a profound understanding of the real system. 

Sargent [24] narrowed the definition to emphasise the 
issue of the accuracy needed for useful model-based 
predictions in the context of a specific application. 
This idea can be extended so that external validation 
is defined as the confirmation that the model output 
has a level of accuracy consistent with the intended 
use. If this type of approach is used, it is important to 
ensure that the required accuracy of the model is 
established prior to the start of the external validation 
process and not as part of that procedure. Thus, it is 
often useful to express the results of external valida-
tion processes in terms of the appropriateness of the 
model for a specific application rather than in more 
absolute terms of a “good” or “bad” description. 

Indeed, one can never prove that a model is valid; a 
model can only be proved to be invalid. 

For external validation, an important distinction has 
also to be made between “functional” validation and 
“physical” validation. The first of these is concerned 
with the development of a model that mimics the 
input-output behaviour of the real system whereas 
physical validation involves establishing the accept-
ability or otherwise of the underlying assumptions 
and approximations [25]. As has been pointed out by 
Hemez [26], perfect matching of all available meas-
ured response data is an unrealistic goal and it is more 
important to ensure that models match available test 
data with a sufficient level of accuracy for the in-
tended application. This helps to ensure that a given 
model reproduces test data with an acceptable level of 
accuracy, while also having a satisfactory robustness 
to uncertainty. Such uncertainty can be associated 
with many factors, including modelling assumptions, 
environmental and model parameter variability or 
ignorance in terms of initial conditions in the real 
system. As in control system design, there tends to be 
a conflict between performance optimality and ro-
bustness optimality in modelling [26]. 

Balci and his colleagues have, in recent years, been 
stressing the importance of expanding verification 
and validation from accuracy-centred assessment to 
assessment which is more quality-centred (e.g. [27]). 
Quantitative measures of model credibility are hard to 
define but discussions about the quantification of 
model credibility may also be found in many sections 
of the book edited by Cloud and Rainey [28], in the 
papers by Brade and Köster [29] and Brade, Maguire 
and Lotz [30] and in the classic textbook on the the-
ory of modelling and simulation by Zeigler, Praehofer 
and Kim [31]. 
There have been many suggestions that model testing 
and accreditation should be more closely linked to 
ideas of software quality assurance in software engi-
neering (e.g. [29]). This implies improvements in 
current tools and technologies and also supports the 
idea that many working in the field of modelling and 
simulation have much to learn from software engi-
neering principles [23]. 

2.1 Methods for External Validation 
External validation of simulation models is compli-
cated by the fact that most models intended for prac-
tical engineering applications involve dozens or even 
hundreds of quantities that are established and input 
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by the user (e.g. as model parameters), making the 
problem space very large. Similarly, most models can 
produce, as outputs, dozens or even hundreds of vari-
ables, each of which is likely to contain different 
levels of error which may also vary with time in the 
case of a dynamic description. Thus, it is important to 
establish, a priori, which of the output variables of a 
simulation model are of most interest to the user of 
the model for the given application. Different users 
will be interested in different performance measures 
in different modelling studies and this emphasises the 
importance of properly matching the model to the 
intended application at the outset and of establishing 
a priori how much error in the results can be tolerated. 

External validation should be considered as an on-
going exercise within the overall modelling process, 
rather than as a one-off procedure carried out at the 
end of the model development cycle. It is also impor-
tant to distinguish between holistic approaches that 
attempt to validate a complete model externally and 
model-component approaches in which external vali-
dation is carried out at a sub-model level at first.  
Both are based on the same general principles of 
external validation but the model component ap-
proach may also involve comparisons with test data 
from component manufacturers. 

Confidence in a prediction is a function of the confi-
dence demonstrated in sub-system models as well as 
in the complete model. This is particularly important 
where sub-system models can be tested experimen-
tally. Exhaustive testing of sub-system models allows 
confidence to be established first at the sub-model 
level and extended gradually to less well-defined 
situations involving testing of the complete system 
model over a range of experimental conditions.  

In the development of entirely new systems experi-
mental data from the complete system cannot be 
available at the design stage. In some cases historical 
data from earlier systems of a similar kind can be 
helpful in the evaluation of the model of the new 
system under development. Successful application of 
this approach depends on good documentation of 
models of the earlier systems and of the tests carried 
out to evaluate those system models. 
Methods of external validation (i.e. the procedures 
used to compare observed and simulated values) can 
be divided into subjective and objective categories. 
The first approach is based mainly on graphics while 
the second one involves quantifying the process 
through specific measures and statistical procedures. 

Graphical methods   for external validation are typi-
cally characterised by plots of simulated values (often 
continuous and represented by a line) and observed or 
measured values (usually discrete and represented by 
points) against an independent variable (often time). 
One important point of detail, sometimes missed by 
inexperienced observers, is that the deviation between 
the simulated and measured values is the vertical 
difference between corresponding points and should 
not be assessed simply as the shortest distance be-
tween the simulated and measured time history curves. 

Another commonly used form of graph involves a 
simple plot of simulated values against the corre-
sponding measured or observed values. Ideally the 
plot should be a straight line at an angle of 45 degrees 
to the axes. Deviations from the ideal are shown by 
the vertical distance between the points and the 45-
degree line and can apply generally to the record as a 
whole or can be specific to certain sections of the 
data. Points above the 45-degree line are clearly over-
estimated in the simulation while any points below 
the line are under-estimated. Although viewed by 
many as subjective, graphical methods are very useful 
and practical in model validation to complement 
quantitative measures. Different graphical methods 
tend to be used in conjunction as different methods of 
displaying information about a model may provide 
different types of insight [32]. 

Quantitative measures   for system and model com-
parison are also very important. The most used devi-
ance measures are the mean-square or mean absolute 
errors. For the case of  sets of measured and simu-
lated values, the mean absolute error is expressed as 
the difference between observed values  and simu-
lated values , by: 

  (1) 

or using the closely related mean absolute percent 
error, given by: 

  (2) 

This is a relative error and is inapplicable if any of 
the observed values happens to equal zero. An obvi-
ous disadvantage of these two measures is their sensi-
tivity to single extreme values.  

Such an approach can be extended to include some 
form of weighting function. This means that errors 
arising in specific sections of the time history can be 
given special emphasis. One such cost function is: 
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  (3) 

where  is a weighting factor and the superscript  
indicates the transpose. 

A measure that has received particular attention for 
external validation applications in a number of differ-
ent application areas is Theil’s Inequality Coefficient 
(TIC), which is defined as: 

  (4) 

This measure has an advantage in providing values 
that lie between zero and unity, with values of TIC 
close to one indicating sets of model and system data 
that are very different. Values of TIC close to zero 
indicate small differences between the model and the 
system time histories. 

Other scaled measures are commonly used for com-
paring model and measured system time histories. 
Measures based on statistical techniques have re-
ceived attention in the context of model structure 
assessment. In particular, step-wise regression and 
spectral techniques have been used for a variety of 
practical modelling investigations [21].  

One approach, which can be used with benefit in 
cases where relatively complex models are being 
considered, involves taking a number of key meas-
ured system or sub-system quantities and plotting 
these as radial lines on an appropriately scaled polar 
diagram. The length of each line is proportional to the 
corresponding measure. By constructing a polygon of 
model measures and a polygon of experimentally 
determined results from the real system on the same 
polar diagram an immediate indication of overall 
model quality is obtained. It should be clear from a 
comparison of this kind which aspects of the system 
are represented most accurately and which areas of 
the model require further investigation. Such dia-
grams also provide a good way of displaying results 
from sensitivity analysis of a model.  The distortion 
of the model polygon following a specific imposed 
change is a useful indication of the overall effect on 
the model. Polar diagrams of this kind have been used 
successfully in the context of model testing for elec-
tro-optic sensor models [13] and have been consid-
ered in the context of fault detection applications as 
well as in other model testing situations [33]. Al-
though developed independently for the purposes of 
model test visualisation, these diagrams have many 
features of Kiviat diagrams which are used in soft-

ware engineering for visualisation of different metrics 
associated with software performance and computer 
hardware evaluation. 
All of the quantitative measures mentioned above can 
also be applied to situations in which one model is 
being compared with another. This is really a form of 
verification rather than of external validation. It can 
arise in situations where a complex, computationally 
demanding and externally validated simulation model 
exists but there is a need to derive and test a simpler 
form of representation which runs on the computer 
significantly faster. Clearly, the measures and visuali-
sation techniques discussed above can be helpful in 
the testing and assessment of candidate models in this 
type of situation, which arises frequently in the de-
velopment of simulation models that are capable of 
running in fast timescales, including some real-time 
applications. An example of this kind may be found 
in some recently published work of Zenor et al. [34] 
describing the development of a multi-rate simulation 
of an underwater vehicle and associated electrical 
drive system. 

2.2 Other Approaches to Model and System 
Comparison 

In some situations, expert opinion plays a vital role in 
evaluating the suitability or otherwise of a simulation 
model. For example, a test pilot can quickly establish 
problem areas in a flight simulator or an experienced 
plant operator can identify features of a process simu-
lation that do not fit well with his or her knowledge 
of real process behaviour. In some situations anima-
tion can be very helpful in allowing such experts to 
pinpoint problem areas. Critical examination and 
correct interpretation of simulation model behaviour 
from multiple time-history plots is generally far more 
difficult than viewing the model output in terms of an 
animation. 
Complications arise with methods based on response 
comparisons when several output variables have to be 
considered simultaneously or when measurement 
noise is significant. Methods based on system identi-
fication provide a useful alternative to more direct 
comparisons and can be particularly helpful in giving 
physical insight about model limitations. The concept 
of identifiability can also be useful in the design of 
model validation experiments. Other tools, such as sensi-
tivity analysis, have also been shown to be valuable [21]. 

Sensitivity analysis can be very important in another 
way. One very practical approach to external valida-
tion (once adequate agreement has been achieved 
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following model calibration activities using system 
identification tools or other techniques for tuning), 
involves examining and comparing the effect of 
changes in the system and the model. For example, in 
a mechanical system this might simply involve add-
ing mass to some element of the system and changing 
the corresponding parameter of the system model to 
test whether the system and model behave in the 
same way following this modification. If the behav-
iour is not the same (to some appropriate and prede-
termined level of agreement) the model will have to 
be reviewed in terms of its structure and parameters. 

Although a generic model can never be fully vali-
dated, specific versions of the model can be tested 
using the general principles of external validation and 
the measures outlined in Section 2.1 above. More 
detailed discussion of issues that arise in the testing 
and external validation of reusable and generic mod-
els may be found the work of Malak and Paredis [35]. 
In the context of automated material handling system 
design, the paper by Mackulak, Lawrence and Colvin 
[36] provides useful quantitative information about 
the benefits of simulation model reuse in terms of 
model building and analysis for semiconductor mate-
rial handling applications and provides useful com-
ments on issues of validation in this type of applica-
tion. Further discussion of the problems inherent in 
validating generic models may also be found in [12] 
and [13] for the specific case of electro-optic system 
models.  

3 Engineering Control Systems 
Applications 

Issues of model accuracy have for long been recog-
nised as important in the design of high-performance 
automatic control systems (e.g. [37, 38]). For high-
performance feedback systems it is important to have 
highly accurate linearised models of the controlled 
system (the “plant”) in the frequency range close to 
the cross-over region. This is the part of the range 
where the phase lag for the forward path system 
transfer function approaches 180 degrees. Model 
uncertainties within the cross-over region can pro-
duce problems in attempting to meet given perform-
ance specifications in the closed-loop system. 

Much research has been carried out in recent years on 
frequency-domain modelling for robust control de-
sign (e.g. [39]) and on plant model validation by 
means of system identification methods [40]. How-

ever, relatively little consideration has been given to 
problems of design in highly integrated systems 
where the traditional division into a “plant” and a 
“control system” becomes unclear. In particular, we 
need to consider how we can ensure quality in models 
that are used for controller design when the plant 
itself has not yet been completed and is being de-
signed specifically to provide enhanced control capa-
bilities. These are fundamental questions that have 
already been encountered in the design of advanced 
aircraft where “control-configured” design has be-
come commonplace. They are likely to have to be 
addressed in many other control application areas in 
the future. It is generally accepted that an integrated 
approach to design should involve the use of generic, 
externally validated and re-usable sub-models. This is 
an important issue that is receiving attention in many 
areas of engineering. 

External validation presents particular problems when 
considered in the context of highly integrated sys-
tems. Validation must be iterative and must be carried 
out in different ways at a number of different stages 
within the complete design process. With conceptual 
models at the initial stages of the design process, 
external validation can only be carried out in a gen-
eral way. As details of the systems start to evolve 
validation may necessitate comparisons of reduced 
models suitable for control system design with com-
putationally more intensive models [41]. At a later 
stage, detailed testing of sub-systems and hardware-
in-the-loop simulation comparisons should become 
possible. Comparisons may also be made with models 
that formed the basis of earlier designs of a similar type.  

Models are also important for systems that provide 
automatic fault detection and fault isolation. The 
critical issue in such systems is to be able to detect 
faults whenever they occur but avoid false alarms. 
Fault detection systems that are based on models 
usually involve monitoring of residuals formed from 
the differences between corresponding system and 
model variables. Ideally such residuals are zero in the 
absence of any fault condition and take non-zero 
values when a fault occurs. However, non-zero re-
siduals can also arise from measurement noise, un-
measured process disturbances and modelling errors. 
Appropriate threshold levels for declaration of a fault 
condition must therefore be chosen. The issue of how 
to avoid false alarms due to model inadequacies is an 
important one in such fault detection systems and is 
closely linked to questions of external validation. 
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4 Model Documentation 
External validation processes do not end when a 
model is accepted for a particular application. Model 
documentation, as with documentation of computer 
software, must allow for changes and further devel-
opment of the system. Understanding about the limi-
tations of a given model can increase considerably 
during the application phase of a design project and 
documentation should be properly updated and main-
tained for the whole life cycle of the project. This 
documentation may also be helpful for later devel-
opments involving the design of similar systems. 
Brade [7], as well as emphasising the need for more 
meaningful documentation and criticising the present 
lack of quality assurance as an integral part of the 
model development process, discusses at some length 
the potential and current limits of documents such as 
the Verification, Validation and Accreditation Rec-
ommended Practices Guide of the US Defense Mod-
eling and Simulation Office [42]. 

Items in the record for a given model should include 
the purpose of the model and the intended applica-
tion, a full model description and the corresponding 
computer simulation code where applicable, a list of 
all the assumptions and approximations in the model, 
details of tests carried out on the real system, details 
of checks carried out to ensure that the computer-
based representation or simulation matches the 
mathematical description (the process of internal 
verification) and details of external validation proc-
esses applied along with the reasons for accepting or 
rejecting the model. The documentation should also 
include statements about the range of applicability of 
each accepted model.  

The process does not end with the decision to accept 
a model for a particular application. As with the 
documentation of computer software, the system of 
model documentation must be capable of accommo-
dating changes and must be updated and maintained 
for the whole life cycle of the system represented by 
the model. Regressive testing of models is as impor-
tant as regressive testing in software projects.  

5 Implications for Engineering 
Education 

Methods of model development and testing being 
applied in industry at present can only be improved if 
those involved in education recognise the need for 
change. Engineers are usually introduced to mathe-

matical modelling and encounter computer-based 
modelling and simulation methods early in their uni-
versity education. However, the teaching of system 
modelling methods too often stops with the formula-
tion of equations from physical laws and principles or 
by system identification and parameter estimation 
methods. Students are not forced often enough to 
consider what constitutes a good model and issues of 
model quality are too often glossed over. Indeed, 
model evaluation, if considered at all, is often pre-
sented as an afterthought rather than as an essential 
part of the iterative process of model development. 
Students need to appreciate that correction for model 
inadequacies can be expensive and time consuming if 
it is left to the implementation and final testing stage.  

In the words of Hardy Cross, a former Professor of 
Civil Engineering at Yale, “… an important duty of 
teachers is to force students repeatedly back into the 
field of reality and, even more, to teach them to force 
themselves back into reality” [43]. Students must 
develop an understanding of the limitations of models 
and for this they need to make critical comparisons of 
models with real systems. They also need to be re-
quired to document models and model testing proc-
esses in the same way that they are required to docu-
ment software that they prepare and test as part of 
their course-work. 

6 Discussion 
Validation may be defined as the process of assessing 
the credibility of a simulation model within its in-
tended domain of use:  

1. by establishing whether the simulation model is a 
correct representation of the underlying mathe-
matical or other formal description (internal veri-
fication), and 

2. by estimating the degree to which this model is 
an accurate representation of the real-world sys-
tem for the intended use (external validation). 
Whatever the engineering application, the more 
demanding the system specification the more 
important it is that adequate consideration be 
given to these questions that involve issues of 
model quality.  

All models have limitations and the purpose of vali-
dation must be to properly define and understand 
those limitations. However, any practical validation 
investigation can cover only a finite, and often rela-
tively small, number of test cases. Thus, one should 
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never attempt to prove that a model is correct under 
all sets of conditions. Instead, a degree of confidence 
should be established in the model so that its results 
can be recognised as being reasonable for the objec-
tive for which it has been developed. General state-
ments about the validity or quality of a model are 
therefore inappropriate without reference to its appli-
cation and the range of conditions considered. One of 
the inherent problems is the fact that quantitative 
measures of model credibility are hard to define and 
as models become more complex there are increasing 
problems of visualisation. 
Continuing research on improved procedures for 
model development, enhanced computing environ-
ments and systematic processes for assessing, correct-
ing and documenting models that are used in engi-
neering design is important. It is also essential that 
work is directed towards further developing and 
maintaining libraries of validated simulation models 
and commonly used sub-models. This is particularly 
important in terms of being able to fully exploit the 
benefits of model re-use and the development of 
generic models. 
A strategy is needed to ensure that modelling tech-
niques are properly applied and more effort is needed 
in all of these areas if we are to reduce development 
times and costs. The current situation in system mod-
elling contrasts strongly with accepted good practice 
in the software engineering field where rigorous test-
ing, documentation and version control are an integral 
part of the recommended processes of software de-
velopment. 
Ideally, what we need is some way of producing con-
fidence intervals for model predictions. Although this 
goal may be elusive in the case of general nonlinear 
physics-based parametric simulation models, it is 
interesting to note that in the Gaussian Process (e.g. 
[44]) type of nonlinear non-parametric model such 
additional information is readily available. Also, for 
linear models, the use of coherence estimates within 
frequency-domain descriptions of system outputs 
allows determination of the range of frequencies over 
which the linear model is applicable (e.g. [20]). More 
research aimed at applying such techniques to practi-
cal engineering problems and developing better ways 
for assessing the accuracy of predictions from nonlin-
ear physics-based models is essential. 
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