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Efficient Validation of Process-based Simulation Models 
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Validation is often time-consuming for simulation models of complex systems especially if failures indicat-
ing discrepancies between the system and the corresponding model occur rarely. Some failure types can be 
detected on the basis of the model’s structure employing corresponding efficient techniques. In this paper we 
present some techniques used in the Collaborative Research Centre 559 (“Modelling of Large Logistics 
Networks”) for the validation of process-based simulation models. These techniques are based on efficient 
algorithms from the Petri net area, but details are completely hidden from the end user by means of a corre-
sponding toolset. Here we present some internals showing how specific aspects of simulation models can be 
validated efficiently. 

Introduction 
Building simulation models of complex systems is a 
non-trivial task. On the one hand the modeler has to 
abstract from several details, on the other hand he 
needs to capture those characteristics of the system 
which are relevant for the analysis objective. The task 
even gets more difficult if not fully automated sys-
tems being influenced by human decisions and inter-
actions have to be modelled. The main problem is 
that a simulator is usually a computer program which 
runs fully automated so that human influence must be 
captured by rules readable by machines. In the course 
of the Collaborative Research Centre 559 “Modelling 
of Large Logistics Networks” (CRC 559; [1, 2]) we 
made the experience that during the construction of a 
simulation model several interim versions of the 
model do not correctly reflect the system behaviour. 
We found that various discrepancies between the 
system and the model can be discovered by investi-
gating functional properties [1, 3, 4]. An example is 
the occurrence of (partial) deadlocks in the simulation 
model which do not appear in the real system. Espe-
cially in models of logistics systems such functional 
deficits/failures are based on an incorrect modelling 
for example of human behaviour. A case in point is 
the well-known concurrent use of a limited number of 
resources, which are allocated one by one and are 
only released after having been used (e.g. think of a 
truck driver who needs a forklift and a free ramp for 
unloading). The resultant deadlocks are well-known 
effects in fully automated systems and corresponding 
simulation models, but normally do not happen in 
humanly controlled systems. 
Certainly, there are several methods for the validation 
of simulation models (e.g. [5, 6]), but they are often 
based on the inspection of simulator executions 

which is time-consuming for large models and in 
particular if the functional deficits occur rarely. One 
could think that such rare events can be neglected, 
since an experienced modeller will detect them in 
case they really happen, but there are situations where 
such deficits will go unnoticed. E.g., if faulty simula-
tion models are used in optimisation procedures [7] 
“optimal” areas might remain undiscovered or, e.g., if 
(parts of) the simulation models are used as a basis 
for automated code generation of system control 
programs the functional deficits are carried over to 
the real system. In a nutshell, it seems advisable to 
eliminate such functional deficits from the model. 

As mentioned, the usual testing of simulation models 
is time-consuming concerning the detection of rarely 
occurring failures, but some failure types can be de-
tected by inspecting the model’s structure which can 
be done efficiently. In this paper we present corre-
sponding techniques which help to validate simula-
tion models with respect to failure types concerning 
boundedness, liveness and ergodicity of the simula-
tion model. As a base model world we use the proc-
ess-based model world ProC/B, which has been used 
within the CRC 559 for the modelling of logistics 
systems [8]. ProC/B is a modelling language associ-
ated with a toolset (cf. Figure 1) which performs 
validation and simulation of models at the push of a 
button and hides analysis-specific details from the 
end user [8, 9]. Here we will look behind the scenes. 
The detection of functional deficits in ProC/B models 
is done by mapping those models to Petri nets (PN) 
keeping essential characteristics [3, 4]. Petri nets [10] 
are distinguished by very efficient algorithms for 
checking functional properties and we show how 
these algorithms can be employed for the validation 
of ProC/B simulation models.  
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This paper is organised as follows: In the next section 
we briefly introduce the ProC/B model world fol-
lowed by the main section (Section 2) of this paper 
where we present an efficient procedure for the vali-
dation of ProC/B models. After discussing the general 
approach we describe the validation in detail with 
respect to three functional properties: boundedness, 
liveness and ergodicity. The paper ends with the con-
clusions in Section 3. 

1 ProC/B 
Process chains are established for the modelling of 
logistics networks and also have been the core para-
digm within the CRC 559 [11, 12]. ProC/B is a for-
malization of a subset of this paradigm and was de-
veloped with the intention to support an automated 
analysis of corresponding models accentuating per-
formance aspects. The philosophy of ProC/B is to 
describe system behaviour by process chains and 
system structure by functional units. Figure 2 and 
Figure 3 present a typical example of a ProC/B model 
[3]. The model is hierarchical and represents a freight 
village. The top level of the model is shown in Figure 
2 where the behaviour of two process types (trucks 
and trains) is described by corresponding process 
chains. A process chain consists of several activities 
modelled by so-called process chain elements 
(PCEs). A PCE might specify amongst others a pure 
delay of the process or the call of a service. Services 

are offered by functional units (FUs) and are de-
scribed again by process chains whose activities 
might use services offered by other internal FUs. 
Figure 3 displays the internals of the FU Terminal 
whose services are used by trucks and trains (cf. Fig-
ure 2). The hierarchical description ends at pre-
defined, so-called standard functional units (cf. Fig-
ure 3). ProC/B models might contain two types of 
standard FUs: servers and counters. Servers (see 
forklifts in Figure 3) model timing aspects and their 
behaviour is similar to that of queues in a queuing 
network. Counters (see storage in Figure 3) model 
space and a request to a counter is immediately 
granted if the result respects upper and lower bounds, 
otherwise the calling process gets blocked until the 

 
Figure 1. ProC/B Toolset. 

Figure 2. Freight village example. 

Figure 3. Internals of Function Unit Terminal. 
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change becomes possible. For more details on ProC/B 
and this specific example we refer the reader to [3] 
and [8]. As one can imagine ProC/B offers the possi-
bility to describe systems such precisely that an 
automated analysis is possible. 
The modelling and analysis of ProC/B models is 
accompanied by a toolset which offers a graphical 
user interface for description and several analysis 
modules (see Figure 1). Analysis is done by trans-
forming the model specification to the input lan-
guages of other tools thus using their analysis capa-
bilities. One such transformation concerns a mapping 
of ProC/B models to Petri nets. Since an exact map-
ping would be too complex, only those parts of 
Proc/B models are captured by the mapping which 
are primarily relevant for the analysis objectives. 
E.g., most variables occurring in the ProC/B model 
are ignored for the transformation, but synchronisa-
tion constructs are considered. Therefore, the output 
of the analysis algorithms might result in so-called 
non-faults, i.e. faults which hold for the Petri net, but 
are not occurring in the ProC/B model. Nevertheless 
such faults or their absence hint at non-validity or 
validity of the ProC/B model. 

2 Validation of ProC/B Models 
ProC/B was developed with user-friendliness in mind. 
It can be used by non-experts to form even complex 
models of logistics networks and their working proc-
esses. Surely with increasing complexity of the model 
also the possibility of errors in the model increases 
and appropriate support is needed. The ProC/B Tool-
kit features several techniques for the validation of 
models. The methods we present in the following do 
not intend to check, e.g., whether an accurate repre-
sentation of input data has been chosen, but try to 
support a plausibility check for the model internals. 

2.1 General Approach 
Validation of ProC/B models is here based on a trans-
formation from process chains to Petri nets. Figure 5 
shows how validation is performed: An existing 
ProC/B model is converted to a Petri net model. The 
new representation is used for validation with respect 
to Petri net properties. In particular support is offered 
for checking boundedness, identifying deadlocks and 
searching for non-ergodic behaviour. The applied 
techniques are completely hidden from the user, so no 
knowledge on Petri nets or any functional property is 
required. The first step in the validation process is to 
transform the ProC/B model to a Petri net representa-
tion. For each language element there is a blueprint of 
PN parts to be placed instead of the original element. 
For example, Figure 4 is the original ProC/B model 
of a typical stock-keeping scenario. The correspond-
ing Petri net is shown in Figure 6. 

Details on the transformation can be found in [3, 4, 
8]. Petri nets, originally introduced by Carl Adam 
Petri [13], are a formalism for the description of con-
currency and synchronisation aspects in systems [10]. 
They describe behaviour of systems by the states that 
can occur, but usually neglect timing aspects, al-
though variants of Petri nets exist which also consider 
time (see e.g. [14]). A common variant of Petri nets 
are so-called Place-Transition nets. A Place-
Transition net is a five-tuple  
which can be interpreted as a graph containing two 
different types of nodes: places P and transitions T. 
Connections are defined by two incidence matrices: 
backward incidence matrix  
and forward incidence matrix . 
If  an arc with weight  leads from place  to 
transition . Similarly, element  gives the weight of 
an arc from transition j to place i. 

 
Figure 4. Two processes supplying a storage. 

 
Figure 5. PN techniques for the validation  

of ProC/B models. 
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Places are initially marked with the contents of the 
positive vector . A graphical representation 
of Petri nets uses circles for places and bars for transi-
tions. The positive elements of the incidence matrices 
are shown as directed arrows given a weight. The 
marking  of a place  can be seen as tokens 
placed on the place as solid dots. 
Enabled transitions change the marking of places that 
are connected by arcs via “firing”. Transition j is 
enabled in marking  if there are enough tokens 
available on input places:  with  as the 
j-th unit vector. Firing transition t will destroy  
tokens from all input places and generate  
tokens on the output places.  
Figure 6 shows the Petri net derived from the storage 
system in Figure 4. It contains four transitions A-D 
and three places a, b and c. Transition A has two out-
going arcs, while place b has two incoming and two 
outgoing arcs. There are arcs with weights , 
specifying that adjacent transitions produce or con-
sume multiple tokens per firing. In a concrete ProC/B 
model -  will be concrete values, but we will keep 
the notation with variables in the following to con-
sider different modelling failures. In case the model 
specifies stocked or removed storage units by random 
variables, average or user specified values will be 
used in the Petri net representation. 
Markings are central in Petri net theory as they ex-
press the state of the net. One goal of Petri net analy-
sis is to check whether unwanted markings can be 
reached. The set of all reachable markings is given by 
the initial marking  and the firing rule specifies 
which markings can be reached from a given marking 
by firing transitions. The total effect firing transitions 
have on the marking is described by the incidence 
matrix 
   

For example, the incidence matrix  of the storage 
system can be written as: 

   

The effect of firing transition  at marking  is given 
by the -th column of matrix  and can simply be 
calculated as follows. Let  denote the -th unit vec-
tor. Then the product  gives the -th column, so 
that the successor  of a marking  can be calcu-
lated by 
  

Since for every reachable marking there exists a fir-
ing sequence of transitions, the corresponding unit 
vectors can be subsumed in a linear combination  
(Parikh vector [15]).  
Thus the state equation of a Petri net with initial 
marking , firing vector  and incidence matrix  
can be written as 
  

Some very efficient Petri net analysis techniques are 
based on the investigation of this incidence matrix . 
For example, the state equation gives us a necessary 
condition whether a marking  related to an un-
wanted model state can be reached. E. g., setting 

 gives 

  

and if no positive integer solution for  exists then 
 can not be reached from the initial marking . 

Another option for Petri net analysis are reachability 
graphs. Reachability graphs have markings as nodes 
and two nodes  and  are connected with a di-
rected arc labeled  if marking  is reachable by 
firing transition  enabled in . A reachability 
graph can be constructed by generating the reachabil-
ity set  starting at initial marking  as 
the root node and adding reachable markings as 
leaves for each enabled transition. This step is re-
peated at the leaves and the resulting tree is later 
simplified to a graph  by merging 
equivalent nodes. Usually properties of a Petri net are 
defined on the basis of the reachability graph/set, so 
that its generation is a common option for analysis in 
case the set is finite which means that the Petri net is 
bounded (cf. Section 2.2). The main problem is that 
even simple Petri nets can have large reachability 
graphs/sets and their handling would require a lot of 
memory and CPU time.  

  
Figure 6. Petri net representing two process  

chains and one storage. 
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Petri net theory also offers other analysis methods 
that can be chosen according to the actual require-
ments and area of application. The following two 
properties are checked with a very prominent tech-
nique based on the inspection of the structure of the 
Petri net, namely invariant analysis.  

2.2 Boundedness 
Boundedness is a property of Petri nets useful to test 
models of production and storage systems.  
In the logistics model world, a bounded system will 
output the same number of goods as the number of 
goods entering it (or for manufacturing systems: be at 
least in a fixed relation). Several types of errors can 
occur when this property is not satisfied: imagine the 
model is faulty in the way that goods are not removed 
when they are accomplished. Concerning Figure 6 
this might happen if  which might 
cause the number of tokens on place b to increase to 
infinity. Showing that the number of goods is not 
bounded would indicate that the modeler has forgot-
ten to organise the outgoing transports in an appropri-
ate way.  
A Petri net PN is called bounded if the number of 
tokens on each place is upper bounded by  at every 
reachable marking, i.e. 
  

With a limited number of tokens at each place the set 
of reachable markings is also bounded:  
  

Since almost all logistics systems (and thus ProC/B 
models) are open systems, those systems are not 
bounded in principal. Nevertheless checking for 
boundedness in an appropriately modified model 

helps to find modelling errors. As part of our valida-
tion approach the Petri net is modified to a closed net 
by short-circuiting the transitions representing the 
source and the sink of a process chain. The result of 
this modification on the net in Figure 6 is shown in 
Figure 7. Since we now have a closed Petri net check-
ing for boundedness makes sense. 

A sufficient condition showing the boundedness of 
the Petri net can be deduced from the state equation. 
Multiplying the equation with  we get 
  

and choosing a vector  with   establishes 
a condition on all reachable markings: 
 . 

Such a vector  is called a place invariant.  

Place invariants covering places  with  fix 
the ratio of tokens on places no matter which marking 
is reached. A Petri net is said to be covered with a 
positive place invariant  if  

    and   . 

The existence of such positive invariants gives us a 
sufficient condition for boundedness: a Petri net is 
bounded when it is covered by a positive place in-
variant implying that the weighted number of tokens 
is constant at all markings.  
We are going to check  (cf. Figure 7) for bound-
edness. The new incidence matrix  of the modified 
net of Figure 7 is: 

  

For general values of - , place invariants of  
are ,  because 

. Invariants  and  do not 
cover place b as there is no linear combination of 
invariants (which is itself an invariant) covering the 
second element. The uncovered place b is associated 
with the ProC/B storage in Figure 4 and the ProC/B 
toolset will mark model elements that are not covered 
with invariants as potentially unbounded. The user 
has the option to resolve this warning, e.g. by setting 
a limit for the maximum storage capacity. 

This step might be unnecessary when each process 
loads the same number of goods it unloads, i.e. if 

 and . Under these conditions there are 

 
Figure 7. Modified Petri net . 
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two more invariants,  and 
. They can be combined to 

 covering all 
places in .  In this case the ProC/B toolset would 
not output a corresponding warning, indicating that 
the situation seems to be basically modeled correctly. 
2.3 Deadlocks 
Deadlocks might be caused by processes being de-
pendent on each other and concurrently waiting for 
each other. This is a good example of errors easily 
solvable by humans and being problematic in com-
puter simulations [16]. Consider the load-
ing/unloading process model of Figure 4 and the 
derived closed Place-Transition net  of Figure 7. 

 deadlocks if  since eventually a 
marking  will be reached with  
  

Thus also transitions C and D representing loading 
processes have to stop. In the real system these load 
processes might represent trucks or trains which have 
to pursue a tight timetable and surely there will be 
some responsible person, e.g. the driver, solving this 
“deadlock situation”. Even though the original 
ProC/B model represents an open system and thus 
will not deadlock, the occurrence of a deadlock in the 
closed Petri net indicates a model aspect which 
should be checked by the modeller.  

Deadlocks are related to the liveness property. A 
transition  is live at marking  if  
 , 

i.e. that one can always reach a marking, starting 
from , so that transition  is enabled. A Petri net is 
live if all transitions  are live at all reachable 
markings of the Petri net. Obviously, in a live Petri 
net no deadlocks can occur. 
Invariant analysis gives a necessary condition for 
liveness. After checking the closed loop net  for 
boundedness we know that its reachability set is fi-
nite. The corresponding finite reachability graph thus 
consists of one or several strongly connected compo-
nents and in each such component all transitions must 
occur as labels if the Petri net is considered to be live. 
Since we can reach any node/marking in a strongly 
connected component from any other marking of this 
strongly connected component, each marking m can 
be repeatedly reached. In terms of the state equation 
this means 

  

which only holds if  Such a vector  is 
called a transition invariant. If a bounded Petri net is 
live then one can show that it is covered with at least 
one transition invariant  [14, 15]. This implies 
that if one does not find a positive solution  for  

 the Petri net is not live.  
A valid transition invariant for the net  in Figure 
7 is  assuming . It covers transi-
tions A and C belonging to process A. Both transi-
tions are live when the loaded quantity equals the 
unloaded. Of course, a similar invariant 

 under condition  exists for transitions 
B and D. With  and   is also an 
invariant covering all transitions and a closer inspec-
tion shows that  is live. Apart from the symmetric 
case  and , invariant 

 exists assuming goods are ex-
changed between both process chains and  and 

.  e.g. holds if  and . So in 
summary, the closed Petri net of Figure 7 is only 
covered by positive transition invariants if the quanti-
ties for unloading and loading match. The ProC/B 
toolset will mark corresponding uncovered ProC/B 
model elements thus indicating those model parts 
which should be inspected more carefully by the user. 
Coverage by positive transition invariants is a neces-
sary condition for liveness in bounded Petri nets. 
There are also Petri net techniques available giving 
characterising conditions for liveness or the existence 
of deadlocks. We only want to mention two here: the 
investigation of special classes of Petri nets (see [14, 
17]) and the partial exploration of the reachability 
set/graph (cf. [18]). 
Net classes are specified by imposing restrictions on 
the interconnection of places and transitions. For 
several net classes checking for deadlocks or liveness 
can be done very efficiently on the basis of the net’s 
structure. As an example we consider the net of Fig-
ure 8, which belongs to the class of state machines. 
The net class of state machines contains Place-
Transition nets with transitions having only one in-
coming and one outgoing arc. Let  be the set of 
input places and  the set of output places of transi-
tion . A Place-Transition net is called a state 
machine if and only if 
  

Figure 8 shows an example of a state machine . 
The criteria for liveness in state machines is that the 
net considered as a graph is strongly connected and 
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. One characteristic of state machines is that 
firing does not change the number of tokens in the 
whole net, i.e.  

  

and thus obviously a live state machine is also 
bounded. A token on a place will always enable at 
least one transition, so the net is live at  with just a 
single token that can move around freely. Therefore 
the initial marking with one token as shown in Figure 
8 gives a live Petri net . Similar conditions 
based on the structure of the net are known for other 
net classes as well (cf. [14]). 

The stubborn set method [18] is a method which only 
needs to partially explore the reachability graph of the 
Petri net in order to verify for specific properties, e.g. 
the absence or existence of deadlocks. The main idea 
is that only a small part of the state space is explored, 
and the exploration is made such that all deadlock 
states of the whole reachability graph are also part of 
the smaller subset. Looking for deadlocks is then only 
necessary in the smaller subset. 

2.4 Non-Ergodicity 
Non-ergodicity can be observed in models of logistics 
networks in situations with an interdependence be-
tween two or more processes. This interdependence is 
typically caused by a synchronisation between the 
processes or by stock-keeping scenarios. 

Figure 9 shows a very simple process chain model 
consisting of two process chains and a storage. The 
upper process chain unloads goods to the storage, 
while the lower process chain loads goods from the 
storage. In this scenario process A can be interpreted 
as a server for process B and vice versa, since process 
A delivers goods that are loaded by process B and 
process B frees storage space needed by process A to 
unload. Assume the case  and that arrivals of 

process A occur at rate  and arrivals for process B at 
rate . Then  is the service rate for process A and  
the service rate for process B. From queueing theory 
it is known that for process A (with arrival rate  and 
service rate )  has to hold for a steady-state 
distribution to exist.  At the same time the condition  

  has to hold for process B, which already dem-
onstrates that this type of situation is problematic. 
A similar situation occurs here if the average number 
of delivered and loaded units differ, i.e. if . 
Non-ergodicity implies that the steady-state distribu-
tion does not exist and thus non-terminating simula-
tions are useless for those models.  In general non-
ergodicity is not a surprising effect when dealing with 
overload situation to determine the model’s peak 
performance. In these cases an appropriate choice of 
model parameters yields an ergodic model, but for 
logistics networks typical situations exist (cf. Figure 
9) where non-ergodicity is an intrinsic characteristic 
of the model and cannot be avoided by selecting 
different parameters for e.g. the interarrival times. In 
most of these cases non-ergodicity implies an incor-
rect modelling of the system resulting from the negli-
gence of characteristics of the system. 

 
Figure 8. State Machine .  

 
Figure 9. Simple non-ergodic process chain model. 

 
Figure 10. Simulation result of a non-ergodic model. 
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Figure 10 shows a simulation result of a non-ergodic 
model of a freight village taken from [3]. The figure 
indicates that non-ergodicity is difficult to detect by 
simulation, since the result seems stable for a long 
period of time and the simulation might even have 
been stopped before the non-ergodic behaviour be-
came visible from the results. Hence, it would require 
very long simulation runs and a large amount of CPU 
time to detect non-ergodic behaviour by simulation, if 
it is detected at all. 
For Petri nets an efficient technique for the detection 
of potentially non-ergodic models is available [19] 
which is based on rank computations for the inci-
dence matrix of the Petri net. This technique can also 
be applied to process chain models as described in [3]. 

Let  denote the number of transitions of the Petri 
net and  be a vector counting the number 
of transitions firing in the time interval . For an 
ergodic Petri net the mean firing flow vector  
  

exists and the expected input flow of tokens at a place 
equals the expected output flow, which can be ex-
pressed using the incidence matrix  resulting in 

. The kernel of matrix  is defined as  

  

and thus  is in the kernel of .  

In general the computation of  is difficult, but for 
some transitions the corresponding values of  can 
be determined easily. This holds for source transitions 
and sets of transitions that partially exhibit an Equal-
Conflict (PEC set), i.e. for transitions with the prop-
erty that at any marking either all or none of those 
transitions are enabled. 

Figure 11 shows the Petri net representation of the 
process chain model from Figure 9. For the two 
source transitions the components of vector  can be 
determined easily and a computation of the basis of 
the kernel of the incidence matrix shows that the 
firing rates of those transitions are dependent. The 
basis of  is given by  for 
the Petri net from Figure 11, where the first three 
entries correspond to the transitions of process A and 
the last three entries to the transitions of process B, 
implying a dependence between the source transitions 
(here  has to exist with  and ). 
Thus, the Petri net of Figure 11 is sensitive towards 
small changes of the firing rates of the two source 
transitions. 

This kind of sensitivity is called e-sensitivity in [19] 
and indicates potential non-ergodic nets. Furthermore 
a formal criterion for detecting such nets is given. Let 

 be a basis of the kernel and  a PEC set. 
Then a Petri net is e-sensitive if 

  

holds, where  denotes the projection of vector  
onto . 
For potentially non-ergodic nets the approach identi-
fies a set of transitions implying e-sensitivity. Since 
each of the transitions corresponds to an element of 
the process chain model, they can be used to identify 
the critical part in the process chain model. 

Applying this approach to the model of the freight 
village introduced in Section 1 identifies the model as 
being potentially non-ergodic too. As already men-
tioned this hints at an incorrect modelling of the sys-
tem, e.g. we ignored existing time tables and delivery 
schedules for the trucks and trains in this model. 

Ergodic models can be found when restrictions on 
concrete values are modified. Figure 12 shows an 
ergodic system if e.g.  with 

, . The loading process chain element of 
process B uses the alter-or-skip service [20]: it will 
pick up all available, but not more then  goods from 
the storage. This allows process B to continue even if 
the storage is empty. For details on the theoretical 
background the interested reader is referred to [19]. 
[3] explains how the approach can be automatically 
applied to ProC/B models. 
 

3 Conclusions 
In this article we gave insight into some possibilities 
for the validation of process-based models as being 
offered by the ProC/B toolset. Validation is based on 
the automated transformation of ProC/B models into 
similar behaving Petri nets and usage of correspond-
ing Petri net analysis techniques.  Due to the com-
plexity of realistic ProC/B models (and simulation 

 
Figure 11. Petri net representation of the process chain 

model from Figure 9. 
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models in general) the transformation does not ac-
count for all details of the ProC/B model. This might 
result also in non-faults, i.e. faults occurring in the 
Petri net, but being nonexistent in the ProC/B model, 
so that the output of the Petri net analysis has to be 
considered as an indication of possible errors in the 
ProC/B model. The essential advantage of the pre-
sented Petri net techniques is their efficiency. The 
analysis investigates the structure of the Petri net and 
renders the generation of the state space unnecessary, 
so that a modeler is able to validate specific model 
aspects during the construction phase within a short 
time. As Figure 4 suggests, one might first apply 
invariant techniques, since this step might result in a 
change of the model also having impact on the 
model’s ergodicity. Once those tests are passed, er-
godicity might be checked, since subsequent correc-
tions usually do not change the invariants. 
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Figure 12. Simple ergodic process chain model. 


