
+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++
SN

E
19

/2
, A

ug
us

t
20

09

t N

30

Efficient Validation of Process-based Simulation Models

Falko Bause, Jan Kriege, Sebastian Vastag, TU Dortmund, Germany
{falko.bause,jan.kriege,sebastian.vastag}@udo.edu

Validation is often time-consuming for simulation models of complex systems especially if failures indicat-
ing discrepancies between the system and the corresponding model occur rarely. Some failure types can be
detected on the basis of the model’s structure employing corresponding efficient techniques. In this paper we
present some techniques used in the Collaborative Research Centre 559 (“Modelling of Large Logistics
Networks”) for the validation of process-based simulation models. These techniques are based on efficient
algorithms from the Petri net area, but details are completely hidden from the end user by means of a corre-
sponding toolset. Here we present some internals showing how specific aspects of simulation models can be
validated efficiently.

Introduction
Building simulation models of complex systems is a
non-trivial task. On the one hand the modeler has to
abstract from several details, on the other hand he
needs to capture those characteristics of the system
which are relevant for the analysis objective. The task
even gets more difficult if not fully automated sys-
tems being influenced by human decisions and inter-
actions have to be modelled. The main problem is
that a simulator is usually a computer program which
runs fully automated so that human influence must be
captured by rules readable by machines. In the course
of the Collaborative Research Centre 559 “Modelling
of Large Logistics Networks” (CRC 559; [1, 2]) we
made the experience that during the construction of a
simulation model several interim versions of the
model do not correctly reflect the system behaviour.
We found that various discrepancies between the
system and the model can be discovered by investi-
gating functional properties [1, 3, 4]. An example is
the occurrence of (partial) deadlocks in the simulation
model which do not appear in the real system. Espe-
cially in models of logistics systems such functional
deficits/failures are based on an incorrect modelling
for example of human behaviour. A case in point is
the well-known concurrent use of a limited number of
resources, which are allocated one by one and are
only released after having been used (e.g. think of a
truck driver who needs a forklift and a free ramp for
unloading). The resultant deadlocks are well-known
effects in fully automated systems and corresponding
simulation models, but normally do not happen in
humanly controlled systems.
Certainly, there are several methods for the validation
of simulation models (e.g. [5, 6]), but they are often
based on the inspection of simulator executions

which is time-consuming for large models and in
particular if the functional deficits occur rarely. One
could think that such rare events can be neglected,
since an experienced modeller will detect them in
case they really happen, but there are situations where
such deficits will go unnoticed. E.g., if faulty simula-
tion models are used in optimisation procedures [7]
“optimal” areas might remain undiscovered or, e.g., if
(parts of) the simulation models are used as a basis
for automated code generation of system control
programs the functional deficits are carried over to
the real system. In a nutshell, it seems advisable to
eliminate such functional deficits from the model.

As mentioned, the usual testing of simulation models
is time-consuming concerning the detection of rarely
occurring failures, but some failure types can be de-
tected by inspecting the model’s structure which can
be done efficiently. In this paper we present corre-
sponding techniques which help to validate simula-
tion models with respect to failure types concerning
boundedness, liveness and ergodicity of the simula-
tion model. As a base model world we use the proc-
ess-based model world ProC/B, which has been used
within the CRC 559 for the modelling of logistics
systems [8]. ProC/B is a modelling language associ-
ated with a toolset (cf. Figure 1) which performs
validation and simulation of models at the push of a
button and hides analysis-specific details from the
end user [8, 9]. Here we will look behind the scenes.
The detection of functional deficits in ProC/B models
is done by mapping those models to Petri nets (PN)
keeping essential characteristics [3, 4]. Petri nets [10]
are distinguished by very efficient algorithms for
checking functional properties and we show how
these algorithms can be employed for the validation
of ProC/B simulation models.

19

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++ t

31

N
SN

E 19/2, A
ugust 2009

This paper is organised as follows: In the next section
we briefly introduce the ProC/B model world fol-
lowed by the main section (Section 2) of this paper
where we present an efficient procedure for the vali-
dation of ProC/B models. After discussing the general
approach we describe the validation in detail with
respect to three functional properties: boundedness,
liveness and ergodicity. The paper ends with the con-
clusions in Section 3.

1 ProC/B
Process chains are established for the modelling of
logistics networks and also have been the core para-
digm within the CRC 559 [11, 12]. ProC/B is a for-
malization of a subset of this paradigm and was de-
veloped with the intention to support an automated
analysis of corresponding models accentuating per-
formance aspects. The philosophy of ProC/B is to
describe system behaviour by process chains and
system structure by functional units. Figure 2 and
Figure 3 present a typical example of a ProC/B model
[3]. The model is hierarchical and represents a freight
village. The top level of the model is shown in Figure
2 where the behaviour of two process types (trucks
and trains) is described by corresponding process
chains. A process chain consists of several activities
modelled by so-called process chain elements
(PCEs). A PCE might specify amongst others a pure
delay of the process or the call of a service. Services

are offered by functional units (FUs) and are de-
scribed again by process chains whose activities
might use services offered by other internal FUs.
Figure 3 displays the internals of the FU Terminal
whose services are used by trucks and trains (cf. Fig-
ure 2). The hierarchical description ends at pre-
defined, so-called standard functional units (cf. Fig-
ure 3). ProC/B models might contain two types of
standard FUs: servers and counters. Servers (see
forklifts in Figure 3) model timing aspects and their
behaviour is similar to that of queues in a queuing
network. Counters (see storage in Figure 3) model
space and a request to a counter is immediately
granted if the result respects upper and lower bounds,
otherwise the calling process gets blocked until the

Figure 1. ProC/B Toolset.

Figure 2. Freight village example.

Figure 3. Internals of Function Unit Terminal.

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++

SN
E

19
/2

, A
ug

us
t

20
09

t N

32

change becomes possible. For more details on ProC/B
and this specific example we refer the reader to [3]
and [8]. As one can imagine ProC/B offers the possi-
bility to describe systems such precisely that an
automated analysis is possible.
The modelling and analysis of ProC/B models is
accompanied by a toolset which offers a graphical
user interface for description and several analysis
modules (see Figure 1). Analysis is done by trans-
forming the model specification to the input lan-
guages of other tools thus using their analysis capa-
bilities. One such transformation concerns a mapping
of ProC/B models to Petri nets. Since an exact map-
ping would be too complex, only those parts of
Proc/B models are captured by the mapping which
are primarily relevant for the analysis objectives.
E.g., most variables occurring in the ProC/B model
are ignored for the transformation, but synchronisa-
tion constructs are considered. Therefore, the output
of the analysis algorithms might result in so-called
non-faults, i.e. faults which hold for the Petri net, but
are not occurring in the ProC/B model. Nevertheless
such faults or their absence hint at non-validity or
validity of the ProC/B model.

2 Validation of ProC/B Models
ProC/B was developed with user-friendliness in mind.
It can be used by non-experts to form even complex
models of logistics networks and their working proc-
esses. Surely with increasing complexity of the model
also the possibility of errors in the model increases
and appropriate support is needed. The ProC/B Tool-
kit features several techniques for the validation of
models. The methods we present in the following do
not intend to check, e.g., whether an accurate repre-
sentation of input data has been chosen, but try to
support a plausibility check for the model internals.

2.1 General Approach
Validation of ProC/B models is here based on a trans-
formation from process chains to Petri nets. Figure 5
shows how validation is performed: An existing
ProC/B model is converted to a Petri net model. The
new representation is used for validation with respect
to Petri net properties. In particular support is offered
for checking boundedness, identifying deadlocks and
searching for non-ergodic behaviour. The applied
techniques are completely hidden from the user, so no
knowledge on Petri nets or any functional property is
required. The first step in the validation process is to
transform the ProC/B model to a Petri net representa-
tion. For each language element there is a blueprint of
PN parts to be placed instead of the original element.
For example, Figure 4 is the original ProC/B model
of a typical stock-keeping scenario. The correspond-
ing Petri net is shown in Figure 6.

Details on the transformation can be found in [3, 4,
8]. Petri nets, originally introduced by Carl Adam
Petri [13], are a formalism for the description of con-
currency and synchronisation aspects in systems [10].
They describe behaviour of systems by the states that
can occur, but usually neglect timing aspects, al-
though variants of Petri nets exist which also consider
time (see e.g. [14]). A common variant of Petri nets
are so-called Place-Transition nets. A Place-
Transition net is a five-tuple
which can be interpreted as a graph containing two
different types of nodes: places P and transitions T.
Connections are defined by two incidence matrices:
backward incidence matrix
and forward incidence matrix .
If an arc with weight leads from place to
transition . Similarly, element gives the weight of
an arc from transition j to place i.

Figure 4. Two processes supplying a storage.

Figure 5. PN techniques for the validation

of ProC/B models.

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++ t

33

N
SN

E 19/2, A
ugust 2009

Places are initially marked with the contents of the
positive vector . A graphical representation
of Petri nets uses circles for places and bars for transi-
tions. The positive elements of the incidence matrices
are shown as directed arrows given a weight. The
marking of a place can be seen as tokens
placed on the place as solid dots.
Enabled transitions change the marking of places that
are connected by arcs via “firing”. Transition j is
enabled in marking if there are enough tokens
available on input places: with as the
j-th unit vector. Firing transition t will destroy
tokens from all input places and generate
tokens on the output places.
Figure 6 shows the Petri net derived from the storage
system in Figure 4. It contains four transitions A-D
and three places a, b and c. Transition A has two out-
going arcs, while place b has two incoming and two
outgoing arcs. There are arcs with weights ,
specifying that adjacent transitions produce or con-
sume multiple tokens per firing. In a concrete ProC/B
model - will be concrete values, but we will keep
the notation with variables in the following to con-
sider different modelling failures. In case the model
specifies stocked or removed storage units by random
variables, average or user specified values will be
used in the Petri net representation.
Markings are central in Petri net theory as they ex-
press the state of the net. One goal of Petri net analy-
sis is to check whether unwanted markings can be
reached. The set of all reachable markings is given by
the initial marking and the firing rule specifies
which markings can be reached from a given marking
by firing transitions. The total effect firing transitions
have on the marking is described by the incidence
matrix

For example, the incidence matrix of the storage
system can be written as:

The effect of firing transition at marking is given
by the -th column of matrix and can simply be
calculated as follows. Let denote the -th unit vec-
tor. Then the product gives the -th column, so
that the successor of a marking can be calcu-
lated by

Since for every reachable marking there exists a fir-
ing sequence of transitions, the corresponding unit
vectors can be subsumed in a linear combination
(Parikh vector [15]).
Thus the state equation of a Petri net with initial
marking , firing vector and incidence matrix
can be written as

Some very efficient Petri net analysis techniques are
based on the investigation of this incidence matrix .
For example, the state equation gives us a necessary
condition whether a marking related to an un-
wanted model state can be reached. E. g., setting

 gives

and if no positive integer solution for exists then
 can not be reached from the initial marking .

Another option for Petri net analysis are reachability
graphs. Reachability graphs have markings as nodes
and two nodes and are connected with a di-
rected arc labeled if marking is reachable by
firing transition enabled in . A reachability
graph can be constructed by generating the reachabil-
ity set starting at initial marking as
the root node and adding reachable markings as
leaves for each enabled transition. This step is re-
peated at the leaves and the resulting tree is later
simplified to a graph by merging
equivalent nodes. Usually properties of a Petri net are
defined on the basis of the reachability graph/set, so
that its generation is a common option for analysis in
case the set is finite which means that the Petri net is
bounded (cf. Section 2.2). The main problem is that
even simple Petri nets can have large reachability
graphs/sets and their handling would require a lot of
memory and CPU time.

Figure 6. Petri net representing two process

chains and one storage.

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++

SN
E

19
/2

, A
ug

us
t

20
09

t N

34

Petri net theory also offers other analysis methods
that can be chosen according to the actual require-
ments and area of application. The following two
properties are checked with a very prominent tech-
nique based on the inspection of the structure of the
Petri net, namely invariant analysis.

2.2 Boundedness
Boundedness is a property of Petri nets useful to test
models of production and storage systems.
In the logistics model world, a bounded system will
output the same number of goods as the number of
goods entering it (or for manufacturing systems: be at
least in a fixed relation). Several types of errors can
occur when this property is not satisfied: imagine the
model is faulty in the way that goods are not removed
when they are accomplished. Concerning Figure 6
this might happen if which might
cause the number of tokens on place b to increase to
infinity. Showing that the number of goods is not
bounded would indicate that the modeler has forgot-
ten to organise the outgoing transports in an appropri-
ate way.
A Petri net PN is called bounded if the number of
tokens on each place is upper bounded by at every
reachable marking, i.e.

With a limited number of tokens at each place the set
of reachable markings is also bounded:

Since almost all logistics systems (and thus ProC/B
models) are open systems, those systems are not
bounded in principal. Nevertheless checking for
boundedness in an appropriately modified model

helps to find modelling errors. As part of our valida-
tion approach the Petri net is modified to a closed net
by short-circuiting the transitions representing the
source and the sink of a process chain. The result of
this modification on the net in Figure 6 is shown in
Figure 7. Since we now have a closed Petri net check-
ing for boundedness makes sense.

A sufficient condition showing the boundedness of
the Petri net can be deduced from the state equation.
Multiplying the equation with we get

and choosing a vector with establishes
a condition on all reachable markings:
 .

Such a vector is called a place invariant.

Place invariants covering places with fix
the ratio of tokens on places no matter which marking
is reached. A Petri net is said to be covered with a
positive place invariant if

 and .

The existence of such positive invariants gives us a
sufficient condition for boundedness: a Petri net is
bounded when it is covered by a positive place in-
variant implying that the weighted number of tokens
is constant at all markings.
We are going to check (cf. Figure 7) for bound-
edness. The new incidence matrix of the modified
net of Figure 7 is:

For general values of - , place invariants of
are , because

. Invariants and do not
cover place b as there is no linear combination of
invariants (which is itself an invariant) covering the
second element. The uncovered place b is associated
with the ProC/B storage in Figure 4 and the ProC/B
toolset will mark model elements that are not covered
with invariants as potentially unbounded. The user
has the option to resolve this warning, e.g. by setting
a limit for the maximum storage capacity.

This step might be unnecessary when each process
loads the same number of goods it unloads, i.e. if

 and . Under these conditions there are

Figure 7. Modified Petri net .

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++ t

35

N
SN

E 19/2, A
ugust 2009

two more invariants, and
. They can be combined to

 covering all
places in . In this case the ProC/B toolset would
not output a corresponding warning, indicating that
the situation seems to be basically modeled correctly.
2.3 Deadlocks
Deadlocks might be caused by processes being de-
pendent on each other and concurrently waiting for
each other. This is a good example of errors easily
solvable by humans and being problematic in com-
puter simulations [16]. Consider the load-
ing/unloading process model of Figure 4 and the
derived closed Place-Transition net of Figure 7.

 deadlocks if since eventually a
marking will be reached with

Thus also transitions C and D representing loading
processes have to stop. In the real system these load
processes might represent trucks or trains which have
to pursue a tight timetable and surely there will be
some responsible person, e.g. the driver, solving this
“deadlock situation”. Even though the original
ProC/B model represents an open system and thus
will not deadlock, the occurrence of a deadlock in the
closed Petri net indicates a model aspect which
should be checked by the modeller.

Deadlocks are related to the liveness property. A
transition is live at marking if
 ,

i.e. that one can always reach a marking, starting
from , so that transition is enabled. A Petri net is
live if all transitions are live at all reachable
markings of the Petri net. Obviously, in a live Petri
net no deadlocks can occur.
Invariant analysis gives a necessary condition for
liveness. After checking the closed loop net for
boundedness we know that its reachability set is fi-
nite. The corresponding finite reachability graph thus
consists of one or several strongly connected compo-
nents and in each such component all transitions must
occur as labels if the Petri net is considered to be live.
Since we can reach any node/marking in a strongly
connected component from any other marking of this
strongly connected component, each marking m can
be repeatedly reached. In terms of the state equation
this means

which only holds if Such a vector is
called a transition invariant. If a bounded Petri net is
live then one can show that it is covered with at least
one transition invariant [14, 15]. This implies
that if one does not find a positive solution for

 the Petri net is not live.
A valid transition invariant for the net in Figure
7 is assuming . It covers transi-
tions A and C belonging to process A. Both transi-
tions are live when the loaded quantity equals the
unloaded. Of course, a similar invariant

 under condition exists for transitions
B and D. With and is also an
invariant covering all transitions and a closer inspec-
tion shows that is live. Apart from the symmetric
case and , invariant

 exists assuming goods are ex-
changed between both process chains and and

. e.g. holds if and . So in
summary, the closed Petri net of Figure 7 is only
covered by positive transition invariants if the quanti-
ties for unloading and loading match. The ProC/B
toolset will mark corresponding uncovered ProC/B
model elements thus indicating those model parts
which should be inspected more carefully by the user.
Coverage by positive transition invariants is a neces-
sary condition for liveness in bounded Petri nets.
There are also Petri net techniques available giving
characterising conditions for liveness or the existence
of deadlocks. We only want to mention two here: the
investigation of special classes of Petri nets (see [14,
17]) and the partial exploration of the reachability
set/graph (cf. [18]).
Net classes are specified by imposing restrictions on
the interconnection of places and transitions. For
several net classes checking for deadlocks or liveness
can be done very efficiently on the basis of the net’s
structure. As an example we consider the net of Fig-
ure 8, which belongs to the class of state machines.
The net class of state machines contains Place-
Transition nets with transitions having only one in-
coming and one outgoing arc. Let be the set of
input places and the set of output places of transi-
tion . A Place-Transition net is called a state
machine if and only if

Figure 8 shows an example of a state machine .
The criteria for liveness in state machines is that the
net considered as a graph is strongly connected and

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++

SN
E

19
/2

, A
ug

us
t

20
09

t N

36

. One characteristic of state machines is that
firing does not change the number of tokens in the
whole net, i.e.

and thus obviously a live state machine is also
bounded. A token on a place will always enable at
least one transition, so the net is live at with just a
single token that can move around freely. Therefore
the initial marking with one token as shown in Figure
8 gives a live Petri net . Similar conditions
based on the structure of the net are known for other
net classes as well (cf. [14]).

The stubborn set method [18] is a method which only
needs to partially explore the reachability graph of the
Petri net in order to verify for specific properties, e.g.
the absence or existence of deadlocks. The main idea
is that only a small part of the state space is explored,
and the exploration is made such that all deadlock
states of the whole reachability graph are also part of
the smaller subset. Looking for deadlocks is then only
necessary in the smaller subset.

2.4 Non-Ergodicity
Non-ergodicity can be observed in models of logistics
networks in situations with an interdependence be-
tween two or more processes. This interdependence is
typically caused by a synchronisation between the
processes or by stock-keeping scenarios.

Figure 9 shows a very simple process chain model
consisting of two process chains and a storage. The
upper process chain unloads goods to the storage,
while the lower process chain loads goods from the
storage. In this scenario process A can be interpreted
as a server for process B and vice versa, since process
A delivers goods that are loaded by process B and
process B frees storage space needed by process A to
unload. Assume the case and that arrivals of

process A occur at rate and arrivals for process B at
rate . Then is the service rate for process A and
the service rate for process B. From queueing theory
it is known that for process A (with arrival rate and
service rate) has to hold for a steady-state
distribution to exist. At the same time the condition

 has to hold for process B, which already dem-
onstrates that this type of situation is problematic.
A similar situation occurs here if the average number
of delivered and loaded units differ, i.e. if .
Non-ergodicity implies that the steady-state distribu-
tion does not exist and thus non-terminating simula-
tions are useless for those models. In general non-
ergodicity is not a surprising effect when dealing with
overload situation to determine the model’s peak
performance. In these cases an appropriate choice of
model parameters yields an ergodic model, but for
logistics networks typical situations exist (cf. Figure
9) where non-ergodicity is an intrinsic characteristic
of the model and cannot be avoided by selecting
different parameters for e.g. the interarrival times. In
most of these cases non-ergodicity implies an incor-
rect modelling of the system resulting from the negli-
gence of characteristics of the system.

Figure 8. State Machine .

Figure 9. Simple non-ergodic process chain model.

Figure 10. Simulation result of a non-ergodic model.

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++ t

37

N
SN

E 19/2, A
ugust 2009

Figure 10 shows a simulation result of a non-ergodic
model of a freight village taken from [3]. The figure
indicates that non-ergodicity is difficult to detect by
simulation, since the result seems stable for a long
period of time and the simulation might even have
been stopped before the non-ergodic behaviour be-
came visible from the results. Hence, it would require
very long simulation runs and a large amount of CPU
time to detect non-ergodic behaviour by simulation, if
it is detected at all.
For Petri nets an efficient technique for the detection
of potentially non-ergodic models is available [19]
which is based on rank computations for the inci-
dence matrix of the Petri net. This technique can also
be applied to process chain models as described in [3].

Let denote the number of transitions of the Petri
net and be a vector counting the number
of transitions firing in the time interval . For an
ergodic Petri net the mean firing flow vector

exists and the expected input flow of tokens at a place
equals the expected output flow, which can be ex-
pressed using the incidence matrix resulting in

. The kernel of matrix is defined as

and thus is in the kernel of .

In general the computation of is difficult, but for
some transitions the corresponding values of can
be determined easily. This holds for source transitions
and sets of transitions that partially exhibit an Equal-
Conflict (PEC set), i.e. for transitions with the prop-
erty that at any marking either all or none of those
transitions are enabled.

Figure 11 shows the Petri net representation of the
process chain model from Figure 9. For the two
source transitions the components of vector can be
determined easily and a computation of the basis of
the kernel of the incidence matrix shows that the
firing rates of those transitions are dependent. The
basis of is given by for
the Petri net from Figure 11, where the first three
entries correspond to the transitions of process A and
the last three entries to the transitions of process B,
implying a dependence between the source transitions
(here has to exist with and).
Thus, the Petri net of Figure 11 is sensitive towards
small changes of the firing rates of the two source
transitions.

This kind of sensitivity is called e-sensitivity in [19]
and indicates potential non-ergodic nets. Furthermore
a formal criterion for detecting such nets is given. Let

 be a basis of the kernel and a PEC set.
Then a Petri net is e-sensitive if

holds, where denotes the projection of vector
onto .
For potentially non-ergodic nets the approach identi-
fies a set of transitions implying e-sensitivity. Since
each of the transitions corresponds to an element of
the process chain model, they can be used to identify
the critical part in the process chain model.

Applying this approach to the model of the freight
village introduced in Section 1 identifies the model as
being potentially non-ergodic too. As already men-
tioned this hints at an incorrect modelling of the sys-
tem, e.g. we ignored existing time tables and delivery
schedules for the trucks and trains in this model.

Ergodic models can be found when restrictions on
concrete values are modified. Figure 12 shows an
ergodic system if e.g. with

, . The loading process chain element of
process B uses the alter-or-skip service [20]: it will
pick up all available, but not more then goods from
the storage. This allows process B to continue even if
the storage is empty. For details on the theoretical
background the interested reader is referred to [19].
[3] explains how the approach can be automatically
applied to ProC/B models.

3 Conclusions
In this article we gave insight into some possibilities
for the validation of process-based models as being
offered by the ProC/B toolset. Validation is based on
the automated transformation of ProC/B models into
similar behaving Petri nets and usage of correspond-
ing Petri net analysis techniques. Due to the com-
plexity of realistic ProC/B models (and simulation

Figure 11. Petri net representation of the process chain

model from Figure 9.

+++ Eff ic ient Val idat ion of Process-based S imulat ion Models +++

SN
E

19
/2

, A
ug

us
t

20
09

t N

38

models in general) the transformation does not ac-
count for all details of the ProC/B model. This might
result also in non-faults, i.e. faults occurring in the
Petri net, but being nonexistent in the ProC/B model,
so that the output of the Petri net analysis has to be
considered as an indication of possible errors in the
ProC/B model. The essential advantage of the pre-
sented Petri net techniques is their efficiency. The
analysis investigates the structure of the Petri net and
renders the generation of the state space unnecessary,
so that a modeler is able to validate specific model
aspects during the construction phase within a short
time. As Figure 4 suggests, one might first apply
invariant techniques, since this step might result in a
change of the model also having impact on the
model’s ergodicity. Once those tests are passed, er-
godicity might be checked, since subsequent correc-
tions usually do not change the invariants.

Acknowledgements
The work described in this paper was supported by
the Deutsche Forschungsgemeinschaft as part of the
Collaborative Research Center “Modelling of Large
Logistics Networks” (559).

References
[1] P. Buchholz, U. Clausen. Große Netze der Logistik – Die

Ergebnisse des Sonderforschungsbereichs 559. Springer,
2009.

[2] Collaborative Research Center. Modelling of Large Lo-
gistics Networks (559). http://www.sfb559.uni-
dortmund.de.

[3] F. Bause, J. Kriege. Detecting Non-Ergodic Simulation
Models of Logistics Networks. Proc. 2nd Int. Conference
on Performance Evaluation Methodologies and Tools
(ValueTools 2007), Nantes, 2007.

[4] P. Kemper, C. Tepper. A Petri net approach to debug
simulation models of logistic networks. In Proc. 5th

Mathmod Conference, Vienna, February 8-10, 2006.
[5] A.M. Law. Simulation Modelling & Analysis. McGraw-

Hill, 4th ed., 2006.
[6] M. Rabe, S. Spieckermann, S. Wenzel. Verifikation und

Validierung für die Simulation in Produktion und Lo-
gistik – Vorgehensmodelle und Techniken. Springer,
2008.

[7] M.C. Fu, C.-H. Chen, L. Shi. Some topics for simulation
optimisation. Proc. 2008 Winter Simulation Conference,
Miami, 2008, pp. 27—38.

[8] F. Bause, H. Beilner, M. Fischer, P. Kemper, M. Völker.
The ProC/B Toolset for Modelling and Analysis of Proc-
ess Chains. In: T. Field, P.G. Harrison, J. Bradley U.
Harder: TOOLS 2002, 2324, 51–70. Springer, 2002.

[9] F. Bause, P. Buchholz, C. Tepper: The ProC/B-
approach: From Informal Descriptions to Formal Mod-
els. ISoLA – 1st Int. Symposium on Leveraging Applica-
tions of Formal Method, 30th October – 2nd November,
Paphos (Cyprus), 2004.

[10] J.L. Peterson: Petri Net Theory and the Modelling of Sys-
tems. Prentice Hall, 1981.

[11] A. Kuhn: Prozessketten in der Logistik - Entwick-
lungstrends und Umsetzungsstrategien. Verlag Praxis-
wissen, 1995.

[12] A. Kuhn. Prozesskettenmanagement – Erfolgsbeispiele
aus der Praxis. Verlag Praxiswissen, 1999.

[13] C.A. Petri: Kommunikation mit Automaten. Bonn:
Schriften des Rheinisch-Westfälischen Institutes für in-
strumentelle Mathematik Universität Bonn, 1962.

[14] F. Bause, P.S. Kritzinger. Stochastic Petri Nets - An In-
troduction to the Theory. Vieweg&Sohn, 2002. available
at http://ls4-www.informatik.uni-dortmund.de/QM/MA
/fb/spnbook2.html.

[15] P.H. Starke. Analyse von Petri-Netz-Modellen. B.G.
Teubner, 1990.

[16] F. Bause, H. Beilner. Intrinsic Problems in Simulation of
Logistic Networks. Simulation in Industry, 11th Europ.
Simulation Symposium and Exhibition (ESS99), Erlan-
gen, October 26-28, 1999, SCS Publishing House, pp.
193-198.

[17] E. Best, P.S. Thiagarajan. Some classes of live and safe
Petri nets. Concurrency and nets: advances in Petri nets,
Springer, 1987, pp. 71 – 94.

[18] A. Valmari. Stubborn Sets for Reduced State Space Gen-
eration. Proc. 10th Int. Conf. on Application and Theory
of Petri Nets, Vol. 2, Bonn, 1989, pp. 1-22.

[19] F. Bause. On Non-Ergodic Infinite-State Stochastic Petri
Nets. Proc. of PNPM, Urbana, 2003.

[20] F. Bause, P. Buchholz, J. Kriege, S. Vastag. A Simulation
Environment for Hierarchical Process Chains based on
ONMeT++. SIMULATION, The Society for Modelling
and Simulation International, first published on June 29
as doi:10.1177/0037549709104236, 2009.

Corresponding author: Sebastian Vastag
Informatik IV, TU Dortmund, D-44221 Dortmund
sebastian.vastag@udo.edu

Figure 12. Simple ergodic process chain model.

