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+++ Editorial - “In Three Minutes’ +++

Dear Readers,

With this SNE issue, SNE 19/1, our SNE volumes are on publication schedule again, and we start with new publication strat-
egy and new distribution strategy for SNE: printed SNE, and electronic SNE (eSNE). Previously some back issues of SNE
could be downloaded from the ARGESIM website www.argesim.org for free, and members of some EUROSIM societies had
download access to SNE issues — in both cases SNE copies were available as pdf- files in web resolution (low resolution).
After some negotiations with EUROSIM societies and other simulation groups, we are able to introduce generally also the
electronic SNE—eSNE for download: web resolution eSNE in porF format can be downloaded for free from SNE website
www.sne-journal.org, print-resolution e-SNE in pdf format and all sources and additional information of the benchmark
solution in zip-format can be downloaded for society subscribers.

The picture at right shows the new SNE website, with
download access for web-resolution SNE 18/3-4 (high-
lighted)—after login also print-resolution eSNE 18/3-4 and
the zipped sources of benchmarks solutions published in
SNE 18/3-4 would be available for download. The new
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reviewed and refined contributions (starting end of 2009)

The Technical Notes in this SNE issue conclude the topic ‘physical and hybrid modelling’ the emphasis of the last four SNE
issues: D. Broman and P. Fritzson discuss high-order acausal models, H. Nilson introduces type-based structural analysis
for modular models, and F. Casella et al extend equation-based object-oriented with CACSD. A four-page solution to Bench-
mark C3 ‘Generlazed Class-E Amplifier’ compares different modelling techniques — announcing a new type of Benchmark
solutions (details in SNE 19/3-4). Furthermore, a Short Note on an implementation of a distributed consensus algorithm
continues the series of Software Notes. The title page of this issue, an animation snapshot student movement through lecture
halls at TU Vienna, announces the emphasis of the next issues: hybrid and discrete systems.

The News Sections section follows the new style introduced in SNE 18/3-4: after the EurROSIM Data & Quick Info, which
summarizes the relevant basic information of all EUROSIM societies, SNE publishes actual reports from EUROSIM societies,
which have sent in recent information. Furthermore SNE continues with reports and conferences of simulation societies and
simulation groups: conferences series MATHMoD, Modelica, EOOLT, and MOSIM, and the SCS initiatives MISS and
M&SNet. We hope, readers enjoy the novelties and the content, and we thank all contributors, members of the editorial
boards, and people of our ARGESIM staff for co-operation in producing this SNE issue.

Felix Breitenecker, editor-in-chief, eic@sne-journal.org
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— High-Order Acausal Models combines - ] ARrcESIM Benchmark:
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tion software. 43

EUr0OSIM short info gives a short overview
over EUROSIM and its national societies, and
provides contact addresses.

Reports section publishes reports from

~11 Type-Based Structural Analysis for Modular

Systems of Equations attributes structural
types to equation systems to speed up classi-
fication of such systems.

Beyond Simulation: Computer Aided Con-
trol System Design Using Equation-Based
Object Oriented Modelling for the Next

Decade allows a brief gaze into the future.

Implementation of a distributed consensus
algorithm with OMNeT++ introduces a
event-driven simulator generator and illus-
trates its use on a consensus algorithm.

- ~ | SLOSIM, SimMS, CEA-SMSG, RoMSIMm,
Wy W CR0OSSSIM, PSCS, ASIM.
It provides two ASim conference reports.

In the Conference series section, MATH-
Mob, MoSim, Modelica and EOOLT con-
IMlSSI ferences are covered.

= Simulation centers section presents two
16 pp.| initiatives of SCS: MISS and M&SNet.
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7! EUROSIM Congress on Modelling and Simulation

Eurosim Congress the most important modelling and
simulation event in Europe

September 5-10, 2010, Prague, Czech Republic

Congress Venue

The Congress will take place in Prague, the capital city of Czech
Republic, at the Congress Center of Masaryk College, part of
Czech Technical University, in cooperation with the Faculty of
Electrical Engineering of CTU.

About Czech Technical University in Prague

Czech Technical University celebrates 300 years of its history in
2007. Under the name Estate Engineering Teaching Institute in
Prague was founded by the rescript of the Emperor Josef | of 18
January 1707 on the basis of a petition of Christian Josef
Willenberg (1676-1731). This school was reorganized in 1806 as
the Prague Polytechnic, and, after the disintegration of the former
AustroHungarian Empire in 1918, transformed in to the Czech
Technical University in Prague.

About EUROSIM

EUROSIM, the federation of European simulation societies, was
set up in 1989. Its purpose is to promote, especially through local
simulation societies, the idea of modelling and simulation in
different fields, industry, research and development. At present,
EUROSIM has 14 full members and 4 observer members.

Congress Scope and Topics

The Congress scope includes all aspects of continuous, discrete
(event) and hybrid modelling, simulation, identification and
optimisation approaches. Contributions from both technical and
non-technical areas are welcome. Two basic tracks will be
organized: M&S Methods and Technologies and M&S Applications.

L

~

Czech Republic - EUROSIM 2010 Host Country

The Czech Republic is a country in the centre of Europe. It is
interesting for its 1,000-year-long history, rich culture and diverse
nature. The country is open to new influences and opportunities
thanks to a high level of industrial infrastructure, safety measures
and plural media. The location of the Czech Republic in the very
heart of Europe contributes to the fact that one can get there easily
and fast. Usually all it takes to enter the country is a valid passport.
The Czech Republic belongs to the Schengen zone. The need for a
visas to enter the Czech Republic is very exceptional.

Prague - EUROSIM 2010 Host City

Prague is a magical city of bridges, cathedrals, gold-tipped towers
and church spires, whose image has been mirrored in the surface
of the Vltava River for more than a millennium.Walking through the
city, you will quickly discover that the entire history of European
architecture has left splendid representatives of various periods
and styles. There are Romanesque, Gothic, Renaissance, Baroque
and Classicist buildings, as well as more modern styles, such as
Art Nouveau and Cubist. A poet once characterized Prague as a
symphony of stones.

About CSSS

CSSS (The Czech and Slovak Simulation Society) has about 150
members in 2 groups connected to the Czech and Slovak national
scientific and technical societies (Czech Society for Applied
Cybernetics and Informatics, Slovak Society for Applied
Cybernetics and Informatics). Since 1992 CSSS is a full member of
EUROSIM.

Invitation

Czech and Slovak Simulation Society is greatly honored with the
congress organisation and will do the best to organise an event
with a high quality scientific programme with some other
acompanied actions but also with some unforgettable social events.

Mikulas Alexik, EUROSIM president,
Miroslav Snorek, president of CSSS, EUROSIM 2010 Chair
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High-Order Acausal Models
David Broman, Peter Fritzson, Linkdping University, Sweden, {davbr, petfr}@ida.liu.se

SNE Simulation Notes Europe SNE 19(1), 2009, 5-16, doi: 10.11128/sne.19.tn.09921

Current equation-based object-oriented (EOQO) languages typically contain a number of fairly complex lan-
guage constructs for enabling reuse of models. However, support for model transformation is still often lim-
ited to scripting solutions provided by tool implementations. In this paper we investigate the possibility of
combining the well known concept of higher-order functions, used in standard functional programming lan-
guages, with acausal models. This concept, called Higher-Order Acausal Models (HOAMs), simplifies the
creation of reusable model libraries and model transformations within the modeling language itself. These
transformations include general model composition and recursion operations and do not require data repre-
sentation/reification of models as in metaprogramming/metamodeling. Examples within the electrical and
mechanical domain are given using a small research language. However, the language concept is not limited
to a particular language, and could in the future be incorporated into existing commercially available EOO languages.

I ntroduction

Modeling and simulation have been an important
application area for several successful programming
languages, e.g., Simula [6] and C++ [24]. These lan-
guages and other general-purpose languages can be
used efficiently for discrete time/event-based simula-
tion, but for continuous-time simulation, other spe-
cialized tools such as Simulink [15] are commonly
used in industry. The latter supports causal block-
oriented modeling, where each block has defined in-
put(s) and output(s). However, during the past two
decades, a new kind of language has emerged, where
differential algebraic equations (DAEs) can describe
the continuous-time behavior of a system. Moreover,
such languages often support hybrid DAEs for modeling
combined continuous-time and discrete-time behavior.

These languages enable modeling of complex physi-
cal systems by combining different domains, such as
electrical, mechanical, and hydraulic. Examples of
such languages are Modelica [10, 17], Omola [1],
gPROMS [3, 20], VHDLAMS [5], and y (Chi) [13, 27].

A fundamental construct in most of these languages is
the acausal model. Such a model can encapsulate and
compose both continuous-time behavior in form of
DAEs and/or other interconnected sub-models, where
the direction of information flow between the sub-
models is not specified. Several of these languages
(e.g., Modelica and Omola) support object-oriented
concepts that enable the composition and reuse of a-
causal models. However, the possibilities to perform
transformations on models and to create generic and
reusable transformation libraries are still usually li-
mited to tool-dependent scripting approaches [7, 11,
26], despite recent development of metamodeling/me-
taprogramming approaches like MetaModelica [12].

In functional programming languages, such as Has-

kell [23] and Standard ML [16], standard libraries
have for a long time been highly reusable, due to the
basic property of having functions as first-class val-
ues. This property, also called higher-order functions,
means that functions can be passed around in the
language as any other value.

In this paper, we investigate the combination of
acausal models with higher-order functions. We call
this concept Higher-order Acausal Models (HOAMs).

A similar idea called first-class relations on signals
has been outlined in the context of functional hybrid
modeling (FHM)[18]. However, the work is still at an
early stage and it does not yet exist any published
description of the semantics. By contrast, our previ-
ous work’s main objective has been to define a formal
operational semantics for a subset of a typical EOO
language [4]. From the technical results of our earlier
work, we have extracted the more general ideas of
HOAM, which are presented in this paper in a more
informal setting.

An objective of this paper is to be accessible both to
engineers with little functional language program-
ming background, as well as to computer scientists
with minimal knowledge of physical acausal model-
ing. Hence, the paper is structured in the following
way to reflect both the broad intended audience, as
well as presenting the contribution of the concept of
HOAMs:

e The fundamental ideas of traditional higher-order
functions are explained using simple examples.
Moreover, we give the basic concepts of
acausalmodels when used for modeling and
simulation (Section 1).

e We state a definition of higher order acausal
models (HOAMs) and outline motivating exam-
ples. Surprisingly, this concept has not been

L
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widely explored in the context of EOO-
languages (Section 1).

e The paper gives an informal introduction to
physical modeling in our small research language
called Modeling Kernel Language (MKL) (Sec-
tion 2).

e We give several concrete examples within the
electrical and mechanical domain, showing how
HOAMs can be used to create highly reusable
modeling and model transformation/composition
libraries (Section 3).

Finally, we discuss future perspectives of higher-
order acausal modeling (Section 4), and related work
(Section 5).

1 Thebasicidea of high-order

In the following section we first introduce the well
established concept of anonymous functions and the
main ideas of traditional higher-order functions. In
the last part of the section we introduce acausal mod-
els and the idea of treating models with acausal con-
nections to be higher-order.

11  Anonymousfunctions

In functional languages, such as Haskell [23] and
Standard ML [16], the most fundamental language
construct is functions. Functions correspond to partial
mathematical functions, i.e., a function f:4— B
gives a mapping from (a subset of) the domain A4 to
the codomain B.

In this paper we describe the concepts of higher-order
functions and models using a tiny untyped research
language called Modeling Kernel Language (MKL).
The language has similar modeling capabilities as
parts of the Modelica language, but is primarily
aimed at investigating novel language concepts,
rather than being a full-fledged modeling and simula-
tion language.

In this paper an informal example-based presentation
is given. However, a formal operational semantics of
the dynamic elaboration semantics for this language
is available in [4]. In MKL, similar to general pur-
pose functional languages, functions can be defined
to be anonymous, i.e., the function is defined without
an explicit naming. For example, the expression

func (x) {x*x}

is an anonymous function that has a formal parameter
x as input parameter and returns x squared. Formal
parameters are written within parentheses after the

func keyword, and the expression representing the
body of the function is given within curly parenthe-
ses; in this case {x*x}. An anonymous function can
be applied by writing the function before the argu-
ment(s) in a parenthesized list, e.g. (3):

func (x) {x*x} (3)

- 3*3

-9
The lines starting with a left arrow (-) show the
evaluation steps when the expression is executed.
However, it is often convenient to name values. Since
anonymous functions are treated as values, they can
be defined to have a name using the def construct in
the same way as constants.

def pi = 3.14

def power2 = func(x){x*x}
Here, both pi and function power2 can be used
within the defined scope. Hence, the definitions can
be used to create new expressions for evaluation, for
example:

power2 (pi)

-~ power2(3.14)
- 3.14 * 3.14
- 9.8596

12  Higher-order functions

In many situations, it is useful to pass a function as an
argument to another function, or to return a function
as a result of executing a function. When functions
are treated as values and can be passed around freely
as any other value, they are said to be first-class citi-
zens. In such a case, the language supports higher-
order functions.

Definition 1 (Higher-order function)
A higher-order function is a function that

1. takes another function as argument, and/or

2. returs a function as the result

Let us first show the former case where functions are
passed as values. Consider the following function
definition of twice, which applies the function £ two
times on y, and then returns the result.
def twice = func(f,y){
£(£(y))

The function twice can then be used with an arbi-
trary function f, assuming that types match. For ex-
ample, using it in combination with power?2, this func-
tion is applied twice.
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"Static” semantics | compile lime “Dynamic” semantics | run time
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model » Hybrid DAE » | Executable Simulation
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Figure 1. Outline of typical compilation and simulation
process for an EOO language tool.

twice (power2,3)

- power2 (power2 (3))

- power2 (3*3)

- power2(9)

~ 9%9

- 81
Since twice can take any function as an argument,
we can apply twice to an anonymous function,
passed directly as an argument to the function twice.

twice (func (x) {2*x-3},5)

- func (x) {2*x-3} (func (x) {2*x-3} (5))

- func (x) {2*x-3} (2%5-3)

- fune (x) {2*x-3} (7)

- 2%7-3

-1
Let us now consider the second part of Definition 1,
i.e., a function that returns another function as the result.
In mathematics, functional composition is normally
expressed using the infix operator °. Two functions
f:X—>Y and g:Y —>Z can be composed to go f:
X — Z, by using the definition (go f)(x) = g(f(x)).
The very same definition can be expressed in a lan-
guage supporting higher-order functions:

def compose = func(g,f) {
func (x) { g(£(x)) }
bi

This example illustrates the creation of a new anony-
mous function and returning it from the compose
function. The function composes the two functions
given as parameters to compose. Hence, this example
illustrates both that higher-order functions can be
applied to functions passed as arguments (using for-
mal parameters £ and g), and that new functions can
be created and returned as results (the anonymous
function). To illustrate an evaluation trace of the com-
position function, we first define another function add7.

def add7 = func (x) {7+x};

and then compose power2 and add7 together, form-
ing a new function foo:

def foo = compose (power2, add7);
— def foo = func(x){power2(add7 (x))};

Note how the function compose applied to power2
and add7 evaluates to an anonymous function. Now,

the new function foo can be applied to some argu-
ment, e.g.
1 foo(4)
- funec (x) {power2 (add7 (x)) } (4)
- power2 (add7 (4))
- power2 (7+4)
- power2(11)
o 11%11
- 121

~N N LN

The simple numerical examples given here only show
the very basic principle of higher-order functions. In
functional programming other more advanced usages,
such as list manipulation using functions map and
fold, are very common.

1.3 Elaboration and simulation of acausal models

In conventional object-oriented programming lan-
guages, such as Java or C++, the behavior of classes
is described using methods. On the contrary, in equa-
tion-based object-oriented languages, the continuous-
time behavior is typically described using differential
algebraic equations and the discrete-time behavior
using constructs generating events. This behavior is
grouped into abstractions called classes or models (Mo-
delica) or entities and architectures (VHDL-AMS). From
now on we refer to such an abstraction simply as models.

Models are blue-prints for creating model! instances
(in Modelica called components). The models typi-
cally have well-defined interfaces consisting of ports
(also called connectors), which can be connected to-
gether using connections. A typical property of EOO-
languages is that these connections usually are acausal,
meaning that the direction of information flow be-
tween model instances is not defined at modeling time.

In the context of EOO languages, we define acausal
(also called non-causal) models as follows:

h
i

Definition 2 (Acausal model)
An acausal model is an abstraction that encapsulates
and composes

1. continuous-time behavior in form of differential
algebraic equations (DAEs).

2. other interconnected acausal models, where the
direction of information flow between sub-
models is not specified.

In many EOO languages, acausal models also contain
conditional constructs for handling discrete events.
Moreover, connections between model instances can
typically both express potential connections (across)
and flow (also called through) connections generating

6002 114dv ‘T/6T 3INS
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sum-to-zero equations. Examples of acausal models
in both MKL and Modelica are given in Figure 2 and
described in Section 2.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Fig-
ure 1. In the first phase, a hierarchically composed
acausal model is elaborated (also called flattened or
instantiated) into a hybrid DAE, describing both con-
tinuous-time behavior (DAEs) and discrete-time
behavior (e.g., when-equations). The second phase
performs equation transformations and code genera-
tion, which produces executable target code. When
this code is executed, the actual simulation of the
model takes place, which produces a simulation re-
sult. In the most common implementations, e.g., Dy-
mola [7] or OpenModelica [26], the first two phases
occur during compile time and the simulation can be
viewed as the run-time. However, this is not a neces-
sary requirement of EOO languages in general, espe-
cially not if the language supports structurally dyna-
mic systems (e.g., Sol [29], FHM [18], or MosiLab [8]).

1.4  Higher-order acausal models

In EOO languages models are typically treated as
compile time entities, which are translated into hybrid
DAESs during the elaboration phase. We have previ-
ously seen how functions can be turned into first-
class citizens, passed around, and dynamically cre-
ated during evaluation. Can the same concept of
higher-order semantics be generalized to also apply to
acausal models in EOO languages? If so, does this
give any improved expressive power in such general-
ized EOO language?

In the next section we describe concrete examples of
acausal modeling using MKL. However, let us first
define what we actually mean by higher-order acausal
models.

Defintion 3 (Higher-order acausal model (HOAM))
A higher-order acausal model is an acausal model,
which can be

1. parametrized with other HOAMs.

2. recursively composed to generate new HOAMs.

3. passed as argument to, or returned as result from
functions.

In the first case of the definition, models can be pa-
rametrized by other models. For example, the con-
structor of a automobile model can take as argument
another model representing a gearbox. Hence, differ-
ent automobile instances can be created with different

gearboxes, as long as the gearboxes respect the inter-
face (i.e., type) of the gearbox parameter of the auto-
mobile model. Moreover, an automobile model does
not necessarily need to be instantiated with a specific
gearbox, but only specialized with a specific gearbox
model, thus generating a new more specific model.

The second case of Definition 3 states that a model
can reference itself; resulting in a recursive model
definition. This capability can for example express
models composed of many similar parts, e.g., discre-
tization of flexible shafts in mechanical systems or
pipes in fluid models.

Finally, the third case emphasizes the fact that
HOAMs are first-class citizens, e.g., that models can
be both passed as arguments to functions and created
and returned as results from functions. Hence, in the
same way as in the case of higher-order functions,
generic reusable functions can be created that perform
various tasks on arbitrary models, as long as they
respect the defined types (interfaces) of themodels’
formal parameters. Consequently, this property en-
ables model transformations to be defined and exe-
cuted within the modeling language itself. For exam-
ple, certain discretizations of models can be imple-
mented as a generic function and stored in a standard
library, and then reused with different user defined
models.

Some special and complex language constructs in
currently available EOO languages express part of the
described functionality (e.g., the redeclare and for-
equation constructs in Modelica). However, in the
next sections we show that the concept of acausal
higher-order models is a small, but very powerful and
expressive language construct that subsumes and/or
can be used to define several other more complex
language constructs. If the end user finds this more
functional approach of modeling easy or hard de-
pends of course on many factors, e.g., previous pro-
gramming language experiences, syntax preferences,
and mathematical skills. However, from a semantic
point of view, we show that the approach is very
expressive, since few language constructs enable rich
modeling capabilities in a relatively small kernel
language.

2 Basic physical modelingin MKL

To concretely demonstrate the power of HOAMs, we
use our tiny research language Modeling Kernel Lan-
guage (MKL). The higher-order function concept of
the language was briefly introduced in the previous
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wi, def Circuit = model() {
def wl = Wire();

def w2 Wire();

def w3 = Wire();

def w4 = Wire();
Resistor(wl,w2,10);
Capacitor (w2,w4,0.01);
Resistor (wl,w3,100);
Inductor (w3,w4,0.1);
VSourceAC (wl,w4,220) ;
Ground (w4) ;

R=10 R=100

VA=220
w2 w3

C=0.01 L=0.1

wd

-

Figure 2. Model of a simple electrical circuit. (a) graphical model of the circuit,
(b) corresponding MKL model definition, (c) Modelica model of the same circuit.

section. In this section we informally outline the basic
idea of physical modeling in MKL; a prerequisite for
Section 3, which introduces higher-order acausal mo-
dels using MKL.

21 Asmple€lectrical circuit

To illustrate the basic modeling capabilities of MKL,
the classic simple electrical circuit model is given in
Figure 2. Part (a) shows the graphical layout of the
model, (b) shows the corresponding textual model
given in MKL. For clarity to the readers familiar with
the Modelica language, we also compare with the
same model given as Modelica textual code (c).

In MKL, models are always defined anonymously. In
the same way as for anonymous functions, an
anonymous model can also be given a name, which is
in this example done by giving the model the name
circuit. The model takes zero formal parameters,
given by the empty tuple (parenthesized list) to the
right of the keyword model. The contents of the model is
given within curly braces. The first four statements
define four new wires, i.e., connection points from
which the different components (model instances) can
be connected. The six components defined in this cir-
cuit correspond to the layout given in Figure 2a. Con-
sider the first resistor instantiated using the following:

Resistor(wl, w2, 10);

The two first arguments state that wires wl and w2
are connected to this resistor. The last argument ex-
presses that the resistance for this instance is 10 Ohm.
Wire w2 is also given as argument to the capacitor,
stating that the first resistor and the capacitor are
connected using wire w2. Modeling using MKL dif-
fers in several ways compared to Modelica (Fig-
ure 2¢). First, models are not defined anonymously in

model Circuit

R=10) ;
C=0.01);
R=100) ;
=0.1);
(VA=220) ;

Resistor R1(
Capacitor C(
Resistor R2(
Inductor L(L
VsourceAC AC
Ground G;

equation

h
i

Modelica and are not treated as
firstclass citizens. Second, the
way acausal connections are de-
fined between model instances
differs. In MKL, the connection
(in this electrical case a wire), is

end Circui

connect (AC.p, R1.p)i  created and then connected to
connect (R1.n, C.p

p

) . o
connect (C.n, AC.n): the model instances by giving it
connect (R1.p, R2.p);  as arguments to the creation of
)

(
(
(
(
connect (R2.1, L.p); sub-model instances. In Mode-
connect (L.n, C.n);

(

t

connect (AC.n, G.pi; lica, a special connect-equation
i construct is defined in the lan-
guage. This construct is used to
define binary connections be-
tween connectors of sub-model
instances. From a user point of view, both approaches
can be used to express acausal connections between
model instances. Hence, we let it be up to the reader
to judge what the most natural way of defining inter-
connections is. However, from a formal semantics
point of view, in regards to HOAMs, we have found it
easier to encode connections using ordinary parame-
ter passing style.

2.2 Connections, variables and flow nodes

The concept of wire is not built into the language.
Instead, it is defined using an anonymous function,
referring to the built-in constructs var () and £low():

def Wire = func () {
(var (), flow())
}i

Here, a function called Wire is defined by using the
anonymous function construct func. The definition
states that the function has an empty formal parame-
ter list (i.e., takes an empty tuple () as argument) and
returns a tuple (var(),flow()), consisting of two
elements. A tuple is expressed as a sequence of terms
separated by commas and enclosed in parentheses.

The first element of the defined tuple expresses the
creation of a new unknown continuous-time variable
using the syntax var (). The variable could also been
assigned an initial value, which is used as a start
value when solving the differential equation system.
For example, creating a variable with initial value 10
can be written using the expression var (10). Vari-
ables defined using var() correspond to potential
variables, i.e., the voltage in this example.

The second part of the tuple expresses the current in
the wire by using the construct £1low (), which creates
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a new flow-node. This construct is the essential part
in the formal semantics of [4]. However, in this in-
formal introduction, we just accept that Kirchhoff’s
current law with sum to zero at nodes is managed in a
correct way.

In the circuit definition (Figure 2b) we used the syn-
tax Wire (), which means that the function is invoked
without arguments. The function call returns the tuple
(var(),flow()). Hence, the Wire definition is used
for encapsulating the tuple, allowing the definition to
be reused without the need to restate its definition
over and over again.

2.3 Modelsand equations systems
The main model in this example is already given as
the Circuit model. This model contains instances of
other models, such as the Resistor. These models are
also defined using model definitions. Consider the
following two models:
def TwoPin = model((pv,pi), (nv,ni),v) {
vV = pv - nv;
0 = pi + ni;

}i

def Resistor = model (p,n,R) {

def (_,pi) = p;

def v = var();

TwoPin(p,n,v) ;

R¥pi=v;

bi

In the same way as for Circuit, these sub-models are
defined anonymously using the keyword model fol-
lowed by a formal parameter and the model’s content
stated within curly braces. A formal parameter can be
a pattern and pattern matching is used for decompos-
ing arguments. Inside the body of the model, defini-
tions, components, and equations can be stated in any
order within the same scope.
The general model TwoPin is used for defining com-
mon behavior of a model with two connection points.
TwoPin is defined using an anonymous model, which
here takes one formal parameter. This parameter
specifies that the argument must be a 3-tuple with the
specified structure, where pv, pi, nv, ni, and v are
pattern variables. Here pv means positive voltage,
and ni negative current. Since the illustrated lan-
guage is untyped, illegal patterns are not discovered
until run-time.

Both models contain new definitions and equations.
The equation v = pv - nv; in TwoPin states the
voltage drop over a component that is an instance of

TwoPin. The definition of the voltage v is given as a
formal parameter to TwoPin. Note that the direction of
the causality of this formal parameter is not defined at
modeling time.

The resistor is defined in a similar manner, where the
third element R of the input parameter is the resis-
tance. The first line def (_,pi) = p; is an alterna-
tive way of pattern matching where the current pi is
extracted from p. The pattern _ states that the
matched value is ignored. The second row defines a
new variable v for the voltage. This variable is used
both as an argument to the instantiation of TwoPin
and as part of the equation R*pi=v; stating Ohm’s
law. Note that the wires p and n are connected di-
rectly to the TwoPin instance.

The inductormodel is defined similarly to the Resis-
tor model:

def Inductor = model(p,n,L){

def (_,pi) = p;

def v = var(0);

TwoPin(p,n,v) ;

L*der (pi) = v;

bi

The main difference to the Resistor model is that
the Inductor model contains a differential equation
L*der (pi) = v;, where the pi variable is differenti-
ated with respect to time using the built-in der opera-
tor. The other sub-models shown in this example
(Ground, VSourceAC, and Capacitor) is defined in a
similar manner as the one above.

24  Executing the model

Recall Figure 1, which outlined the compilation and
simulation process for a typical EOO language. When
a model is evaluated (executed) in MKL, this means
the process of elaborating a model into a DAE.
Hence, the steps of equation transformation, code
generation, and simulation are not part of the cur-
rently defined language semantics. These latter steps
can be conducted in a similar manner as for an ordi-
nary Modelica implementation. Alternatively, the
resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section
we illustrate several examples of how HOAMs can be
used. Consequently, these examples concern the use
of HOAMs during the elaboration phase, and not
during the simulation phase. Further discussion on
future aspects of HOAMs during these latter phases is
given in Section 4.
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3 Examplesof higher-order modeling

In Definition 3 (Section 1.4) we defined the meaning
of HOAMs, giving three statements on how HOAMs
can be used. This section is divided into sub-sections,
where we exemplify these three kinds of usage by
giving examples in MKL.

3.1 Parameterization
A common goal of model design is to make model
libraries extensible and reusable. A natural require-
ment is to be able to parameterize models with other
models, i.e., to reuse a model by replacing some of
the submodels with other models. To illustrate the
main idea of parameterized acausal models, consider
the following oversimplified example of an automo-
bile model, where we use Connection() with the
same meaning as the previous Wire():
def Automobile = model (Engine, Tire){

def cl1 = Connection();

def c2 = Connection();

Engine(cl);

Gearbox (c1,c2) ;

Tire(c2); Tire(c2); Tire(c2); Tire(c2)

}i

In the example, the automobile is defined to have two
formal parameters; an Engine model and a Tire
model. To create a model instance of the automobile,
the model can be applied to a specific engine, e.g., a
model EngineVé and some type of tire, e.g. TireTypeA:

Automobile (EngineVé, TireTypeA) ;

If later on a new engine was developed, e.g., Engi-
neVs, a new automobile model instance can be cre-
ated by changing the arguments when the model
instance is created, e.g.,

Automobile (EngineVs, TireTypeA) ;

Hence, new model instances can be created without
the need to modify the definition of the Automobile
model. This is analogous to a higher-order function
which takes a function as a parameter.

In the example above, the definition of Automobile
was not parametrized on the Gearbox model. Hence,
the Gearbox definition must be given in the lexical
scope of the Automobile definition. However, this
model could of course also be defined as a parameter
to Automobile.

This way of reusing acausal models has obvious
strengths, and it is therefore not surprising that con-
structs with similar capabilities are available in some
EOO languages, e.g., the special redeclare con-

struct in Modelica. However, instead of creating a
special language construct for this kind of reuse, we
believe that HOAMs can give simpler and a more
uniform semantics of a EOO language.

3.2 Recursively defined models

In many applications it is enough to hierarchically
compose models by explicitly defining model in-
stances within each other (e.g., the simple Circuit
example). However, sometimes several hundreds of
model instances of the same model should be con-
nected to each other. This can of course be achieved
manually by creating hundreds of explicit instances.
However, these results in very large models that are
hard to maintain and get an overview of.

One solution could be to add a loop-construct to the
EOO language. This is the approach taken in Mode-
lica, with the for-equation construct. However, such
an extra language construct is actually not needed to
model this behavior. Analogously to defining recur-
sive functions, we can define recursive models. This
gives the same modeling possibilities as adding the
for-construct. However, it is more declarative and we
have also found it easier to define a compact formal
semantics of the language using this construct.
Consider Figure 3 which shows a Mechatronic model,
i.e., a model containing components from both the
electrical and mechanical domain. The left hand side
of the model shows a simple direct current (DC)
motor. The electromotoric force (EMF) component
converts electrical energy to mechanical rotational
energy. If we recall from Section 1, the connection
between electrical components was defined using the
Wire definition. However, in the rotational mechani-
cal domain, the connection is instead defined by us-
ing the angle for the potential variable and the torque
for flow. The rotational connection is defined as follows:

def RotCon = func(){(var(), flow())};

In the middle of the model in Figure 3 a rotational
body with Inertia J=0.2 is defined. This body is
connected to a flexible shaft, i.e., a shaft which is
divided into a number of small bodies connected in
series with a spring and a damper in parallel in be-
tween each pair of bodies. N is the number of shaft
elements that the shaft consists of. A model of the
mechatronic system is described by the following
MKL source code.

def MechSys = model () {
def cl = RotCon();
def c2 = RotCon();

h
i
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DCMotor (cl) ;
Inertia(cl,c2,0.2);
FlexibleShaft (c2,RotCon(),120);

}i

The most interesting part is the definition of the com-
ponent FlexibleShaft. This shaft is connected to the
Inertia to the left. To the right, an empty rotational
connection is created using the construction Rot-
Con(), resulting in the right side not being connected.
The third argument states that the shaft should consist
of 120 elements.

Can these 120 elements be describedwithout the need
of code duplication? Yes, by the simple but powerful
mechanism of recursively defined models. Consider
the following self-explanatory definitions of
ShaftElement:

def ShaftElement = model (ca,cb) {
def cl = RotCon();
Spring(ca,cl,8);
Damper (ca,cl,1.5);
Inertia(cl,cb,0.03);

}i
This model represents just one of the 120 elements
connected in series in the flexible shaft. The actual
flexible shaft model is recursively defined and makes
use of the ShaftElement model:

defrec FlexibleShaft = model(ca,cb,n){
if (n==1)
ShaftElement (ca, cb)
else(
def cl = RotCon();
ShaftElement (ca,cl);
FlexibleShaft (cl,cb,n-1);

bi
}i
The recursive definition is analogous to a standard
recursively defined function, where the if-expression
evaluates to false, as long as the count parameter n is
not equal to 1. For each recursive step, a new connec-
tion is created by defining c1, which connects the
shaft elements in series.

When the MechSys model is elaborated using our
MKL prototype implementation, it results in a DAE
consisting of 3159 equations and the same number of
unknowns. It is obviously beneficial to be able to
define recursive models in cases such as the one
above, instead of manually creating 120 instances of
a shaft element.

However, it is still a bit annoying to be forced to write
the recursive model definition each time one wants to
serialize a number of model instances. Is it possible to
capture and define this serialization behavior once
and for all, and then reuse this functionality?

3.3 Higher-order functionsfor generic model
transformation

In the previous section we have seen how models can
be reused by applying models to other models, or to
recursively define models. In this section we show
that it is indeed possible to define several kinds of
model transformations by using higher-order func-
tions. These functions can in turn be part of a model-
ing language’s standard library, enabling reuse of
model transformation functions.

Recall the example from Section 1.2 of higher-order
functions returning other anonymously defined func-
tions. Assume that we want to create a generic func-
tion, which can take any two models that have two
ports defined (Resistor, Capacitor, ShaftElement
etc.), and then compose them together by connecting
them in parallel, and then return this new model:
def composeparallel = func(M1,M2){
model (p,n) {
M1l (p,n);
M2 (p,n);
}
bi
However, our model Resistor etc. does not take two
arguments, but 3, where the last one is the value for
the particular component (resistance for the Resis-

ChMof
Note that the last ele- - DEARY Shaft elements: 1..N
ment of the shaft is con- . et Mty I " spang ;
J=02 | ® -

nected to the second port wVoliage n e | (3 " |
of the FlexibleShaft | Source e s e === - . I=== :
model, since the shaft L V=60 ' : T Damper |
element created when ; oz | .| e

, R K Ground | e |
the if-expression is e m e e e e e e I

evaluated to true takes

Figure 3. A mechatronic system with a direct current (DC) motor to the left and a flexible

parameter cb as an ar-
gument.

shaft to the right. The flexible shaft consists of 1 to NV elements, where each element includes
an inertia, a spring, and a damper.
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tor, inductance for the Inductor etc.). Hence, it is
convenient to define a function that sets the value of
this kind of model and returns a more specialized
model:

def set = func(M,val) {
model (p,n) {
M(p,n,val);
}

}i
For example, a new model Foo that composes two

other models can be defined as follows:

def Foo = composeparallel (set (Resistor, 100),
set (Inductor, 0.1));

A standard library can then further be enhanced with
other generic functions, e.g., a function that composes
two models in series:

def composeserial = func(M1,M2,Con) {
model (p,n) {
def w =

M1 (p,w);

M2 (w,n) ;

Con() ;

}
}i

However, this time the function takes a third argu-
ment, namely a connector, which is used to create the
connection between the models created in series.
Since different domains have different kinds of con-
nections (Wires, RotCon etc.), this must be supplied
as an argument to the function. These connections are
defined as higher-order functions and can therefore
easily be passed as a value to the composeserial
function.

We have now created two simple generic functions
which compose models in parallel and in series.
However, can we create a generic function that takes
a model M, a connector C, and an integer n, and
then returns a new model where n number of models
M has been connected in series, using connector C?
If this is possible, we do not have to create a special
recursive model for the FlexibleShaft, as shown in
the previous section.

Fortunately, this is indeed possible by combining a
generic recursive model and a higher-order function.
First, we define a recursive model recmodel:

defrec recmodel = model (M,C,ca,cb,n){
if (n==1)
M(ca,cb)
elsef
def cl1 = C();
M(ca,cl);
recmodel (M, C,cl,cb,n-1);

}i

Note the similarities to the recursively defined model
FlexibleShaft. However, in this version an arbitrary
model M is composed in series, using connector pa-
rameter C. To make this model useful, we encapsulate
it in a higher order function, which takes a model M, a
connector C, and an integer number n of the number
of wanted models in series as input:

def serialize = func(M,C,n)
model (ca, cb) {
recmodel (M, C,ca,cb,n);

}
}i
Now, we can once again define the mechatronic sys-
tem given in Figure 3, but this time by using the ge-
neric function serialize:

def MekSys2 = model () {
def cl = RotCon();
def c2 = RotCon();
DCMotor (cl) ;
Inertia(cl,c2,0.2);
def FlexibleShaft =

serialize(ShaftElement,RotCon,120);

FlexibleShaft (c2,RotCon()) ;

bi
Even if the serialize function might seem a bit com-
plicated to define, the good news is that such func-
tions usually are created by library developers and not
end-users. Fortunately, the end-user only has to call
the serialize function and then use the newly created
model. For example, to create a new model, where 50
resistors are composed in series is as easy as the fol-
lowing:

def ResS50=serialize(set(Resistor,100),Wire,50)

4  Future perspectives of higher-order
modeling

Our current design of higher-order acausal modeling
capabilities as presented here is restricted to execut-
ing during the compiler (or interpreter) model elabo-
ration phase, i.e., it cannot interact with run-time
objects during simulation. However, removing this
restriction gives interesting possibilities for run-time
higher-order acausal modeling:

e The run-time results of simulation can be used in
conjunction with models as first-class objects in
the language, i.e., run-time creation of models,
composition of models, and returning models.
This is also useful in applications such as model-
based optimization or modelbased control, influ-
enced by results from (on-line) simulation of
models, e.g., [9].

h
i
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e Structural variability [8, 18, 19, 29] of models
and systems of equations means that the model
structure can change at run-time, e.g., change in
causality and/or number of equations. Run-time
support for higher-order acausal model can be
seen as a general approach to structurally variable
systems. These ideas are discussed in [18, 19] in
the context of Functional Hybrid Modeling (FHM).

These run-time modeling facilities provide more
flexibility and expressive power but also give rise to
several research challenges that need to be addressed:

e How can static strong type checking be preserved?

e How can high performance from compile-time
optimizations be preserved? One example is in-
dex reduction, which requires symbolic manipu-
lation of equations.

e How can we define a formal sound semantics for
such a language?

Another future generalization of higher-order acausal
modeling would be to allowmodels to be propagated
along connections. For example, a water source could
be connected to a generic flow connection structure
with unspecified media. The selection of a media of
type water in the source would automatically propa-
gate to other objects.

5 Redated work

The main emphasis of this work is to explore the
language concept of HOAMs in the context of EOO
languages. In the following we briefly discuss three
aspects of work which is related to this topic.

51 Functional Hybrid Modeling

As mentioned in the introduction, our notation of
HOAMs has similarities to first-class relations on
signals, as outlined in the context of Functional Hy-
brid Modeling (FHM) [18, 19]. The concepts in FHM
are a generalization of Functional Reactive Program-
ming (FRP) [28], which is based on reactive pro-
gramming with causal hybrid modeling capabilities.
Both FHM and FRP are based on signals that concep-
tually are functions over time. While FRP supports
causal modeling, the aim of FHM is to support
acausal modeling with structurally dynamic systems.
However, the work of FHM is currently at an early
stage and no published formal semantics or imple-
mentation currently exist.

HOAMs are similar to FHM’s relations on signals in
the sense that they are both first-class and that they
can recursively reference themselves. In this paper we

have showed how recursion can be used to define
large structures of connected models, while in [19]
ideas are outlined how it can be used for structurally
dynamic systems.

One difference is that FHM’s relations on signals are
as its name states only relations on signals, while
MKL acausal models can be parameterized on any
type, e.g., other HOAMs or constants. By contrast,
FHM’s relation on signals can be parameterized by
other relations or constants using ordinary functional
abstraction, i.e., free variables inside a relation can be
bound by a surrounding function abstraction. There
are obvious syntactic differences, but the more spe-
cific semantic differences are currently hard to com-
pare, since there are no public semantic specification
available for any FHM language.

The work with MKL has currently focused on formal-
izing a kernel language for the elaboration process of
typical EOO languages, such as Modelica. Hence, the
formal semantics of MKL defined in [4] investigates
the complications when HOAMs are combined with
flow variables, generating sum-to-zero equations.
How this kind of issue is handled in FHM is currently
not published.

5.2 Metaprogramming and metamodeling

The notion of higher-order models is related to, but
different ~ frommetamodeling  andmetaprogram-
ming.Ametaprogram is a programthat takes other
programs/models as data and produces pro-
grams/models as data, i.e., meta-programs can ma-
nipulate object programs [21]. A metamodel may also
have a subset of this functionality, i.e., it may specify
the structure of other models represented as data, but
not necessarily be executable and produce other mod-
els. Staged metaprogramming can be achieved by quot-
ing/unquoting operations applied in two or more stages,
e.g., as in MetaML [25] and Template Haskell [22].
We have earlier developed a simple metaprogram-
ming facility for Modelica by introducing quot-
ing/unquoting mechanisms [2], but with limited abil-
ity to perform operations on code. A later extension
[12] introduced general metaprogramming operations
based on pattern-matching and transformations of
abstract-syntax tree representations of models/pro-
grams similar to those found in many functional pro-
gramming languages.

By contrast, the notion of higher-order models in this
paper allows direct access to models in the language,
e.g., passing models to models and functions, return-
ing models, etc, without first representing (or view-
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ing, reifying) models as data. This allows more inte-
grated access to such facilities within the language
including integration with the type system. Moreover,
it often implies simpler usage and increased re-use
compared to what is typically offered by metapro-
gramming approaches.

Metaprogramming, on the other hand, offers the pos-
sibility of greater generality on the allowed opera-
tions on models, e.g., symbolic differentiation of
model equations, and the possibility of compile-time
only approaches without any run-time penalty.

We should also mention the common usage of inter-
pretive scripting languages, e.g., Python, or add-on
interpretive scripting facilities using algorithmic parts
of the modeling language itself such as in Open-
Modelica [12] and Dymola [7]. This works in prac-
tice, but is less well integrated and typically a bit ad
hoc. This either requires two languages (e.g., Python
and Modelica), or a separate interpretive implementa-
tion of a subset of the same language (e.g., Modelica
scripting) which often give some differences in se-
mantics, ad hoc restrictions, and inconsistent or par-
tially missing integration with a general type system.

5.3 Modelicaredeclare and for equations

Modelica [17] provides a powerful facility called
redeclaration, which has some capabilities of higher
order models. Using redeclare, models can be passed
as arguments to models (but not to functions using
ordinary argument passing mechanisms e.g., at run-
time), and returned from models in the context of
defining a new model. For example:

model RefinedResistorCircuit =
GenericResistorCircuit (
redeclare model ResistorModel=TempResistor);

Redeclaration can also be used to adapt a model when
it is inherited:

extends GenericResistorCircuit
(redeclare model ResistorModel=TempResistor)

Redeclare is a compile-time facility which operates
during the model elaboration phase. Moreover, using
redeclare it is not possible to pass a model to a func-
tion, or to return a model from a function. Redeclara-
tion is similar to C++ templates and Java Generics in
that it allows passing types/models, but ismore
closely integrated in the language since it part of the
class/model concept rather than being a completely
separate feature. The Modelica redeclare can be seen
as a special case of the more general concept of
higher-order acausal models.

Modelica also provides the concept of for-equations
to express repetitive equations and connection struc-
tures. Since iteration can be expressed as recursion,
also for models as shown in Section 3.2, the concept
of for-equations can be expressed as a special case of
the more general concept of recursive models in-
cluded in higher-order acausal models.

Even though EOO languages, such as Modelica, does
not support HOAMs at the syntax level, HOAMs can
still be very useful as a semantic concept for describ-
ing a precise formal semantics of the language. Lan-
guage constructs, such as for-equations, can then be
transformed down to a smaller kernel language. Hav-
ing a small precisely defined language semantics can
then make the language specification less ambiguous,
enable better formal model checking possibilities, as
well as providing more accurate model exchange.

6 Conclusions

We have in this paper informally presented how the
concept of higher-order functions can be combined
with acausal models. This concept, which we call
higher-order acausal models (HOAMs), has been
shown to be a fairly simple and yet powerful con-
struct, which enables both parameterized models and
recursively defined models. Moreover, by combining
it with functions, we have briefly shown how it can
be used to create reusable model transformation func-
tions, which typically can be part of a model lan-
guage’s standard library. The examples and the im-
plementation were given in a small research language
called Modeling Kernel Language (MKL), and it was
illustrated how HOAMs can be used during the elabo-
ration phase. However, the concept is not limited to
the elaboration phase, and we believe that future
research in the area of HOAMs at runtime can enable
both more declarative expressiveness as well as sim-
plified semantics of EOO languages.
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This paper investigates a novel approach to a type system for modular systems of equations; i.e., equation
systems constructed by composition of individual equation system fragments. The purpose of the type sys-
tem is to ensure, to the extent possible, that the composed system is solvable. The central idea is to attribute a
structural type to equation system fragments that reflects which variables occur in which equations. In many
instances, this allows over- and underdetermined system fragments to be identified separately, without first
having to assemble all fragments into a complete system of equations. The setting of the paper is equation-
based, non-causal modelling, specifically Functional Hybrid Modelling (FHM). However, the central ideas
are not tied to FHM, but should be applicable to equation-based modelling languages in general, like Mode-
lica, as well as to applications featuring modular systems of equations outside the field of modelling and simulation.

I ntroduction

An important question in the context of equation-
based modelling is whether or not the system of equa-
tions describing the modelled entity is solvable. In
general, this can only be answered by studying the com-
plete system of equations, and often not even then, except
by attempting to solve the equations through simulation.

This is problematic. Models are usually modular, i.e.
described by combining small systems of equations
into larger ones. Being able to detect problems with
individual parts or their combinations without first
having to put together a complete system model is
generally desirable. Moreover, a system may be
structurally dynamic, meaning that the system of
equations describing its behaviour changes over time.
This implies that the question of the solvability can-
not be addressed prior to simulation.

However, establishing that a system of equations
definitely is not solvable can be almost as helpful.
Fortunately there are criteria necessary (but not suffi-
cient) for solvability that can be checked more easily
and that are applicable to model fragments. A simple
example is that the number of variables (unknowns)
and equations must agree. For example, Modelica as
of version 3.0 [12] enforces this constraint for model
fragments (and thus for a model as a whole) so as to
enable early detection of common modelling mis-
takes. Keeping track of the variable and equation
balance is also the idea behind the structural con-
straint delta type system [2] with similar aims.

This paper is a preliminary investigation into an im-
proved type-based (and thus compile-time) analysis
for determining when (fragments of) systems of equa-
tions cannot be solved. The goal is to provide im-
proved precision compared with just counting vari-
ables and equations by attributing a structural type to
systems of equations reflecting which variables occur
in which equations. A type-based approach is adopted

as that is a natural way of ensuring that model frag-
ments can be checked in isolation. This is particularly
important for structurally dynamic systems where
parts of the system change over time. However, as
long as the types of the parts remain unchanged, and
are reasonably informative, a meaningful analysis can
still be carried out statically, at compile-time.

The development is carried out in the context of
Functional Hybrid Modelling (FHM) [14, 15], as this
provides a small and manageable modelling language
framework that helps keeping the focus on the es-
sence of the problem. FHM itself is still in an early
stage of development. However, the central ideas put
forward in this paper are not tied to FHM, but should
be applicable to equation-based modelling languages
like Modelica in general, as well as to applications
featuring modular systems of equations outside the
field of modelling and simulation. In effect, FHM is
mainly used as a convenient and concise notation for
modular systems of equations.

The rest of the paper is organised as follows. Sec-
tion 1 provides general background and discusses
related work. Section 2 provides an overview of FHM
in the interest of making this paper relatively self-
contained. Section 3 then develops the idea of struc-
tural types for modular systems of equations. As an
example, this is applied to a simple electrical circuit
in Section 4. Finally, Section 5 discusses future work
and Section 6 gives conclusions.

1 Background and related work

Object-oriented modelling languages like Modelica
[12] allow models to be developed in a modular fash-
ion: systems of equations describing individual com-
ponents are composed into larger systems of equa-
tions describing aggregates of components, and ulti-
mately into a complete model of the system under
consideration. As with software in general, such

L
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modularity is key to addressing the complexity of
large-scale development as it allows large problems
to be broken down into smaller ones that can be ad-
dressed independently, enables reuse, etc.

Of course, it is possible that mistakes are made during
the development of a model. If so, it is desirable to
catch such mistakes early. In a modular setting, this
means checking whether a component in isolation is
inherently faulty, and whether two or more compo-
nents are being composed appropriately. As a result,
mistakes can be localised effectively, meaning it
becomes a lot easier to find and correct them. In con-
trast, mistakes that only become evident once a sys-
tem has been fully assembled are usually a lot harder
to pinpoint as the symptom in itself often is not
enough to suggest any particular part of the system as
the root of the problem. Even more problematic is a
situation where problems only reveal themselves in
use, as this means the system is unreliable.

A good way to catch errors early is to employ the
notion of fypes. An entity has some particular type if
it satisfies the properties implied by that type. A type
system then governs under which conditions typed
entities may be combined, and determines what prop-
erties the combined entity satisfies, i.e. its type. As a
simple example, consider the type Integer. If an
entity has type Integer, this means that this entity
satisfies the property of being an integer. Moreover, a
rule of the type system would establish that any two
entities satisfying the property of being integers can
be combined using arithmetic addition into a new
entity that also is an integer. This example is trivial,
but as we will see, it is possible to capture much more
complex properties through suitably defined types.

An important aspect of a type system is that it works
solely on the basis of the fypes of the combined enti-
ties, without referring to any specific entity instances.
This makes it possible to establish various properties
of a combined entity before knowing exactly what all
its parts are. This in turn allows for all manner of
useful parametrisations, systems with dynamically
evolving structure, etc.

This paper is concerned with equation systems prop-
erties for establishing whether a system can be solved
or not. One necessary but not sufficient condition for
solvability is the variable and equation balance: glob-
ally, the number of variables to solve for and the
number of equations must be equal. Languages like
Modelica naturally enforce this. Since version 3.0
[12], Modelica has adopted the even stricter criterion

that (in essence) variables and equations must be
locally balanced, i.e. balanced on a per component
basis. Thus, in a sense, the property of being balanced
is implicitly part of the type of a component in Mode-
lica 3.0, as all well-typed components are balanced.
Naturally, if all components of a model are locally bal-
anced, this implies that the model is globally balanced.
Of course, a locally imbalanced model might still be
globally balanced. To allow such models (without
deferring all checking until a model has been fully
assembled), it is necessary to explicitly make the
variable and equation imbalance part of the type of a
component. This was suggested by Nilsson et al. [14]
and, independently, by Broman et. al. [2], who devel-
oped the idea in detail by integrating the notion of a
“structural constraint delta” into the types of components.
Unfortunately, ensuring that the number of variables
and equations agree only gives relatively weak assur-
ances. As a simple example, consider the following
system of equations, where f, g, and i are known
functions, and x, y, and z are variables:

S(x,,2)=0
g(z2)=0
h(z)=0

The number of equations and variables agree. Yet it is
clear that we cannot hope to solve this system of
equations: x and y occur only in one equation, but
we need two equations to have a chance to determine
both of them. Moreover, z occurs alone in two of the
equations, meaning that it may be impossible to find a
value of z that satisfies them both. What we have in
this case is an underdetermined system of equations
for x and y (one equation, two variables), and an
overdetermined system of equations for z (two equa-
tions, one variable). Note that it was possible to es-
tablish the unsolvability of this system by just consid-
ering its structure: which variables occur in which
equations. This can be formalised through the notion
of a structurally singular system of equations:

Definition 1 (Structually singular system of egs.)
A system of equations is structurally singular iff it
is not possible to put the variables and equations in a
one-to one correspondence such that each variable
occurs in the equation it is related to.

We now simply observe that a system of equations
that is structurally singular is unsolvable.

Languages like Modelica ensure that models are not
structurally singular as simulation is not possible if
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this is the case. However, in Modelica, this check is
not carried out on a per component basis, but only
once the system has been fully expanded into a “flat”
system of equations. To the best of this author’s
knowledge, this is also the case for all similar lan-
guages. As a result, if it turns out that the final model
is structurally singular, it can be very difficult to find
out what the origin of the problem is.

To help overcome this difficulty, Bunus and Fritzson
proposed a method to help localising the cause of any
structural singularity [3, 4]. Their idea is to view the
system of equations as a bipartite graph where the
variables constitute one set of nodes, the equations
the other set of nodes, and there is an edge between a
variable and an equation if the former occurs in the
latter. See Figure 1(a) and 1(b). They then use the
Dulmage and Mendelsohn canonical decomposition
algorithm [6] to partition the flat system of equations
into three parts: one overdetermined, one underde-
termined, and one where the variables and equations
match up. This information is then used to help diag-
nose the problem and suggest remedies.

Still, it would be an advantage if mistakes that inevi-
tably are going to lead to structural singularities can
be flagged up early, without first having to fully ex-
pand a model. This is true in particular for structur-
ally dynamic systems: since the system of equations
describing the behaviour of the system change over
time, there is no one fully expanded system in this
case. This is the kind of systems we ultimately hope
to address in the context of our work on Functional
Hybrid Modelling [14, 15].

This paper investigates an approach to early detection
of structural singularities. The basic idea is to attrib-
ute types to components such that these types charac-
terise the structure of the underlying system of equa-
tions used to represent a component, or more pre-
cicely, the structure of the equations that constitute its
interface. We refer to this as the structural type of the
component. The fundamental idea is similar to the
structural constraint delta approach suggested by
Broman et al.. However, the structural type is much
richer: instead of a single number reflecting the vari-
able and equation imbalance, the structural type de-
tails which variables occur in which equations. That
is, the structural type is essentially a bipartite graph as
in the work by Bunus and Fritzson, or it can be viewed as
an incidence matrix: see Figure 1(c).We will freely
switch between these two points of view in the following.

It turns out, though, that it often will be necessary to
approximate the information on which variables oc-

JIIII_.J'.FI.'.'.l = 0 (1)
glz,z) = 0 (2)

hy.z) = 0 (3)
(a) System of equations

xr ]

Eq. 1 1- 51 )
E¢ 1. 2 I o 1
Eq.3 0- 1 1

(¢) Incidence matrix

(b) Bipanite graph

Figure 1. A system of equations and its corresponding
structural representations.

cur in which equations. Thus the approach of this
paper is not a complete alternative to error diagnosis
on the final, flat system of equations as suggested by
Bunus and Fritzson, but rather complementary to it.

2 Functional hybrid modelling

Functional Hybrid Modelling (FHM) [14, 15] is a
generalisation of the central ideas of Functional Re-
active Programming (FRP) [18]. In FRP, a functional
programming language is extended with constructs
for reactive programming and causal, hybrid, model-
ling, specifically signals (time-varying values) and
functions on signals. This has proved to yield a very
flexible and expressive framework for many different
kinds of reactive and modelling applications [13, 9, 5,
8]. The FHM approach is similar, but relations on
signals are added to address non-causal modelling.

The salient features of FRP and FHM relevant for this
paper are covered in the rest of this section. The ideas
are illustrated with a simple circuit example. This
example is also used later in this paper. Note that
FHM is currently being developed: no complete im-
plementation exists yet. However, as explained ear-
lier, it provides a convenient setting for this work.

2.1  Fundamental concepts

FRP is a conceptual framework. A number of con-
crete implementations exists. Here, we will briefly
consider Yampa [13], which is most closely related to
FHM. Yampa is based on two central concepts: sig-
nals and signal functions. A signal is a function from
time to a value; conceptually:

Signal a = Time — «

(The conceptual nature of this definition is indicated
by =. — is the infix type constructor for function
types.) Time is continuous, and is represented as a
non-negative real number. The type parameter o
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specifies the type of values carried by the signal. For
example, the type of a varying electrical voltage
might be Signal Voltage.

A signal function is a function from Signal to Signal:
SF o p ~ Signal o — Signal

When a value of type SF a S is applied to an input
signal of type Signal a, it produces an output signal of
type Signal B. Signal functions are first class entities
in Yampa. Signals, however, are not: they only exist
indirectly through the notion of signal function. Addi-
tionally, signal functions satisfies a causality require-
ment: at any point in time, the output must not de-
pend on future input (this is temporal causality, a
notion distinct from the notion of causality in “non-
causal modelling.”)

The output of a signal function at time ¢ is uniquely
determined by the input signal on the interval [0,¢]. If
a signal function is such that the output at time ¢ only
depends on the input at the very same time instant ¢,
it is called stateless. Otherwise it is stateful.

2.2 First-classsignal relations

A natural mathematical description of a continuous
signal function is that of an ODE in explicit form. A
function is just a special case of the more general
concept of a relation. While functions usually are
given a causal interpretation, relations are inherently
non-causal. Differential Algebraic Equations (DAEs),
which are at the heart of non-causal modelling, ex-
press dependences among signals without imposing a
causality on the signals in the relation. Thus it is
natural to view the meaning of a DAE as a non-causal
signal relation, just as the meaning of an ODE in
explicit form can be seen as a causal signal function.
Since signal functions and signal relations are closely
connected, this view offers a clean way of integrating
non-causal modelling into an Yampa-like setting.

Similarly to the signal function type SF of Yampa
(Section 2.1), the type SR a stands for a relation on a
signal of type a. Like signal functions, signal rela-
tions are first class entities, as will become clear in
the following. Specific relations use a more refined
type; e.g., for the derivative relation der we have the
typing:
der :: SR ( Real, Real)

Since a signal carrying pairs is isomorphic to a pair of
signals, we can understand der as a binary relation on
two real-valued signals. Signal relations are con-
structed as follows:

sigrel pattern where equations

The pattern introduces signal variables that at each
point in time are bound to the instantaneous value of
the corresponding signal. Given a pattern p of type ¢,
p :: t, we have:

sigrel p where...:: SR ¢

Consequently, the equations express relationships
between instantaneous signal values. This resembles
the standard notation for differential equations in
mathematics. For example, consider x"= f(y), which
means that the instantaneous value of the derivative
of (the signal) x at every time instant is equal to the
value obtained by applying the function f to the
instantaneous value of y.

There are two styles of basic equations:

e =e
sr Qe

where e; are expressions (possibly introducing new
signal variables), and sr is an expression denoting a
signal relation. We require equations to be well-typed.
Given ¢; :: t;, this is the case iff 1, =, and s7 :: £5.
The first kind of equation requires the values of the
two expressions to be equal at all points in time. For
example:

fx=gy
where f'and g are ordinary, pure functions (we follow
standard functional programming practice and denote
ordinary function application simply by juxtaposi-
tioning, without any parentheses.)
The second kind allows an arbitrary relation to be
used to enforce a relationship between signals. The
symbol ¢ can be thought of as relation application;
the result is a constraint which must hold at all times.
The first kind of equation is just a special case of the
second in that it can be seen as the application of the
identity relation. Thus, with I denoting the identity
relation, an equation e; = e, could also be written I ¢
(e1, ey). For another example, consider a differential
equation like x'= f(x). Using the notation above,
this equation can be written:

der O (x,fxy)
where der is the relation relating a signal to its de-

rivative. For notational convenience, we will often
use a notation closer to standard mathematical practice:

derx=fxy

The meaning is exactly as in the first version. Thus,
in the second form, der is not a pure function operat-
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R1 Hgy R2 Uy

O~ o [
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Figure 2. A simple electrical circuit.

ing only on instantaneous signal values. It is a (state-
ful) signal function operating on the underlying signal.

We illustrate the ideas above by modelling the elec-
trical circuit in Figure 2 (adapted from [11]). The type
Pin is a record type describing an electrical connec-
tion. It has fields v for voltage and i for current.
twoPin :: SR (Pin, Pin, Voltage)
twoPin = digre (p, n, u) where
u=pv-—ny
pitni=0
resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrel (p, n) where
twoPin ¢ (p, n, u)
r¥pi=u
inductor :: Inductance — SR (Pin, Pin)
inductor [ = sigrel (p, n) where
twoPin O (p, n, u)
[*der pi=u
capacitor :: Capacitance — (Pin, Pin)
capacitor ¢ = Sigrel (p, n) where
twoPin O (p, n, u)
c*deru=p.i

The resistor, inductor and capacitor models are de-
fined as extensions of the twoPin model. This is ac-
complished using functional abstraction rather than
any Modelica-like class concept. Note how param-
eterized models are defined through functions return-
ing relations, e.g. resistor. Since the parameters (like
r of resistor) are normal function arguments, not
signal variables, their values remain unchanged
throughout the lifetime of the returned relations (in
Modelica terms, they are parameter variables). As signal
relations are first class entities, signal relations can be
parameterized on other signal relations in the same way.

To assemble these components into the full model, a
Modelica-inspired connect-notation is used as a con-
venient abbreviation for connection equations. In
FHM, this is just syntactic sugar that is expanded to

basic equations: equality constraints for connected
potential quantities and a sum-to-zero equation for
connected flow quantities. In the following, connect
is only applied to Pin records, where the voltage field
is declared as a potential quantity whereas the current
field is declared as a flow quantity.

We assume that a voltage source model vSourceAC
and a ground model ground are available in addition
to the component models defined above. Moreover,
we are only interested in the total current through the
circuit, and, as there are no inputs, the model thus
becomes a unary relation:

simpleCircuit :: SR Current

simpleCircuit = sigrel i where
resistor 1000 O (rIp, rin)
resistor 2200 O (r2p, r2n)
capacitor 0.00047 ¢ (cp, cn)
inductor 0.01 ¢ (Ip, In)
vSourceAC 12 ¢ (acp, acn)
ground O gp

connect acp rlp r2p

connect rin cp

connect r2n Ip

connect acn cn In gp

i=ripi+r2pi

There is no need to declare variables like rip, rin:
their types are inferred. Note the signal relation ex-
pressions like resistor 1000 to the left of the signal
relation application operators ¢.

As an illustration of signal relation application, let us
expand resistor 1000 ¢ (rIp, rin) using the defini-
tions of twoPin and resistor. The result is is the fol-
lowing three equations, where ul is a fresh variable:

ul =ripn—rinyvy
ripi+rini=0
1000 * rip.i=ul

2.3  Dynamicstructure
Yampa can express highly structurally dynamic sys-
tems. Ultimately, we hope to integrate as much of that
functionality as possible into FHM. As a basic exam-
ple, switching among two different sets of equations
as a Boolean signal changes value might be expressed
as follows:
switch b
when False
equations,
when True
equations,

L
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If the type system approach outlined in this paper is
to work for FHM, we need to consider how to handle
such constructs from a type perspective. This is done
in Section 3.4. There are many other outstanding prob-
lems related to implementation of structurally dynamic
systems. But those are outside the scope if this paper.

3 Structural typesfor signal relations

We now define the notion of structural type and show
how it enables structural analysis to be carried out in
a modular way, without having to first expand out
signal relations to “flat” systems of equations. The
key difficulty is abstraction of structural types, and
consequently the section mostly focuses on that aspect.

3.1 Thestructural type
In essence, a signal relation is an encapsulated sys-
tem of equations. When a signal function is applied,
these equations impose constraints on signals in
scope at the point of application through the variables
of the signal relation interface. A larger system of
equations is thus formed, composed from equations
contributed by each applied signal relation.
Let us consider a simple example:
foo :: SR (Real, Real, Real)
foo =sigrel (xi, x,, x3) where
fixixax3=0
fixaxs =0
Let us assume a context with five variables, u, v, w, x,
v, and let us apply foo twice in that context:

foo O (u, v, w)
food(w,u+x,v+y)
The result, obtained by substituting the variables u, v,

w, x, y into the equations of foo, is the following sys-
tem of equations:

fiuvw =0
fHvw =0
Siwutx)(vty) =0
Hutx)v+y) =0

Note that each application of foo contributed two
equations to the composed system, each for a subset
of the variables to the right of the relation application
operator Q.

As discussed in Section 1, the aim is now to analyse
the structure (which variables occur in which equa-
tions) of the composed system in order to identify
situations that definitely will result in over- or under-
determined systems of equations.

However, for a variety of reasons, it is not desirable
to assume that this can be done by simply unfolding
the applied relations as was done above. In the con-
text of FHM, what goes to the left of ¢ is a signal
relation expression that may involve parameters that
are not known at compile time, thus preventing the
expression from being evaluated statically. Or the
exact contribution of the applied signal relation might
not be known for other reasons, for example due to sepa-
rate compilation or because it is structurally dynamic.

Thus, we are only going to assume that the #ype of the
applied signal relation is known. To enable structural
analysis, the type of signal relations is enriched by a
component reflecting its structure.We refer to this as
the structural type of the signal relation.

Definition 2 (Structural type of system of equations)
The structural type of a system of equations is the
incidence matrix of that system. It has one row for
each equation, and one column for each variable in
scope—only “unknown” signal variables are of in-
terest here, not parameters or “known” (input) signal
variables. An occurrence of a variable in an equation
is indicated by 1, a non-occurrence by 0.

Note that Definition 2 concerns systems of equations.
For a signal relation, i.e. an encapsulated system of
equations, the structural type is limited to the equa-
tions contributed by the signal relation and the vari-
ables of its interface. If the interface includes records
of signal variables, like Pin of the simple circuit ex-
ample in Section 2.2, then each field counts as an
independent variable. We defer a precise definition
until section 3.3.

As an example, consider the signal relation foo above.
Its type, including the structural part, is:

1 11
foo :: SR(Real, Real, Real)
011
3.2 Composition of structural types
Now let us consider composition of structural types.
The overall structural type for a sequence of equa-
tions is obtained by simply joining the incidence
matrices for the individual equations as the same set
of variables is in scope across all equations.
The structural type for a basic equation of the form
e1=e
is a single-row matrix indicating which variables
occurs in expressions e; and e,.

The structural type for the second form of equation,
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signal relation application, is more interesting. The
general form of this kind of equation is:

sr (61, €2, .uuy e,‘)

where e, e, ..., e; are expressions over the signal
variables that are in scope. These expressions and
their relation to the variables in scope can also be
represented by an incidence matrix, with one row for
each expression and one column for each variable.
The incidence matrix of the signal relation applica-
tion is then obtained by Boolean matrix multiplica-
tion—which is understood as Boolean conjunction, A
(logical “and”), and addition as Boolean disjunction,
v (logical “or”’)—of the structural type of the applied
signal relation and the incidence matrix of the right-
hand side expressions.

Returning to the example from the previous section,
the incidence matrix of the right-hand side of the
application

foo O (u, v, w)
in a context with five signal variables u, v, w, x , y is

y

o o ~ v
S = O T
- o o=
S O O

0
0
0

(where the columns have been labelled for clarity). Mul-
tiplying the structural type of foo with this matrix yields:

u v w x y

L f(toooo ”1vlvlvo"oy

(011)01000{01100
00100

Similarly, for foo ¢ (w, u +x, v+ y), we obtain
uvwxyuvwxy

11 (001 00 L1111

[011}01010(1101j
00101

The complete incidence matrix for the two applica-
tions of foo is thus

u v w x y
1 1
0

1

1

_—— O O
—_— = O O

1
1
1
1

S = =

Compare with the fully expanded system of equations
in the previous section.

3.3  Abstraction over structural types

In the previous section, we saw how to obtain the
overall structural type of a composition of signal
relations given the structural types of the involved
signal relations. The next step is to consider how to
encapsulate a system of equations in a signal relation.
It is often the case that the set of variables in the in-
terface of a signal relation, the interface variables is a
proper subset of the variables that are in scope. A
signal relation may thus abstract over a number of
local variables. This, in turn, means that a number of
the equations at hand must be used to solve for the
local variables: the local variables are not going to be
in scope outside the signal relation, and thus it is not
possible to add further equations for them later.

The available equations are thus going to be parti-
tioned into local equations, those that are used to
solve for local variables, and interface equations,
those that are contributed to the “outside” when the
signal relation is applied. This immediately presents
an opportunity to detect instances of over- and under-
determined systems of equations for the local vari-
ables on a per signal relation basis. However, it also
presents a very hard problem as the partitioning is not
uniquely determined, which in general implies that a
signal relation does not have unique best structural type.

To illustrate, consider encapsulating the example
from the previous section in a signal relation where
only the variables u and y appear in the interface:
bar=digrel (u, y) where
foo O (u, v, w)
food(w,utx,v+y)
Recall the incidence matrix of the encapsulated system:

Y

=
—_ = = =

wox
1 0
1 0
11
01

— - O O

Three of the underlying equations are needed to solve
for the local variables v, w, and x , the remaining one
is the interface equation. But the only equation that
cannot be chosen as the interface equation is number
2, as no interface variable occurs in this equation.
Projecting out the columns for the interface variables
for the the incidence matrices for the three possible
choices of interface equation yields

uw'y uw .y uy

(1o (11 (11

L
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The last two possibilities are equivalent, so this
leaves us with two possible structural types: the sig-
nal relation bar can either provide a single equation
in which the first variable of the interface occurs, or it
can provide an equation in which both interface vari-
ables occurs, depending on the chosen equation parti-
tioning in bar.

A modelling language compiler will decide on a spe-
cific partitioning. But this choice is typically dictated
by intricate numerical considerations and often also
by the usage context. As it is essential that type
checking is compositional, it is clear that the parti-
tioning must be done independently of usage context.
And to ensure that the type system is independent of
arbitrary implementation choices, as well as reasona-
bly easy to understand for the end user, it is clear that
the partitioning should not depend on low-level nu-
merical considerations either.

There are two approaches for dealing with the situa-
tion. One is to accept that a signal relation can have
more than one structural type. This paper does not
explore that avenue as there is a risk that it would
lead to a combinatorial explosion of possibilities to
consider. Still, it should not be ruled out. The other
approach is to decide on a suitable notion of “best”
structural type. Then, if a signal relation has more
than one possible structural type, choose the best one,
if this is a uniquely determined choice, otherwise ap-
proximate all best types with a type that is better than
them all, but still as informative as possible, and take this
approximation as the structural type of the signal relation.

We are going to adopt a notion of “best” that reflects
the observation that an equation is more useful the
more variables that occur in it (as this gives more
flexibility when choosing which equation to use to
solve for which variable). We are further going to
assume that an implementation is free to make such a
best choice. The latter might not be the case, but we
should then keep in mind that the objective of the
type system is not to guarantee that a system of equa-
tions can be solved, but to detect cases where a sys-
tem of equations definitely cannot be solved. Assum-
ing a freedom of choice is thus a safe approximation.

Definition 3 (Subsumed variable)
Let ¥, and ¥, be sets of variables. V, is subsumed
by V, iff ¥ \V, =@.

Definition 4 (Subsumed structural type)
Let s, and s, be structural types. s, is subsumed by s,
iff there exists a permutation of the rows of the inci-

dence matrix for s, such that the variables of each
row of the incidence matrix for s, are subsumed by
the variables of the corresponding row of the permuted
incidence matrix for s,. The subsumed relation on
structural types is denoted by the infix symbol <.

Definition 5 (Best structural types)
Let S be a set of structural types. The best structural
types in S'is the set

{s|se SA—(Is’e S:5<s)}

Returning to the signal relation bar above, we find
that it actually has a single best structural type since

u 'y u 'y
(1 0)<(1 1)

The complete type of bar is thus:
bar :: SR(Real,Real)(1 1)

As an example of a case where there is not any best
type, consider

10 1 00 1
s = , 8, =
{100) (111)

Note that s, £5,and s, £s,. Neither is better than the
other, and the best structural types of § = {s,,s,} is S.

What is needed if there is more than one best type is
to find an approximation in the form of an upper
bound that subsumes them all. Clearly such a bound
exists: just take the incidence matrix with all 1s, for
example. That corresponds to an assumption that each
equation can be used to solve for any variable, mean-
ing that we are back to the approach of counting
equations and variables. However, to avoid loosing
precision unnecessarily, a smallest upper bound
should be chosen. As the following example shows,
there may be more than one such bound, in which
case one is chosen arbitrarily.

Consider the two structural types:

1100 01 01
001 1) {1 001

Upper bounds can be constructed by taking the union
of the first incidence matrix and all possible row
permutations of the second one. As there are only two
rows, we get two upper bounds:

1101 1101
1o1 1) o111

Neither is smaller than the other. However, they are
both as small as possible, as removing a single 1 from
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any matrix means it will not subsume one or the other
of the original matrices. Thus, in general, the least
upper bound of structural types under the subsumed
ordering is not uniquely determined.

We can now give a definition of the structural type of
a signal relation:

Definition 6 (Structural type of a signal relation)
The structural type of a signal relation with a body
of m equations over n variables, of which i vari-
ables occur in the interface, if that type exists, is an
(m—(n—1))Xi incidence matrix that is a least upper
bound of the structural types of all possible choices
of interface equations.

The following algorithm determines the structural
type of a signal relation when one exists, or reports an
error otherwise. We claim this without proof, leaving
that as future work:

Arguments

1. Structural type s for the system of equations of
the body of the signal relation in the form of an
mxn incidence matrix (m equations, n vari-
ables).

2. The set V of variables, |V | = n, and a mapping
from variables to the corresponding column
number of the incidence matrix.

3. The set I of interface variables of the signal relation.

Result
o If successful, an (m—(n—|I|))x|I| incidence
matrix representing the structural type of the signal
relation.
e Otherwise, an indication of the problem(s): un-
der- or overdetermined system of local equations;
overdetermined system of interface equations.

Algorithm
1. Let L = \J be the set of local variables. Parti-

tion s into three parts:

e s, : rows corresponding to equations over va-
riables in L only, the a priori local equations;

e s,: rows corresponding to equations over va-
riables in / only the a priori interface equations;

e s, : remaining rows, corresponding to equa-
tions over mixed interface and local variables.

Let m,, m,, m,, be the number of rows of s,,

s;, and s,, respectively. (Note that the a priori

1

. Choose k rows from s,, in all possible ways [)24]

local equations can only be used to solve for lo-
cal variables, whereas the a priori interface equa-
tions can only be used to solve for interface vari-
ables.)

. Let k= ‘L‘ —m, . k is the number of equations in

addition to local ones that are needed to solve for
all local variables.
a. If k<0, report “overdetermined local sys-
tem of equations”.
b. If k>m,,, report “underdetermined local
system of equations”.

. Initialise S, to &

m

possibilities, m,, = k). For each such choice:

a. Partition s,, into s, containing the } chosen
rows and s, containing the remaining rows.

b. Consider s, and s, restricted to the local
variables L as a bipartite graph and compute
a maximum matching using the standard
augmenting path algorithm [1, pp. 246-250].
Check if the size of the matching is equal to
| L|. If yes, this means that each variable in
L can be paired with a row from s, or s, in
which it occurs, which is a necessary condi-
tion for using the equations corresponding to
the rows from s, or s, to solve for the local
variables.

c. Consider s, and s, restricted to the interface
variables I as a bipartite graph and compute
a maximum matching using the standard
augmenting path algorithm. Check if the size
of the matching is equal to the number of
rows of s, and s,, i.e. m, +m, —k. If yes,
then this means that all equations corre-
sponding to the rows of s, and s, can be
used simultaneously to solve for one of the
interface variables. This is a necessary con-
dition for ensuring that the interface equa-
tions contributed by the signal relation does
not constitute an overdetermined system.

d. If both checks above passed, then this par-
ticular choice of j rows is valid.

e. For each valid choice, add s, restricted to
the variables 7 to S, .

5. If §, =, it is not possible to solve for the local

variables and/or the interface equations contrib-
uted by the signal relation are going to be over-
determined. Report the problem.
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6. Determine the best structural types S,. of S,.
7. Let s, be a least upper bound of S,..

8. The incidence matrix obtained by joining s, and
s,- is the structural type of the signal relation, i.e.
a least upper bound of the structural types of all
possible choices of interface equations.

3.4  Sructurally dynamic systems

To conclude the development, we briefly consider
how to handle structurally dynamic systems, for ex-
ample of the type illustrated in section 3.3. Clearly,
the structural types of the equations in the different
branches could be different. However, at any point in
time, the choice of which equations that are active is
determined by the condition of the switch-construct.
Thus, the structural type of the entire switch-
construct is the greatest lower bound of the structural
types of the branches, as that is the only thing which
is guaranteed at all points in time. One may also want
to impose additional consistency constraints between
the branches to avoid unpleasant surprises at run-
time, e.g. due to the system of equations all of a sud-
den becoming overdetermined. But this has not yet
been investigated.

3.5 Implementation

The algorithm for computing the structural type for a
signal relation has been prototyped in Haskell. It
implements all aspects of the described algorithm,
except that it has not been verified whether the com-
putation of upper bounds indeed yields one of the
least upper bounds. The time complexity of the algo-

rithm is a concern. For example, the [m,’(”] possible

partitionings of the mixed equations that need to be
investigated could, in adverse circumstances, be a
large number. However, there may be ways to exploit
more of the structure of the equations in order to limit
the number of alternatives to consider. It is also easy
to check how many partitioning there are before start-
ing to enumerate them, and if they are judged to be
too many, one can simply default to a safe over ap-
proximation of the type.

4  Structural typesfor asimple
electrical circuit

As an example, let us apply the structural type system

developed in section 3 to the simple electrical circuit

from section 2.2.

Let us first consider the resistor. Recall that Pin is a

record of two fields v and i, and that the signal rela-

tion interface thus consists of four variables: p.v, p.i ,
n.v, and n.i:

resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrél (p, n) where
twoPin ¢ (p, n, u)
r¥pi=u

Before approximation, the two possible structural
types for resistor are

0101 01 01
[0100]’[101oj
reflecting a choice between using u = p.v - n.vor r *
p.i = u for solving for the local variable u. (The equa-
tion u = p.v - n.v is contributed by twoPin. However,
note that only its structural type is of interest here,

not the exact equation.) This gets approximated with
a least upper bound to:

0101

(1 11 oj
Of course, resistor cannot provide a single equation
in which all of p.v, p.i , and n.v occur. But as the
equation can only be used to solve for one of the
variables, and as an equation can be provided for

either two of the variables or the third, this is not too
bad. Let us now consider inductor :

inductor :: Inductance — SR (Pin, Pin)
inductor [ =sigrel (p, n) where
twoPin ¢ (p, n, u)
[*der pi=u
The possible structural types before approximation
are the same as for resistor, but this time reflecting a
choice between using # = p.v — n.v or p.i= _[p.i'dt,

where p.i is the state derivative, for solving for the
local variables. Note that the equation / * p.i’= u is
local, as neither the state derivative nor u occurs in
the interface of inductor. After approximation, the
structural type of inductor becomes the same as that
of resistor . The case for capacitor is also very simi-
lar, and both the possible structural types prior to
approximation and the final structural type are again
the same. For a final example, suppose a mistake has
been made in the definition of simpleCircuit: instead of

connect rin cp
connect r2n Ip
the equations read

connect r2n Ip
connect r2n Ip
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Note that the number of equations and variables re-
main exactly the same in the two cases (each connect
above is expanded to one equality constraint and one
sum-to-zero equation). The structural type checking
algorithm presented in this paper correctly reports
that simpleCircuit is a locally underdetermined sys-
tem. If only variables and equations had been
counted, this error would not have been detected.

5 Futurework

It should be emphasised that what has been presented
in the present paper is only a preliminary investiga-
tion into the basics of a type-based structural analysis
for modular systems of equations. It is not yet yet a
full-featured type system. In particular, we have only
considered the structural aspect in isolation, and to
that end it was tacitly assumed that the structural
types of composed signal relations were known, ena-
bling the overall structural type of signal relations to
be computed in a bottom-up manner.

However, FHM aims at treating signal relations as
first class entities. One consequence of this is that
signal relations can be parametrised, including on
other signal relations. In FHM, a parametrised signal
relation is simply a function that computes a signal
relation given values of the parameters, which could
include other signal relations. The question then is
how to determine the structural type of any signal
relation parameters.

One option would be to insist that the structural types
of signal relation parameters is always declared. This
could be cumbersome, but there is always the possi-
bility of making a permissible (imprecise) default
assumption in the absence of explicit declarations.
Another option might be to try to infer suitable struc-
tural constraints for the parameters from how they are
being used in Hindley-Milner fashion. A third option
would be to move to a framework of dependent types
[17, 16] where types are indexed by (can depend on)
terms. In our case, the incidence matrices that repre-
sent the structural type would be considered term-
level data, and the output structural type of a paramet-
rised signal relation is then allowed to depend on the
input structural type(s), or even the values of other
parameters, meaning that the output structural type
will be given as a function of the parameter values.

Incidentally, Modelica effectively also provides pa-
rametrised signal relations through its mechanism of
replaceable components. Here the problem is ad-

dressed by syntactically requiring a default value for
the replaceable component, which is used for type
checking, and additionally insisting that any replace-
ment conforms with the type of the default value in
such a way that the result after any replacement is
still guaranteed to be well-typed.

Another aspect that was not considered is how to
handle equations on arrays. If the sizes of the arrays
are manifestly known, it would be possible to con-
sider an array equation simply as a shorthand notation
for equations between the individual elements. But
that is not very attractive, and it would inevitably lead
to unwieldy structural types, bloated with lots of
repetitive information. And, of course, if the array
sizes are not manifest but parameters of the relation,
it would be even more problematic. The most feasible
approach is likely to restrict array equations in such a
way that each such equation can be considered a
single equation for the purpose of the structural types.
Again, moving to a setting of dependent types might
be helpful, as the type checking depends on term-
level data, i.e. the sizes of the arrays. Dependent type
systems supporting explicitly sized data has been
studied extensively. One good example is Dependent
ML [19, 20].

We would also like to integrate checking of physical
dimensions [10] into the FHM type system. We ob-
serve that this is another reason to look closer at de-
pendent types since the types become dependent on
term-level data. For example, if an entity with a di-
mension type is subject to iterated multiplication, the
resulting dimension depends on how many times the
multiplication was iterated.

Finally, there are usability aspects that needs to be
considered. While the type errors that are reported
should be attributed fairly precisely to the component
that is faulty, it is not clear how to phrase the error
messages such that the problem becomes evident to
the end user. Also, we need to keep in mind the con-
servative nature of the type system: there is no guar-
antee that further errors will not be discovered when a
complete system of equations has been assembled.
Combining the approach developed here with that of
Bunus and Fritzson [3, 4] might help on both counts.

6 Conclusions

This paper presented a preliminary investigation into
type system for modular systems of equations. The
setting of the paper is equation-based, non-causal
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modelling, but the central ideas should have more
general applicability. The paper showed how attribut-
ing a structural type to equation system fragments
allows over- and underdetermined system fragments
to be identified separately, without first having to
assemble all fragments into a complete system of
equations. The central difficulty was handling ab-
straction of systems of equations. The paper pre-
sented an algorithm for determining the best possible
type for an abstracted system, although this may
involve approximation.

It should be emphasised that was has been presented
is not yet a complete type system. The paper only
considers the structural aspect, and it was tacitly
assumed that these structural types essentially could
be determined in a straightforward bottom-up man-
ner. The goal of treating signal relations as first class
entities raises a number of further challenges, some of
which were discussed in Section 5.
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After 20 years since their birth, equation-oriented and object-oriented modelling techniques and tools are
now mature, as far as solving simulation problems is concerned. Conversely, there is still much to be done in
order to provide more direct support for the design of advanced, modelbased control systems, starting from
object-oriented plant models. Following a brief review of the current state of the art in this field, the paper
presents some proposals for future developments: open model exchange formats, automatic model-order re-
duction techniques, automatic derivation of simplified transfer functions, automatic derivation of LFT mod-
els, automatic generation of inverse models for robotic systems, and support for nonlinear model predictive control.

I ntroduction

Control system engineering requires to master the
dynamics of plants which are in general complex,
interacting, multi-physics and multi-disciplinary. This
explains why object-oriented modelling (OOM) and
a-causal, equationbased, object-oriented languages
(EOOL) always had a very strong connection with
control system design. It is by no means accidental
that much pioneering work in the OOM field was
carried out within systems and control departments
and research groups: consider, for example, the
Omola language and the associated OmSim simula-
tion environment, developed at the Department of
Automatic Control of Lund Technical University [29,
30, 4], or the MOSES environment developed at the
Dipartimento di Elettronica of Politecnico di Milano
[26, 9]. During the 90, OOM was considered a very
promising tool for Computer Aided Control System
Design (CACSD), and there was a lot of activity in
this field, which eventually culminated in the devel-
opment of the Modelica Language [32].

At the beginning of that decade, papers appeared on
the subject in the IEEE’s Control Systems Magazine
[31, 10], which discussed the potential of OOM for
control system design. Reading those papers in retro-
spect shows that some of the promises where actually
met or even exceeded: OOM is now a mature field,
both from a theoretical side and from the point of
view of available simulation tools. On the other hand,
much work still has to be done on two fronts. The
first one, which has a more “political” nature, is
spreading the OOM culture among in the control
engineering community, which is still largely domi-
nated by block-oriented modelling, and by the
(mis)use of MatLab/Simulink for physical systems

modelling; this challenge is of paramount importance,
but it out of the scope of this paper. The second one,
instead, is to develop tools which allow to use EOOL
models and tools not only for simulation, but also for
the design of advanced control systems. The avail-
ability of such tools is crucial in order to narrow the
gap between the large body of highly sophisticated
control theory developed during the last 20 years, and
the application of this theory to real-life cases, be-
yond textbook-sized examples. This is the topic of the
present paper.

Given the background and the past experience of the
authors, the discussion might be biased towards the
Modelica language and related tools. However,
strictly object-oriented features such as inheritance,
encapsulation and hierarchical composition do not
play any significant role in the analysis and proposals
made within this paper, which essentially focuses on
transformations of flattened models. On the contrary,
the discussion is relevant for any equationbased mod-
elling language, provided that it is a-causal and it
allows symbolic manipulation of the equations by the
compiler.

The paper is structured as follows: Section 1 gives a
high-level view of the modelling activities required
for control system design, while the following Sec-
tion 2 discusses how currently available tools can
help the control engineer in his/her task, with particu-
lar reference to Modelica tools. Sections 3 and 4,
which are the core of the paper, propose several re-
search and development directions to substantially
increase the level of support to the control engineer,
willing to apply advanced control theory to real-life
problems. Section 5 concludes the paper with final
remarks.
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1 Therole of mathematical modelsin
control system design

The design of control systems always requires some
knowledge about the dynamic behaviour of the plant
under control. When the plant design is mature and
well-known, and the control system design is based
on Proportional-Integral-Derivative (PID) controllers,
the latter is often based on past experience and possi-
bly on some empirical measurements. In this case,
which covers the vast majority of installed industrial
controllers, no (explicit) dynamical modelling is needed.

On the other hand, in an increasing number of cases,
the performance of the control system is becoming a
key competitive factor for the success of innovative,
high-tech systems. To name a few examples, consider
high-performance mechatronic systems (such as ro-
bots), vehicles enhanced by active integrated stability,
suspension, and braking control, aerospace system,
advanced energy conversion systems. All these cases
possess at least one of the following features, which
call for some kind of mathematical modelling for the
design of the control system:

e closed-loop performance critically depends on
the dynamic behaviour, which is not well-known
in advance;

e the system is complex, made of many closely in-
teracting subsystems, so that the behaviour of the
whole system is more than just the sum of its parts;

e advanced control systems are required to obtain
competitive performance, and these in turn depend
on explicit mathematical models for their design;

e the system is very expensive and/or safety criti-
cal, requiring extensive validation of good con-
trol performance by simulation.

In most of these cases, two different classes of
mathematical models are derived: compact models
for control design and detailed models for system
simulation.

1.1  Compact modelsfor control design

Models belonging to this class are directly used for
controller design, and are usually formulated in state-
space form:

x(1) = f(x@),u(?), p,1)
() = g(x(2),u(t), p,1)
where x is the vector of state variables, u is the vec-

tor of system inputs (control variables and distur-
bances), y is the vector of system outputs, p is the

(1

vector of parameters, and ¢ is the continuous time. A
special case is that of linear, time-invariant models
(LTT), which can be described as:

(1) = Ax(t) + Bu(t)

o 2
y(t) = Cx(t) + Du(t)

or, equivalently, as a transfer function:
G(s)=C(sI-A)"'B+D 3)

In many cases, the dynamics of systems in the form
(1) is approximated by (2) via linearization around
some equilibrium point. There is also a vast body of
advanced control techniques which are based on
discrete-time models:

x(k +1) = f(x(k),u(k), p, k)
y(k) = g(x(k),u(k), p, k)

where the integer time step k& usually corresponds to
the sampling time 7, of a digital control system.

K

4)

Many techniques are available to transform (1) into (4).

These models must capture the fundamental dynam-
ics which is relevant for control system performance,
while remaining as simple as possible: most advanced
control design techniques start to become intractable
for systems of order greater than about ten. If the
models are simple enough, it is also sometimes possi-
ble to express the dependence of key dynamic fea-
tures (such as, e.g., the natural frequency and damp-
ing coefficient of an oscillating dynamics) from plant
design data. This can be very important to assess the
impact of physical system design decisions on con-
troller performance. For example, if the natural fre-
quency of the first mode of oscillation limits the con-
troller bandwidth, and it is found that this frequency
mainly depends on the stiffness of a certain mechani-
cal component, then it might be reasonable to change
the mechanical design of that component in order to
improve the overall performance.

In order to derive such simple models, it is usually
necessary to introduce many, sometimes drastic, sim-
plifying assumptions: all those phenomena that only
marginally affect the equilibrium values and/or the
control-relevant dynamics of the system are ne-
glected. This activity requires highly skilled and ex-
perienced modellers, with a good knowledge of con-
trol design techniques, as well as of domain-specific
strategies for model simplification.

12 Detailed modelsfor system simulation

At the other end of the modelling spectrum, detailed
simulation models can be found. Although it is al-
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ways necessary to make reasonable modelling as-
sumptions (a model is always a focused and limited
description of the physical world), simulation models
can include a lot more detail and second-order effects,
since modern CPUs and simulation environments can
easily handle complex systems with (tens of) thou-
sands of variables. It is well-known that OOM meth-
odologies and EOOLSs provide very good support for
the development of such models, thanks to equation-
based modelling, a-causal physical ports, aggregation
and inheritance. If the OOM model does not contain
discrete variables and events, then it is basically
equivalent to the set of DAEs:

F(x(2), x(2),u(?), (1), p,1) =0 &)

Many EOOLSs and tools also allow to describe hybrid
systems, with discrete variables, conditional equa-
tions or expressions, and events. For example, see [7,
8] and references therein for hybrid system descrip-
tions based on hybrid automata, or the Modelica
language specification [41], in particular Appendix C.
Although hybrid system control is an interesting and
emerging field, for the sake of conciseness this paper
will focus on purely continuous-time physical mod-
els, with application to the design of continuous-time
or sampled-time control systems.

These larger, more detailed models play a double
role, with respect to those described in the previous
sub-section. On one hand they allow to check how
good (or crude) the compact models is, compared to a
more detailed description, thus helping to develop
good compact models. On the other hand, they allow
to check the closed-loop performance of the con-
trolled system, once a controller design is available. It
is in fact well-known that validating the closed-loop
performance using the same simplified model that
was used for control system design is not a sound
practice; conversely, validation performed with a
more detailed model is usually deemed a good indica-
tor of the control system performance, whenever ex-
perimental validation is not possible for some reason.

2 Overview of current CACSD practice
with EOOLs
As of today, the practising control engineer already

gets much support from EOOL-based tools for his/her
control system design activities.

21 Support to control system synthesis

A typical starting point for the design of the control
system is the analysis of the linearized dynamics of

the plant, around one (or more) steady-state operating
conditions. If the EOOL tool only supports simula-
tion, then one can run open-loop simulations of the
plant model, subject to step or to, e.g., pseudo-
random binary sequence inputs, and then reconstruct
the dynamics by system identification procedures.

A more direct approach, supported by many tools, is
to directly compute the 4,B,C,D matrices of the
linearized system around specified equilibrium
points, using symbolic and/or numerical techniques.
The result is usually a high-order linear system,
which can then be reduced to a low-order system by
standard techniques for linear model order reduction,
such as, e.g., balanced truncation.

A non-trivial issue with both approaches is the com-
putation of the equilibrium point (what is sometimes
called DC analysis in the field of electrical circuit
simulation). In a typical setting, the desired steady-
state values of the outputs y are known, and the tool
must solve the steady-state initialization problem for
the system (5):

F(x,0,u,y,p,0)=0 (6)

in order to find out the corresponding equilibrium
values of the inputs # and of the states x . This prob-
lem can be numerically challenging, because it often
requires solving large systems of coupled nonlinear
equations by iterative methods, which might fail if
the iteration variables are not properly initialized.
Currently available OOM tools (and, in particular,
Modelica tools) are still far from providing general
robust solutions to this problem. A sub-optimal ap-
proach to find equilibrium points is to initialize sys-
tem (5) by giving tentative initial values to the state
variables (which makes the initialization problem
easier to solve) and then to simulate it until it reaches
a steady state. If the system is asymptotically stable
and the inputs # are known, this is relatively straight-
forward; otherwise, it is necessary to add suitable
feedback controllers to drive the outputs to the de-
sired values y and/or to stabilize the system. In both
cases, the simulation of this initialization transient
might fail for numerical reasons before reaching the
steady state, due to a bad choice of the initial states.

2.2  Closed-loop perfor mance assessment by
simulation

Regardless of the actual design methodology, once

the controller has been set up, an OOM tool can be

used to run closed-loop simulations, including both

the plant and the controller model. Many OOM tools
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provide model export facilities, which allow to con-
nect an OO plant model with only causal external
connectors (actuator inputs and sensor outputs) to a
causal controller model in a causal simulation envi-
ronment. From a mathematical point of view, this
corresponds to reformulating (5) in state space form
(1), by means of analytical and/or numerical trans-
formations.

2.3  Development of simplified models

The object-oriented approach, and in particular re-
placeable components, allows to define and to man-
age families of models of the same plant with differ-
ent levels of complexity, by providing more or less
detailed implementations of the same abstract inter-
faces. For example, consider a heat exchanger model:
the abstract interface has four fluid connectors, two
for the hot fluid inlet and outlet, and two for the cold
fluid inlet and outlet. The corresponding implementa-
tion might range from a very simple static model
based on log-mean temperatures, with a few algebraic
equations, up to a very detailed finite volume model
using nonlinear fluid properties and empirical correla-
tions for heat transfer, and with dozens of state vari-
ables and a few hundred algebraic equations.

This feature of OOM allows developing simulation
models with different degrees of detail (and CPU
load) throughout the entire life of an engineering
project, from preliminary design down to commis-
sioning and personnel training, within a coherent
framework. However, this activity is based on manual
work by the modeller, who needs to develop the dif-
ferent implementations explicitly. Moreover, it is
often not easy to obtain compact models such as (1),
because this requires applying simplifications that
may not fit well the abstract component boundaries.

24  Generation of real-time smulation code

An important step in the development of embedded
control systems is Hardware-In-the-Loop simulation
(HIL), where the real control hardware is tested by
connecting it to a realtime simulator, instead of the
real plant. Many currently available EOOL-based
tools support automatic generation of efficient real
time code starting from fairly large simulation models
in the form (5). A common strategy for this purpose is
to apply inline integration [12, 11] to (5), i.e. to sub-
stitute the derivatives with their approximation for-
mulae (e.g. Euler’s formula), and then solve the system
using all available numerical and symbolic techniques.

In order to provide real-time code which is fast

enough, it is usually important to reduce the model
complexity with respect to off-line simulation models
- this can be done by following the approach sketched
in Section 2.3.

25 Optimization

Some EOOL and tools support some kind of optimi-
zation, which might be useful for control system
design. For example, the gPROMS language [6] has
allowed declaring mixed-integer nonlinear optimiza-
tion problems for a long time. More recently, exten-
sions to the Modelica language were proposed to
formulate optimization problems [2].

26  Further perspectives

It is the authors’ view that EOOL-based tools should
support advanced control system design problems in
a much more direct way, by making extensive use of
control-oriented symbolic manipulation techniques.
Ideally, it would be good if the control engineer could
develop a detailed simulation model by using object
oriented tools and re-usable model libraries, then
automatically obtain simplified, compact models
which are already formulated as required by the spe-
cific control technique. The availability of such tools
might promote the application of advanced, model-
based techniques that are currently limited by the
model development process.

Being aware that this is a very long-term goal, which
might even require some kind of artificial intelli-
gence, some first steps in this direction are discussed
in the following sections, with particular reference to
the Modelica language and Modelica compliant tools.

3 Basic enabling technologies

The advanced, control-oriented features of future
EOOL tools need some basic enabling technologies
and methodologies to build upon. These are briefly
discussed in this section.

3.1 Open standardsfor model and data
exchange

Advanced applications of OOM to control system
design will most likely require using different special-
ized tools in a coordinated fashion, rather than relying
on one-fits-all comprehensive software tools. In fact,
during the last decades, the number and the quality of
simulation, design and analysis tools has increased
enormously: there is plenty of open and closed source
software for the simulation of physical systems, con-
trol synthesis, data analysis, test, validation, person-
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nel training via a graphical user interface, etc. Some
of these tools are developed for specific purposes,
while others are more general in scope (e.g., symbolic
manipulation tools, differential equation solvers, data
analysis packages). Unfortunately, all this software
development activity did not follow any standardisa-
tion process, leading to a great diversity in the repre-
sentation of the information. The definition of stan-
dard interfaces will be useful for the information
exchange between different applications; as a conse-
quence, by providing a representation for all the
stages of the model manipulation (starting from the
translation, going to the flattening, to the model order
reduction and so forth) it will be possible to make all
the applications interact at different levels, thus com-
bining positive effects from different applications and
obtaining better results.

Exchange formats for model equations and for simu-
lation data should probably be based on the XML
language, for several reasons:

e the tree structure of XML documents easily al-
lows to represent complex data structures, in-
cluding symbolic representations of equations;

e XML documents can be read with standard text-
editors and browsers, thus avoiding all the prob-
lem usually raised by obscure, ad-hoc binary
formats;

o there exists a large base of software (open source
and commercial) for the handling of XML files;

e by re-using this existing software, it is quite
straightforward to translate an XML document
representing a mathematical model into any other
equation-based language, and vice-versa;

e binary XML formats can be used to reduce the
verbosity of XML documents and the cost of
parsing them;

e there exist some languages (e.g. DTD and XSD)
to formally specify the structure of the informa-
tion the XML file must contain.

Such standard interfaces for flattened Modelica mod-
els and their corresponding simulation data are cur-
rently being investigated at Politecnico di Milano
using the OpenModelica compiler [16, 1] as a host
EOOL environment, and symbolic manipulation tools
such as Mathematica, Maple or Maxima as target
environments. If the model is purely continuous-time,
i. e., it is equivalent to the DAE (5), then MathML
[42] on one side, and ModelicaXML [35] on the other
side might constitute good starting points. If hybrid

models are considered, one may consider all the lan-
guages developed for the description of hybrid auto-
mata in recent years [8], even though the class of
hybrid systems, which can be described in Modelica
with when statements, is larger than just hybrid automata.

3.2 Model Order Reduction

Another key enabling technology is represented by
mixed numerical-symbolic Model Order Reduction
(MOR) techniques. These have already been success-
fully applied to the analysis of electrical circuit mod-
els, which are based on DAE models such as (5), see
[40, 17], and are currently available in commercial
tools such as Analog Insydes [13]. The MOR strate-
gies are based on the clever application of three fun-
damental steps:

e specify an allowed error bound, e.g. in terms of
percentage error of certain steady-state output
values corresponding to given constant inputs, or
in terms of maximum deviation of some outputs
from a reference trajectory obtained with given
input signals, or in terms of maximum error of
small-signal frequency responses around a cer-
tain operating point and within a given frequency
interval;

e derive a ranking of all terms in all equations, ex-
pressing how much each term has a significant
effect on the required modelling accuracy;

e remove all terms in ascending order, until the
specified error bound is reached.

Other MOR techniques exist to reduce large linear
systems, based on concepts such as modal analysis
and projection methods; see [38] for a comprehensive
overview.

The application of such MOR tools and techniques,
possibly with extended functionality and algorithms,
looks very promising not only for the simplification
of electrical circuit models, but also for the order
reduction of generic, nonlinear DAE models, ob-
tained from the flattening of generic EOOL models.
This kind of techniques should allow to automatically
obtain approximated compact models such as (1),
starting from much more detailed simulation models,
by formulating specific approximation bounds in
control-relevant terms (e.g., percentage errors of
steady-state output values, norm-bounded additive or
multiplicative errors of weighted transfer functions,
or [_-norm errors of output transients in response to
specified input signals). Given the ever-increasing
computation power that can be expected by Moore’s
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law, the future of these techniques for CACSD appli-
cations definitely appears bright.

3.3 Reliaeble steady-stateinitialization and
static model inversion

A reliable support to the control engineer’s activity
requires to improve the techniques to solve the
steady-state equations (6), which are usually the start-
ing point for any kind of analysis, including MOR. As
pointed out earlier, solving (6) requires iterative
methods which might fail if not properly initialized.
Troubleshooting can be very frustrating and time-
consuming, and calls for experts of both simulation
methods and domain-specific models. This is not
acceptable in the envisioned framework, which is
based on automatic manipulation by EOOL tools.

One option, which is currently being investigated at
Politecnico, is to introduce extensions to the Mode-
lica language to support homotopy methods, in a way
similar to the approach followed by the SPICE circuit
simulation program. The basic idea is that each model
has two versions: the “easy” one, for which it is eas-
ier to find a steady-state solution, and the “true” ver-
sion, which is the model to be actually used for simu-
lation. The two models share the same variables, but
use different equations. The system model obtained
by the aggregation of the “easy” models is repre-
sented by

F (x,x,y,u,p,t)=0 7
while the aggregation of the “true” models leads to
F(x,x,y,u, p,t)=0 ®)

The idea is now to first solve the initialization prob-
lem for (7), which should not give rise to significant
numerical problems. The solution to this simplified
problem constitutes the first guess for a new problem:

(-a)F,(x,0,u,y, p,0) + aF(x,0,u,y,p,0) (9)

which will be solved by varying & from 0 to 1 in
small steps, eventually finding the steady-state solu-
tion of system (8). In general, this approach should
help to reduce (and hopefully eliminate) the need to
manually set initial guess values for iteration vari-
ables of initialization problems.

4  New functionalitiesfor control system
design
4.1  Simplified symbolic transfer functions

In many interesting cases, the performance of the
control system is limited by the dynamic behaviour of

the controlled plant. For example, poorly damped
oscillations can limit the bandwidth of motion control
systems, as well as non-minimum phase behaviour.
The control engineer can gain a lot of useful insight
from approximated transfer functions, where the
dependence of the critical dynamic features from a
few physical parameters is clearly visible. For in-
stance, the natural frequency of a pair of complex
poles in a mechanical system might depend mainly on
the stiffness and on the mass of a certain physical
component, or, the time constant of a right-half-plan
zero in a fluid system might depend on the fluid ve-
locity in a certain point.

This is a first case where automatic MOR techniques
could prove extremely useful. Ideally, the user should
specify the steady-state operating point, the relevant
inputs and outputs, and some frequency-weighted
error bounds, and get low-order approximated trans-
fer functions of the linearized system, with approxi-
mated but explicit dependence of the transfer function
features (gains, poles and zeros) from the physical
model parameters. A suitable combination of EOOL
tools (equipped with model import/export interfaces)
with existing MOR tools like Analog Insydes [13]
could provide very interesting results in this direction
without too much effort.

4.2  Automatic derivation of LFT models

Once a model has been reduced to a low-order state-
space form by the combined application of symbolic
MOR techniques and clever model simplifications as
explained in Section 3.3, it might be useful to auto-
matically bring them in the form required for ad-
vanced control system design, using symbolic ma-
nipulation tools. Modern control theory provides
methods and tools in order to deal with design prob-
lems in which stability and performance have to be
guaranteed also in the presence of model uncertainty,
both for regulation around a specified operating point
and for gain scheduled control system design.

Most of the existing control design literature assumes
that the plant model is given in the form of a Linear
Fractional Transformation (LFT) (see, e.g., [46, 27]),
a modelling paradigm which is currently an active
research topic in the control engineering and system
identification communities. In the robust control
framework LFT models consist of a feedback inter-
connection between a nominal LTI 39 plant and a
(usually norm-bounded) operator which represents
model uncertainties, e. g., poorly known or time-
varying parameters, nonlinearities, etc. A generic
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such LFT interconnection is depicted in Figure 1,
where the nominal plant is denoted with P and the
uncertainty block is denoted with A. Note that this
representation is extremely general, and by no means
limited to uncertain LTI systems; in fact, it is possible
to describe any nonlinear DAE system by putting all
the nonlinear functions in the A block and by provid-
ing an LTI model with direct feedthrough terms to
describe the algebraic equations.

LFT models can be used for the design of robust and
gain scheduling controllers, but they can also serve as
a basis for structured model identification techniques,
where the uncertain parameters that appear in the
feedback blocks are estimated based on input/output
data sequences.

The process of extracting uncertain parameters from
the design model of the system to be controlled is a
highly complex one. Symbolic techniques play a very
important role in this process: the main use for such
techniques is to find, via suitable pre-processing
steps, equivalent representations of rationally de-
pendent parametric matrices, which automatically
lead to lower-order LFT representations. Tools al-
ready exist to perform this task [27].

The LFT modelling problem in its simplest form is
associated with the problem of designing a controller
for operation near a nominal operating point for the
system. The problem is then formulated on a local
linearised representation of the plant to be controlled
and is familiarly termed “pulling out the As”, i.e., it
consists of manually or symbolically manipulating
the linearised equations in order to separate the nomi-
nal part of the plant from the uncertain one, arranging
them in a suitable feedback interconnection. This
reformulation of the plant model lies at the vary basis
of modern robust control theory and is currently sup-
ported by a number of different symbolic manipula-
tion tools. A recent overview of the state-of-the-art in
this research area can be found in [18]. As an exam-
ple, consider a timeinvariant, nonlinear state-space
system in the form

x(2) = f (x(1),u(®), p)
y(0) = g(x(0),u(®), p)

where p denotes a vector of uncertain parameters,

(10)

and assume that the equilibrium condition x , u, y,
which solves the steady-state equations

0=7(x,u,p)

11
y=g(x,u,p) (b

i - P v
—_—

Figure 1. Block diagram of the typical LFT interconnection
adopted in the robust control framework.

is available. Defining now the deviation variables

Sx(t)=x(t)- % (12)
Su(t)=u(t)—u (13)
oyt =yt) -y (14)

it is possible to approximate the dynamics of (10)
with a the following linear, parameter-dependent
system

ox(t)= A(p)dx + B(p) du (15)
0y(t)=C(p)ox+ D(p)du
where the four matrices A4,B,C,D are the Jacobians
of the two functions f* and g:

Ap) =%, B(p)=2
C(p)=%, D(p)=%

Under suitable assumptions (such as that the state
space matrices are polynomial or rational functions of
the elements of p, see, e.g., [46]) it is possible to
transform the system description (15) into an LFT
representation (see, again, Figure 1). As mentioned
previously, converting (15) into an LFT with a A
block of minimum dimension is a non-trivial sym-
bolic manipulation problem.

An even more challenging formulation of the LFT
modelling problem is the one of simultaneously rep-
resenting in LFT form all the linearisations of interest
for control purposes of the given nonlinear plant.
Indeed, in many control engineering applications a
single control system must be designed to guarantee
the satisfactory closed-loop operation of a given plant
in many different operating conditions in the presence
of parametric and possibly non parametric uncer-
tainty. The gain scheduling approach to the problem,
which has been part of the engineering practice for
decades, can be roughly summarised as follows: find
one or more scheduling variables ¢ which can com-
pletely parametrise the operating space of interest
(e.g., the flight envelope in the case of aircraft con-
trol) for the system to be controlled; define a para-
metric family of linearised models for the plant asso-
ciated with the set of operating points of interest;
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finally, design a parametric controller which can both
ensure the desired control objectives in each operat-
ing point and an acceptable behaviour during (slow)
transients between one operating condition and the
other. Many design techniques are now available for
this problem (see, e.g., [5, 22, 37]), which can be
reliably solved, provided that a suitable model in
parameter-dependent form has been derived for the
system to be controlled. The goal here would be to
arrive at a representation of the dynamics of the
nonlinear system in the form depicted in Figure 2,
which is usually denoted as an LPV-LFT system,
where the LPV acronym stands for Linear Parameter-
Varying. The model structure now includes two feed-
back interconnections: the block A(p) takes into
account the presence of the uncertain parameter vec-
tor p, while the block ©(«ar) models the effect of the
varying operating point, parametrised by the vector of
time-varying parameters ¢ .

The state-of-the-art of modelling for gain scheduling
can be briefly summarised by defining two classes of
modelling approaches: analytical methods based on
the availability of (relatively) reliable nonlinear equa-
tions for the dynamics of the plant, from which suit-
able control-oriented representations can be derived
(see, e.g., [28] and the references therein); experimen-
tal methods based entirely on identification, i.e.,
aiming at deriving LPV models for the plant directly
from input/output data (see, among many others, [21,
45, 23]). The methods belonging to the first class aim
at developing LPV models for the plant to be con-
trolled by resorting to, broadly speaking, suitable
extensions of the familiar notion of linearisation,
developed in order to take into account off-
equilibrium operation of the system. As far as ex-
perimental methods are concerned, most LPV identi-
fication techniques are based on the assumption that
the identification procedure can rely on one global
identification experiment in which both the control
input and the scheduling variables are (persistently)
excited in a simultaneous way. This assumption may
not be a reasonable one in many applications, in
which it would be desirable to try and derive a pa-
rameter-dependent model on the basis of /ocal ex-
periments only, i.e., experiments in which the sched-
uling variable is held constant and only the control
input is excited. Such a viewpoint has been consid-
ered in [43, 34, 23], where numerical procedures for
the construction of parametric models for gain sched-
uling on the basis of local experiments and for the
interpolation of local controllers have been proposed.

To our best knowledge the only documented attempt
at deriving control-oriented LFT models automati-
cally from a nonlinear simulator is presented in [44],
where the focus was on the automatic generation of
LFT models for aerospace applications. Much re-
mains to be done. An EOOL-based CACSD tool
dealing with the generation of control-oriented LFT
models should allow to specify some error bounds for
the system approximation (with respect to steady-
state, transient, and frequency response), the choice
of input, output and scheduling variables, and the
choice of parameters to include in the LFT represen-
tation. Based on that, it should be able to automati-
cally compute the structure of the interconnections
defined in Figures 1 and 2 for the robust and gain-
scheduling control design problems, respectively, the
state-space matrices of the nominal part P of the
model (either as analytical expressions, if possible, or
at least as algorithms for their computation) and ana-
lytical or algorithmic representations of the feedback
blocks ©(«r) and A(p). Finally, it is apparent from
the short literature review presented above that cur-
rently only physical and black-box modelling meth-
ods are available, while no general purpose CACSD
tools capable of combining first principles models
and experimental data in a single control-oriented
model seem to exist. The convergence of the two
modelling approaches both in terms of methods and
tools would be a very desirable outcome of the re-
search in this field.

4.3  Automatic computation of inver se models
for robotic systems

The design of controllers for non-redundant robotic

manipulators with N degrees of freedom usually

starts from the equations of motion obtained from the

Euler-Lagrange equations [39]:

B(@)g+H(q,9)g+g(q)=7 (16)

v, =K(q) (17)
K

y, = 3 q (18)

where ¢ is the N-element vector of Lagrangian co-
ordinates, which usually correspond to the rotation
angles of the actuator motors, ¢ is the vector of the
corresponding generalized velocities, », describes
the position and orientation vector of the end effector,
v, contains the corresponding generalized velocities,
7 is the vector of generalized applied forces corre-
sponding to each degree of freedom (usually the
torques applied by rotating actuators), B(gq) is the
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inertia matrix, H(q,q) is the matrix corresponding to
the centripetal, Coriolis, and viscous friction forces,
while the vector g(g) accounts for the effects of the
gravitational field; all vectors have dimension N.

The classical approach to write (16) requires to com-
pute the so-called direct kinematics (DK), i.e. how
the values of ¢ and ¢ translate into the position and
motion of the robot’s end effector, then to compute
the Lagrange function, i.e. the difference between
kinetic and potential energy, and apply the Euler-
Lagrange equations. This can be done manually, or
using one of the specialized tools available for this
task. Equations (16)-(18) can then be used as a basis
for both controller design and system simulation.

Within an OOM approach, it is possible to save much
time by developing an object-oriented model using an
EOOL, e.g. using the Modelica MultiBody library
[33]. Due to the kinematic constraints imposed by the
joints, the original flattened model corresponds to an
index-3 DAE,

F(x,x,y,u)=0 (19)

which is mathematically equivalent to the Lagrange
model (16)-(18).

Currently available Modelica tools tackle the problem
by applying specialized algorithms, which exploit the
knowledge of the topology of the kinematic chain, as
well as standard techniques such as BLT partitioning,
tearing, dummy derivatives and symbolic solution of
equations [33]. From a conceptual point of view, a
change of state variables x allows to transform (19)
into an index-1 system

F(x,x, y,u)=0 (20)

where

e
X, q Yy

Eventually, efficient procedures are produced to solve
(20) for x and y given x and u, thus actually bring-
ing the system into state-space form:

x = f(x,u)

22
y=g(xu) @

This formulation can be used to solve simulation
problems, by linking it to any ODE/DAE solver.
However, there are several other interesting things
that could be done with (20), from a control engi-
neer’s perspective.

|

CT
_1",? q(}’—’ T q
L IK » FC 1—» R |4
1\*

Figure 3. Block diagram of computed torque control.

Robot trajectories are originally defined in terms of
end effector coordinates as functions of time (7). In
order to obtain the corresponding reference trajecto-
ries in Lagrangian coordinates for the low-level robot
joint controllers, (17)-(18) must be solved for ¢, ¢,
thus computing the so-called inverse kinematics (IK):

q"=K"'(y)) (23)
o (K,
q —[aqj » (24)

note that the Jacobian of K(q) is also needed to solve
(23), since analytical inverses cannot usually be ob-
tained. Furthermore, two interesting approaches to
model-based robot control are based on suitable ma-
nipulations of eq. (16): the pre-computed torque ap-
proach and the inverse dynamics approach [39].

The pre-computed torque approach is a feed-forward
compensation scheme, where the theoretical torque
required to follow the reference trajectory is directly
fed to the torque actuators (see Figure 3) in order to
obtain a good dynamic response to the set point
¥o(t). The CT block performs this task by solving
(16) for 7, given the reference trajectory and its de-
rivatives:

t=B(¢")§" +H(q",4")q" +g(q") (25)
A feedback controller (FC) is also included to deal

with uncertainties and disturbances.

Since the inertia matrix B is structurally non-
singular, it is always possible to solve (26) for v:

v=B"(q)(t - H(q,9)¢ - g(q)) (26)

Plugging v in the robot dynamics equation (16), one
obtains:

G=v 27)

The block diagram interpretation of these equations is
shown in Figure 4: thanks to the dynamic inversion
(D) block, the dynamic relationship between the
virtual input v and the Lagrangian positions and

L
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Figure 4. Block diagram of inverse dynamics control.

velocities ¢ and ¢ (represented by the dotted block)
is now described by a simple integrator and a double
integrator, respectively. It is then easy to tune a fixed-
parameter, linear feedback controller (FC) in order to
obtain the desired closed-loop dynamics.

Starting from the index-1 DAE robot model (20), it is
straightforward to derive the equations and then the
explicit algorithms to compute the DK, IK, CT, and
DI, by using the same techniques employed to bring
(20) into state-space form. The DK (17)-(18) is ob-
tained by solving (20) for ¥, (and possibly y,) given
q (and possibly ¢ ), while the IK is obtained by solv-
ing (20) for ¢ (and possibly ¢) given ¥, (and possi-
bly y,); the subset of required equations is found by
suitable analysis of the incidence matrix. The CT (25)
is obtained by solving (20) for 7 given ¢, ¢, and §.
Finally, the DI (26) is obtained by solving (20) aug-
mented with (26) 7 given v, g, and ¢. EOOL tools
should then be able to automatically generate the
code corresponding to the DK, IK, CT, and DI blocks
in two forms: as algorithms to compute the outputs
given the inputs (e.g., C code for direct inclusion in
the robot controller), as well as equationbased Mode-
lica blocks, which could be used for closedloop simu-
lation within a Modelica environment.

As a final remark, note that the method of inverse
dynamics is a special case of the much more general
theory of feedback linearization [20], whose goal is to
obtain a LTI dynamics made by pure integrators from
generic nonlinear systems, by applying suitable feed-
back actions as shown in Figure 4. It could also be
interesting to investigate the coupling between EOOL
tools and symbolic manipulation tools for the design
of such controllers.

4.4  Fast and compact modelsfor model
predictive control

The Model Predictive Control (MPC) approach [25,

36] is based on a few key ideas, that turn the control

problem into an optimization problem. The control

variable is a discretetime variable, that changes peri-

odically every T, seconds:

u(t)=u(k), kT <t<(k+1T (28)

At each time step k, an optimization problem is
solved, whose unknowns are the next values of the
control variable wu(k+i) over a finite horizon
1<i<n. The first sample u(k+1) is then applied to
the actuators at the next time step, the rest of the
values are discarded, and the process is repeated over and
over, thus implementing a receding horizon strategy.

There are different ways to formulate the MPC prob-
lem, depending on the specific technique used to
solve the problem. Generally speaking, the figure of
merit to be minimized is a quadratic function, which
suitably weights the future deviations of the con-
trolled variables from the set point and the intensity
of the control action, as well as any other problem-
specific performance index that has to be minimized,
e.g. the financial cost of running the process. The
constraints of the optimization problem are the dy-
namic relationship between the input and output vari-
ables, typically in the form (4), and possibly other
constraints, such as upper and lower bounds of the state,
control and output variables and of their rate of change.

The main advantage of MPC is its intrinsic ability to
deal with highly interacting multivariable systems
(many control inputs and controlled outputs), while
keeping into account operating constraints such as
actuator saturations or hard bounds on controlled
variables, and at the same time meeting some prob-
lem-specific optimality criterion. The main drawback
is the high computational load, since a (possibly non-
linear and non-convex) constrained optimization
problem must be solved at each sampling time; this
makes MPC suitable for systems with slow dynamics,
e. g. chemical plants, where there is plenty of time to
carry out the required computations in real time. This
limitation is likely to become less and less stringent
in the future, thanks to Moore’s law.

The second issue is the requirement that a suitable
plant model is available, as the control system per-
formance critically depends on the model quality.
Models for linear MPC can be obtained either by
linearization of analytical models, or by system iden-
tification from experimental and/or simulation data, e.
g. step responses; both cases are already supported by
current EOOL tools. Nonlinear MPC (NMPC) algo-
rithms are preferably based upon analytical models in
state-space form (1), which are derived from physical
firstprinciples models. The conversion to discrete-
time form (4) is often performed internally by the
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NMPC algorithm itself, by standard ODE integration
routines. This means that the interface between the
EOOL tool and the NMPC tool is similar to the one
used for simulation problems, i.e. the state-space
form (1), possibly augmented by the Jacobians of the
right-hand-sides of (1).

The main requirement for NMPC-oriented models is
that they must have the least possible number of state
and algebraic variables, in order to keep the complex-
ity of the optimization problem within acceptable
limits, and that they have good smoothness proper-
ties, in order to avoid convergence problems of the
iterative optimization algorithms. The development of
those models can be very time consuming, and re-
quire highly skilled manpower; it is apparent how
better tool support could be extremely useful in order
to reduce the development effort and cost.

The potential of OOM for MPC was first noted by
Maciejowski at the end of the ’90 [24]. There are
several reported case studies [14, 15, 3, 19], where
the model used in the NMPC algorithm was derived
from a Modelica model of the physical plant, using
the tool Dymola to produce the code corresponding to
the state-space form (1), i.e., the dsmodel.c code that
is usually linked to ODE/DAE solvers. In order to
derive suitably simplified models, the features of
Modelica discussed in Section 3.3 have been exten-
sively exploited. In general, this approach has proven
much more satisfactory than writing the C-code of the
model from scratch; however, it still requires a sub-
stantial investment of time and effort for each new
application.

The application of the automatic MOR techniques
described in section 4, possibly still combined with
some manual intervention in terms of replaceable
models, looks very promising in order to bring de-
tailed simulation models into a form which is suitable
for NMPC with a much more limited effort by the
developer.

Furthermore, [19] correctly points out that, although
the interface to NMPC algorithms is very similar to
the interface to ODE/DAE solvers, the former re-
quires some more flexibility. For example, advanced
NMPC schemes can provide on-line estimation of
uncertain parameters through the use of extended or
unscented Kalman filters. This means that some
model parameters are no longer constant throughout a
transient, so that the C-code obtained for simulation
purposes must be manually adapted. A better option
would be to implement a code export interface which

makes it possible to turn selected parameters appear-
ing in (5) (which are going to be estimated on-line)
into inputs, before transforming the system in state-
space form (1).

5 Conclusions

After a brief review of the different uses of models in
control system design, the current state of the art of
EOOL-based tools for CACSD has been reviewed:
apparently, currently available tools mainly focus on
simulation tasks. Several further directions for re-
search and development in EOOL tools where then
discussed, which go beyond the mere simulation
problem. Results in these directions could substan-
tially improve the level of support to the control en-
gineer willing to apply advanced, model-based con-
trol techniques to real-life problems, starting from
object-oriented models of the plant.
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This paper examines the implementation of a simple distributed consensus algorithm with OMNET++. It
will be shown that using this simulator (i) comes at nearly no cost and (7)) massively improves comprehen-

sion of the system under study.

I ntroduction

One of the major concerns of distributed computing is
the ability of a group of nodes or processors to agree
on a common value. This agreement is also called
(distributed) consensus. Furthermore, in a realistic
system model it is necessary to allow nodes to fail.
The nature of failure depends on the fault model
chosen. In the benign case, a node fails to send its
messages in a consistent way (e.g. crash failures),
whereas in the malicious case one has to deal with
byzantine behavior. In the following we will focus on
consensus with crash failures. This paper is structured
as follows. Section 1 deals with the chosen simulator.
We then describe the problem in Section 2 and our
implementation in Section 3. The paper concludes in
Section 4 with our results.

1 OMNeT++

OMNeT++ [2] is a modular open-source simulation
environment with GUI support. It provides communi-
cation primitives allowing to easily model communi-

cation networks and alike although it has already
been used in other areas like hardware architectures
and business processes. This tool is used for scientific
research as well as for industrial engineering. Exam-
ples for open source simulation models are network
protocols like IP, IPv6 or MPLS.

From a technical point of view, OMNeT++ is a dis-
crete and event driven simulator generator. The be-
havior of the system to be simulated is modeled using
the well known C++ programming language. The
structure of this system is described in a proprietary
language called NED. OMNeT++ then compiles this
code into a stand-alone simulator with GUI.
OMNeT++ offers many features such as user-defined
message definition, message statistics, message track-
ing, visualization of network traffic and many more.
Nevertheless, there are some inconveniences to han-
dle. For example it is not possible to implement time-
outs directly. This deficiency has to be overcome by
using “self messages”, a usual approach in distributed
computing models.
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Initidly V ={x} .

for round k,1<k< f +1do
send Ve V : p, has not already sent v to al proc.
receive S; from p;, 0< j<n-1 j #i
v=vulJls
if k= f +1then y=min(V)

Algorithm 1. Simple consensus, code for one processor [,

2 Digributed consensuswith crash failures

In this paper we focus on the standard synchronous
model, where processors act in a round-based man-
ner. Each round consists of sending and receiving one
or more messages and one zero time computing step
on each processor. Computation steps occur at the
beginning of each round.

The agorithm we implemented is taken from [1] and
listed in Algorithm 1. Each processor has a—
probably distinct—value x. It is the intention of this
agorithm to provide every processor with the same
value after its completion. This indicates that nodes
have to share their data and need common criteria to
decide it. The agorithm operates such that in every
round each processor sends a value it has not sent yet
to al other processors. Each processor stores the
received values in its set V . We alow one processor
per round to fail with crash failure. In particular, we
alow a faling node to send an arbitrary number of
correct messages in the specific round it fails. After
the crash a processor is not allowed to send any more
messages. For this algorithm to work, the network has
to be fully connected. It can be shown that the algo-
rithm needs at least f +1 nodes, where f is the
amount of crash failurestolerated.

3 Implementation

Knowledge of the C++ programming language can
usualy be presumed. So the main challenge in im-
plementing a distributed algorithm in software usu-
aly turns out to be the comprehension that Algo-
rithm 1 describes the behavior of one instance of a
node whereas the system under study constitutes
many nodes processing concurrently.

As shown in Figure 1 the GUI of the simulator cre-
ated by OMNeT++ is quite intuitive. It can be seen
that our model is made up of four nodes, thus tolerat-
ing three crash failures. Besides simulating the behav-
ior of a fault-free net in the first place, we aso de-
ployed crashing nodes. In order to save compile time,
we exploited a certain feature of OMNeT++; parame-
terization of the modeled system. By providing the

_i (Consensus1) consensus (id=1) (ptr0x8GhbcOd) |

CONsensus

7] (chessage) 1 a1 T=200.018, in dt

dest=consensus.cons_node[3] {id:

cons_hodefz]

Figure 1. GUI of OMNEeT++

number of nodes to crash as a parameter, arbitrary
experiments can be conducted easily.

The implementation of the behavior of this algorithm
requires about 150 lines of code.

4 Conclusion

In this paper, we presented the successful implemen-
tation of a simple but nevertheless important building
block of distributed computing: a consensus algo-
rithm. In more detail, we have shown that the chosen
simulator, OMNeT++, is (i) capable of simulating
such an agorithm and (ii) particularly useful for the
purpose of demonstration and also education. OM-
NeT++ has already proven to be very useful for the
distributed computing community.

In a further step, we will extend the fault model to
arbitrary (byzantine) faults and also examine data
fusion algorithms. The results are intended to estab-
lish the basis for a hardware implementation of such
an agorithm serving as a fault tolerance layer in
distributed systems.
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Simulator: Dymola—Dynamic Modeling L abo-
ratory—is suitable for modeling of various kinds
of physical systems and the combination of systems
of different domains. It supports hierarchical model
composition, libraries of truly reusable components,
connectors and composite acasual connections. Model
libraries are available in many engineering domains.
Dymola has a powerful graphic editor for composing
models. Dymola is based on the use of Modelica
models stored on files.

Dymola has powerful experimentation, plotting and
animation features. Scripts can be used to manage
experiments and to perform calculations. Automatic
documentation generator is provided.

Model: The basic class-E power amplifier was
introduced by N.O. Sokal and A.D. Sokal in
their classic paper from 1975. It is a switching-mode
amplifier that operates with zero voltage and zero
slope across the switch at switch turn-off. The actual
numerical example is taken from J.C. Mandojana,
K.J. Herman and R.E. Zulinski. They use the follow-
ing equivalent circuit of a generalized class-E ampli-
fier as a test example for a procedure to evaluate
steady state boundary conditions by means of MAT-
LAB. Figure 1 shows Class-E Amplifier: The compo-
nent values are: VDC= 5V, L1 = 799 uH, C2 =
17.9 nF, L3 =232 pH, C4 =9.66 uF and RL = 52.4Q.

The time dependent resistor R(t) models the active
device acting as a switch with an ON-resistance of
0.05Q and an OFF-resistance of SM Q. An extreme
ON-resistance of value zero ohm will of course result

x4

x3 3 4

SUNSsS
c4

L2

+

_— x2 RL

Figure 1: Class-E amplifier

5 MQ

50 me2

!

T[I{F 5 Iph' Iﬂlps

Figure 2. Time dependent resistor R(t) , not to scale.

in a pathological system i.e. the old story of what
happens when an ideal capacitor with a certain charge
is suddenly short circuited. Furthermore the DC volt-
age source will be short circuited through the ideal
coil L1. Figure 2 shows function of time R(t). The
duty ratio is 50%. The period is 10us (frequency
100kHz). The rise/fall time TRF is 1fs.

The equations describing the circuit may be the state-
equations where inductor currents and capacitor volt-
ages are chosen as system variables. By using the
Kirchhoff voltage and current laws we get the follow-
ing differential equations:

dxl/dt =(-x2+VDC)/ LI
dx2/dt =(x1-x2/R(t)—x3)/C2
dx3/dt=(x2—RL*Xx3—-x4)/L3
dx4/dt=x3/C4

The aim was to implement these equations into Dy-
mola structure. Therefore four different ways has
been chosen to model these equations.

The first solution is by using modelica text language.
Designing the model is relative easy in modelica by
using the exact equation above in the equation sec-
tion. The time dependent resistor is modelled in the
algorithm section and the whole modeling code has
the following structure:

1 model C3Dymola textv2

2 constant Real L1 = 79.9E-6;

3  constant Real C2 = 17.9E-9;

4 ... Il The same for the other values
5 Real x1, x2, X3, x4;

6 Real Rt;

6002 114dv ‘T/6T 3INS
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Real t red;
Real IRT;
Real VRL;
Real k;
equation
t red = mod(time, 10E-6);
k = ((5e+6)-(5e-2))/TRF;
algorithm
if (0<=t_red) and (t_red<TRF)
then Rt:=(5e-2) + k*t red;
elseif (TRF<=t red) and (t_red<(5e-6))
then Rt:=5e+6;
elseif ((5e-6)<=t red) and
(t_red<((5e-6)+TRF))
then Rt:=(5e+6) - k*(t_red - (5e-6));

22 elseif ((5e-6)+TRF<=t _red) and
(t_red<(10e-6))

23 then Rt:=5e-2;

24 else Rt:=-5;

25 end if;

26  equation

27 Ll * der(xl)= -x2 + VDC;

28 C2 * der(x2)= x1 - (x2/Rt) - x3;

29 L3 * der(x3)= x2 - (RL*x3) - x4;

30 C4 * der(x4)= x3;

31 end C3Dymola_textv2;

Listing 1: C3 basic model implementation in Dymola
Text mode

The second solution is using a block diagram model.
The differential equations above [(1) to (4)] were
built by block integrator, add/subtract and gain, also a
division block for X2/ R(t) and constant block for
VDC. The time dependent resistor is built by trape-
zoid source block by defining its parameters as fol-
lows:

Amplitude 5e+6 Offset Se—2
Rising le—15 Falling le—15
Width 5e—6 Period 10e—6

The trapezoid source block is shown by Figure 3. The
model of the system block in the diagram layer is
shown in Figure 4.

outPort
pencd
‘ - -

rising widih falling

i

amplitude

Y .
startTime

time

Figure 3. Trapezoid source block.

OutPort]

mey OutPort2
[~

Y

perodeTDe 6

Figure 4. Model of the Differential Equation System in
block style (block diagram)

The third solution is by using a state graph model.
Designing the model based on second solution by
adding a triggered trapezoid block as time dependent
resistor by defining its parameter as follows:

Amplitude 5Se+6 Offset S5e—2
Rising le—15 Falling le—15

The triggered trapezoid block used in the third model-
ing approach is shown in Figure 5.

Also by adding greater equal, less equal block and
stategraph model block such as initial step, step and
transition to activate triggered trapezoid from input
trapezoid source block, which have the same parame-
ter from second solution. Greater equal and less equal
block will determine what state will be activated in
stategraph model, is it state off (when R(t)=5M Q) or
state on (when R(t)=5mQ). Basically the stategraph
model consists only of 1 initial step, 2 transition
blocks and 1 step block. The initial step block will
represent state off and step block will represent state
on. State off will change to state on whenever transi-
tion block 1 active, which being contrrolled by output
from less equal block and state on will change to state
on whenever transition block 2 active, which being

tifne

Figure5: Triggered Trapezoid Block with input U and
output Y, whereby U is a logical variable and VY is of
type Real.



+++ C3 ‘Class-E Amplifier’ - Four Modeling Approaches in Dymola +++

e » I
T+ ]
S L0
18
rhe OuPort?
o Ny g .|...-.'|.
o S o+ > —p
- L ~SER el
= | ot
> R e {
4
A2 4 » 390 364827 vt
1 [ e utPortd
o = | oo »
- = e
— <=, i ticrie R :
— A A

Figure 6. Model of the System (stategraph)

controlled by output from greater equal block. When-
ever initial step active, it will send trigger signal to
activate triggered trapezoid block, which will have
output as a trapezoid signal. The model of the system
for stategraph model is displayed in Figure 6.

The fourth solution is using the electrical model
equivalent circuit. Designing the model using com-
ponents from the Modelica standard library Mode-
lica.Electrical.Rnalog.Basic, like resistor, induc-
tor, capacitor, ground and constant voltage. The time
dependent resistor R(t) was built by using the com-
ponent VariableResistor from the electrical library
and trapezoid source defined in the block library,
which has the same parameters as defined in second
solution.as input of variable resistor. The model of the
system for electrical model is shown in Figure 7.

All block models are built in the Diagram layer of the
Dymola modeling interface without using the Equa-
tion layer. Setting up the simulation parameters,
simulation process and plotting the result are done in
Simulation window of Dymola.

-Task: To calculate the eigenvalues of the

system when R(t)=50mQ and in case when
R(t)=5MQ is done by calling the function eigen-
Values (included in Modelica standard library 2.2)
and putting the values of all variables into a matrix
syste. The matrix system for Task A is defined as
follows:

0 ~1/L1 0 0
1/C2 -1/[R®)C2] -1/C2 0
0 1/L3 ~RL/L3 -1/L3
0 0 1/C4 0

Trapezoid]

JAY,

perioc=1 e

inductor
A

inductar! capacitor!

L=79.9e-6 C=866e-9

L=232e-6

capacitor registor

|-
I

constart..,

C=17 8e-8

=

gm?nd

Figure 7: Electrical model representation of the Class-E
Amplifier as defined in ARGESIM Benchmark 3 in the
Diagram layer of Dymola.

ON period | OFF period

g

—1,1303e+005 + 6,5835e+0051 | —5,4708 e+004 + 1,0407e+0061
—1,1303e+005 — 6,5835e+0051 | —5,4708 e+004 - 1,0407e+0061
—6,258e+002 | —5,8228e+004 + 5,3275e+0051
-1, 117e+009 | —5,8228e+004 - 5,3275e+005i

Table 1: Eigenvalues of R(t) in the ON — and OFF —
periode of the system

It took 0.5 sec to execute Task A for all solutions. The
result of eigenvalue analysis is shown in Tablel for
all solution.

B-Task: To simulate the system in all four im-
plementations, the Dassl integration method was
used (settings: 1000 as number of intervals, 0...100us
as simulation time interval and le-4 as a relative
tolerance). Under the initial value zero, for X1, X2, X3
and x4, the result for variable current switch resistor
IR(t) and output voltage VRL is given by figure 8. It
took 0,047s, 0,047s, 0,063s and 0,047s to simulate the
Task B for 1%, 2", 3™ and 4™ solution respectively.

[ ounsy

']n_. ,_.,[— 0, h N Y Y . N

(5] 2585 5005 155 1004

Figure 8: Time Curve IR(t) and VRL
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C-Task: The parameter of TRF is varied be-
tween 1f5,10ps,1ns and 100ns. Initial value for
Task C is the final solution given by Task B. The time
interval is 0...9us. Changing the time curve plot into
phase plot works by one mouse click, choosing inde-
pendent variable instead of time. As result, the phase
plane curves dx3/dt =VL3 as a function of X3=1L3
are given by Figure 9. It took 0,031s, 0,025s, 0,047s
and 0,015s to simulate Task C for 1%, 2™, 3™ and 4"
solution respectively.

esumé Dymola is a powerful modeling and

simulation tool that aids implemrntation of ordi-
nary differential systems in different ways. By calling
eigenvalue function for doing Task A it overs a simple
way for additional system analysis. Using right
mouse click to change between plots based on time
and plots based on independent variable uses the
strength of the included plotting and representation
tool. Comparing to other component based simulation
tool Dymola works very fast. Each of the tasks is
calculated in less then 0.51S on a standard PC.

The ranking of solutions based on simulation time
from fast to slow is:

1. Textual mode

2. Electrical model

3. Block Diagram model

4.  Stategraph model
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Figure 9. Phase plane curve VL3 function IL3 for TRF (a)
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European Simulation Societies, was set up in 1989.
The purpose of EUROSIM is to provide a European
forum for regional and national simulation societies
to promote the advancement of modelling and simu-
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u Society has about 150 members working in
CSSS Czech and Slovak national scientific and
technical societies (Czech Society for Ap-
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President Miroslav Snorek, snorek@fel.cvut.cz
Vice president  Mikuld$ Alexik, alexik@frtk.fri.utc.sk
Treasurer Evzen Kindler, ekindler@centrum.cz

Last data update April 2006

DBSS - Dutch Benelux Simulation Society

The Dutch Benelux Simulation Society (DBSS) was
founded in July 1986 in order to create an organisa-
tion of simulation professionals within the Dutch
language area. DBSS has actively promoted creation
of similar organisations in other language areas.
DBSS is a member of EUROSIM and works in close
cooperation with its members and with affiliated
societies.

— www.eurosim.info

#=7 a.w.heemink@its.tudelft.nl

P< DBSS/A. W. Heemink
Delft University of Technology, ITS - twi,
Mekelweg 4, 2628 CD Delft, The Netherlands

Scientific Secr.  A. Kavicka, Antonin.Kavicka@upce.cz

Repr. EUROSIM  Miroslav Snorek, snorek@fel.cvut.cz

Deputy Mikulas Alexik, alexik@frtk.fri.utc.sk

Edit. Board SNE Mikulas Alexik, alexik@frtk.fri.utc.sk

Web EurROSIM  Petr Peringer, peringer@fit.vutbr.cz

Last data update December 2008

FRANCOSIM — Société Francophone de
Simulation

FrRancOSIM was founded in 1991 and aims to the
promotion of simulation and research, in industry and
academic fields. Francosim operates two poles.

e Pole Modelling and simulation of discrete event
systems. Pole Contact: Henri Pierreval,
pierreva@imfa.fr

¢ Pole Modelling and simulation of continuous
systems. Pole Contact: Yskandar Hamam,
y.hamam@esiee.fr

— www.eurosim. info

#=7 y.hamam@esiee.fr

> FRANCOSIM / Yskandar Hamam
Groupe ESIEE, Cité Descartes,
BP 99, 2 Bd. Blaise Pascal,
93162 Noisy le Grand CEDEX, France

DBSS Officers

President A. Heemink, a.w.heemink@its.tudelft.nl
Vice president ~ W. Smit, smitnet@wxs.nl

Treasurer W. Smit, smitnet@wxs.nl

Secretary W. Smit, smitnet@wxs.nl

Repr. EUROSIM A, Heemink, a.w.heemink@its.tudelft.nl
Deputy W. Smit, smitnet@wxs.nl

Edit. Board SNE A. Heemink, a.w.heemink@its.tudelft.nl

Last data update April 2006

HSS — Hungarian Simulation Society

The Hungarian Member Society of EUROSIM was
established in 1981 as an association promoting the
exchange of information within the community of
people involved in research, development, application
and education of simulation in Hungary and also
contributing to the enhancement of exchanging in-
formation between the Hungarian simulation com-
munity and the simulation communities abroad. HSS
deals with the organization of lectures, exhibitions,
demonstrations, and conferences.

— www.eurosim.info
#=7 javorQ@eik_bme_hu
< HSS / Andrés Javor,

Budapest Univ. of Technology and Economics,
Sztoczek u. 4, 1111 Budapest, Hungary
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ISCS Officers

President MarioSavastano, ma-

rio.savastano@unina.it

HSS Officers

President Andras Javor, javor@eik.bme.hu
Vice president  Gabor Sziics, szucs@itm.bme.hu
Secretary Agnes Vigh, vigh@itm.bme.hu

Vice president  F. Maceri, Franco.Maceri@uniroma2.it

Repr. EUROSIM  Andrés Javor, javor@eik.bme.hu

Repr. EUROSIM  F. Maceri, Franco.Maceri@uniroma2.it

Deputy Gabor Sziics, szucs@itm.bme.hu

Edit. Board SNE Mario Savastano, ma-
rio.savastano@unina.it

Edit. Board SNE Andras Javor, javor@eik.bme.hu

Web EUurROSIM  Gabor Szlics, szucs@itm.bme.hu

Last data update March 2008

PSCS - Polish Society for Computer
Simulation - update

PSCS was founded in 1993 in Warsaw. PSCS is a
scientific, non-profit association of members from
universities, research institutes and industry in Poland
with common interests in variety of methods of com-
puter simulations and its applications. At present
PSCS counts 257 members.

— www.ptsk.man.bialystok.pl
#=7 leon@ibib.waw._pl
< PSCS / Leon Bobrowski, c/o IBIB PAN,
ul. Trojdena 4 (p.416), 02-109 Warszawa, Poland

Last data update April 2005

SIMS - Scandinavian Simulation Society

SIMS is the Scandinavian Simulation Society with
members from the four Nordic countries Denmark,
Finland, Norway and Sweden. The SIMS history goes
back to 1959. SIMS practical matters are taken care
of by the SIMS board consisting of two representa-
tives from each Nordic country. Iceland will be repre-
sented by one board member.

SIMS Structure. SIMS is organised as federation of
regional societies. There are FinSim (Finnish Simula-
tion Forum), DKSIM (Dansk Simuleringsforening)
and NFA (Norsk Forening for Automatisering).

— Www.scansims.org
#=7 petfr@ida.liu._se
< SIMS/Peter Fritzson, IDA, Linkdping University,

PSC_S Officers - — 58183, Linkdping, Sweden

President Leon Bobrowski, leon@ibib.waw.pl

Vice president  Andrzej Grzyb, Tadeusz Nowicki SIMS Officers

Treasurer Z. Sosnowski, zenon@ii.pb.bialystok.pl President Peter Fritzson, petfr@ida.liu.se
Secretary Zdzislaw Galkowski, Treasurer Vadim Engelson, vaden@ida.liu.se

Zdzislaw.Galkowski@simr.pw.edu.pl

Repr. EUROSIM  Leon Bobrowski, leon@ibib.waw.pl

Repr. EUROSIM  Peter Fritzson, petfr@ida.liu.se

Deputy A.Chudzikiewicz, ach@it.pw.edu.pl

Edit. Board SNE Esko Juuso, esko.juuso@oulu.fi

Edit. Board SNE Z.Sosnowski, zenon@ii.pb.bialystok.pl

Web EuroSIM  Vadim Engelson, vaden@ida.liu.se

PSCS Board R. Bogacz , Z. Strzyzakowski
Members Andrzej Tylikowski

Last data update March 2009

ISCS - Italian Society for Computer
Simulation

The Italian Society for Computer Simulation (ISCS)
is a scientific non-profit association of members from
industry, university, education and several public and
research institutions with common interest in all
fields of computer simulation.

— www.eurosim. info

#=7 Mario.savastano@uniina.at

>4 ISCS / Mario Savastano,

c/o CNR - IRSIP,
Via Claudio 21, 80125 Napoli, Italy

Last data update December 2008

SLOSIM - Slovenian Society
for Simulation and Modelling

SLOSIM - Slovenian Society for Simulation and Mod-
elling was established in 1994 and became the full
member of EUROSIM in 1996. Currently it has 69
members from both slovenian universities, institutes,
and industry. It promotes modelling and simulation
approaches to problem solving in industrial as well as
in academic environments by establishing communi-
cation and cooperation among corresponding teams.

— msc.fe.uni-1j.si/SLOSIM

#=7 slosim@fe.uni-1j.si

< SLOSIM / Rihard Karba, Faculty of Electrical
Engineering, University of Ljubljana,
TrzaSka 25, 1000 Ljubljana, Slovenia
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CAE - SMSG Officers

President Rihard Karba, rihard.karba@fe.uni-lj.si President Marifa J. la Fuente, maria@autom.uva.es

Vice president  Leon Zlajpah, leon.zlajpah@ijs.si Repr. EUROSIM  EmilioJiminez, emilio.jiminez@unirioja.es
Secretary Ales Belig, ales.belic@fe.uni-lj.si Edit. Board SNE EmilioJiminez, emilio.jiminez@unirioja.es
Treasurer Milan Simgi¢, milan.simcic@fe.uni-lj.si Last data update March 2009

Repr. EUROSIM  Rihard Karba, rihard.karba@fe.uni-lj.si

Deputy B. Zupangi¢, borut.zupancic@fe.uni-lj.si

Edit. Board SNE Rihard Karba, rihard.karba@fe.uni-lj.si

Web EuroSIM  Ales Belig, ales.belic@fe.uni-lj.si

Last data update March 2009

UKSIM — United Kingdom Simulation
Society

UKSIM has more than 100 members throughout the
UK from universities and industry. It is active in all
areas of simulation and it holds a biennial conference
as well as regular meetings and workshops.

— www.uksim.org.uk

#=7 david.al-dabass@ntu.ac.uk

<1 UKSIM / Prof. David Al-Dabass
Computing & Informatics,
Nottingham Trent University
Clifton lane, Nottingham, NG11 8NS
United Kingdom

UKSIM Officers

LSS - Latvian Simulation Society

The Latvian Simulation Society (LSS) has been
founded in 1990 as the first professional simulation
organisation in the field of Modelling and simulation
in the post-Soviet area. Its members represent the
main simulation centres in Latvia, including both
academic and industrial sectors.

— briedis.itl.rtu.lv/imb/
7 merkur@itl.rtu.lv

P4 LSS/ Yuri Merkuryev, Dept. of Modelling
and Simulation Riga Technical University
Kalku street 1, Riga, LV-1658, LATVIA

LSS Officers

President Yuri Merkuryev, merkur@itl.rtu.lv

Repr. EUROSIM  Yuri Merkuryev, merkur@itl.rtu.lv

Edit. Board SNE Yuri Merkuryev, merkur@itl.rtu.lv

President David Al-Dabass,
david.al-dabass@ntu.ac.uk

Secretary A. Orsoni, A.Orsoni@kingston.ac.uk

Treasurer B. Thompson, barry@bjtcon.ndo.co.uk

Membership chair K. Al-Begain, kbegain@glam.ac.uk

Univ. liaison chair R. Cheng, rchc@maths.soton.ac.uk

Repr. EUROSIM Richard Zobel, r.zobel@ntlworld.com

Edit. Board SNE  Richard Zobel, r.zobel@ntlworld.com

Last data update March 2009 (partially)

CEA-SMSG - Spanish Modelling and
Simulation Group

CEA is the Spanish Society on Automation and Con-
trol In order to improve the efficiency and to deep
into the different fields of automation, the association
is divided into thematic groups, one of them is named
‘Modelling and Simulation’, constituting the group.

— www.cea-ifac.es/wwgrupos/simulacion

#=7 simulacion@cea-ifac.es

P4 CEA-SMSG / Maria JesUs de la Fuente,
System Engineering and AutomaticControl department,
University of Valladolid,
Real de Burgos s/n., 47011 Valladolid, SPAIN

Last data update December 2008

RomMSIM — Romanian Modelling and
Simulation Society

RoMSIM has been founded in 1990 as a non-profit
society, devoted to both theoretical and applied as-
pects of modelling and simulation of systems. ROM-
SIM currently has about 100 members from both
Romania and Republic of Moldavia.

— www.ici.ro/romsim/
#7 sflorin@ici.ro
> ROMSIM / Florin Stanciulescu,

National Institute for Research in Informatics, Averescu
Av. 8 — 10, 71316 Bucharest, Romania

ROMSIM Officers

President Florin Stanciulescu, sflorin@ici.ro

Vice president  Florin Hartescu, flory@ici.ro

Marius Radulescu, mradulescu@ici.ro

Secretary Zoe Radulescu, radulescu@ici.ro

Repr. EurOSIM  Florin Stanciulescu, sflorin@ici.ro

Deputy Florin Hartescu, flory@ici.ro

Edit. Board SNE Florin Stanciulescu, sflorin@ici.ro

Last data update March 2009
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ASIM — German Simulation Society

ASIM (Arbeitsgemeinschaft Smulation) is the asso-
ciation for simulation in the German speaking area,
servicing mainly Germany, Switzerland and Austria.
ASIM was founded in 1981 and has now about 700
individual members, and 40 institutional or industrial
members (plus about about 300 affiliated members).
The electronic ASM Newsletter (three times a year)
can be downloaded freely from ASIM website. For
details/contacts, see Societies Short Info before.

SNE - Simulation News Europe. ASIM is publish-
ing together with EUROSIM and ARGESIM the journal
SNE, which isregularly sent to all ASIM members (as
part of their membership; 900 issues) and spread for
promotion purposes at conferences (300 issues). The
electronic version eSNE is available to all membersin
high-resolution quality.

ASIM Books/ASIM Notes. ASIM co-operates with
Springer Verlag (Berlin), Shaker Verlag (Aachen),
and with ARGESIM Publishers (Vienna University of
Technology) in publication of book series (Fortschrit-
te in der Simulationstechnik - Frontiers in Simulation
and Fortschrittsberichte Simulation - Advances in
Simulation) and in publication of Proceedings. The
trademark ASm Mitteilungen (ASIM Notes) stands
for al publications of ASM and ASIM Working
Groups, in order to mark publications within the
‘ASIM environment’. At present (2008 — 2010), an
extended review is undertaken in order to classify all
publications since 1982, and to make them electroni-
caly available for ASIM members, in full form or
abstract form (detailswill be given in next SNE issue).

ASIM Working Groups. ASIM is part of Gl — Ge-
sellschaft fir Informatik (Society for Informatics) and
is itself structured into working groups (WG), which
address various areas of modelling and simulation
(attached conference/workshop reports).

ASIM Conferences. ASIM organises the conference
series Symposium Smulation Technique (also known
as previously annual ASIM Conference), the ASIM
working groups organise annual workshops (up to
150 participants) and bi-annual conferences (more
than 150 participants. ASIM cooperates in organising
the tri-annual EUROSIM Congress and other EUROSIM
and SCS conferences. Furthermore, ASIM co-organi-
ses specia conferences, e.g. the bi-annua ASIM
Wismar Workshop, and the the three-annual confer-
ence series MATHMoD — Mathematical Modelling in
Vienna (report MATHMOD 2009 next SNE issue).

Upcoming Conferences. At present, the following
conferences and workshops with ASIM as organizer,
co-organizer or co-gponsor are scheduled for 2009/2010:

e ASIM 20" Symposium Simulation Technique,
September 23 -25, 2009, Cottbus, Germany
e 2“ASM SPL Workshop Planning and Simula-
tionin Logitic Application, at Gl Annua Confer-
ence, Oct.1, 2009; L Ubeck, Germany
e 13"ASIM SUG Workshop Modelling and Simu-
lation of Ecosystems,
October 28 - 30, 2009, Usedom, Germany
e ASIM GMMSWorkshop Computational
Science and Engineering,
March 3 —5, 2010, Jilich, Germany
e ASIM STSWorkshop Smulation of Technical
Systems, March 4 — 5, 2010, Ulm, Germany
e EUROSIM 2010 — 7" EUROSIM Congress
Sept. 5—9, 2010, Prague, Czech Republic
e 14™ASIM SPL Conference Smulation in
Production and Logistics,
October 7 — 8, 2010, Karlsruhe, Germany

ASIM 2009 CONFERENCE
20th Symposium Simulation Technique
September 23- 25, 2009, Cottbus, Germany

www.asim-gi.org, www.tu-cottbus.de/asim2009

ASIM 2009, the 20" ASIM Symposium Simulation
Technique, will be organised by Albrecht Gnauck at
Brandenburgische Technische Universitét Cottbus,
September 23 — 25, 2009. The conference themed
Smulation for Environment, Climate, Energy and
Techniques will provide plenary lectures, parallel
sections, workshops, poster exhibition, tool exhibi-
tions, and excursions. Furthermore, an ASIM General
Assembly is scheduled.

Up to now, aso special sessions to
Environmental Modelling, E-Learning
with/for Simulation, Trends in Logis-
tic Simulation, and Physical Model-

Proceedings. Participants are invited ._. T

to excursions to Spreewald, Surface == "1 J-l" =
Mining, Power Station, and to other social events. For
details, deadlines, and submission see the conference
website www . tu-cottbus.de/asim2009.
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CONFERENCE REPORT

13" ASImM Conference on Simulation in Production
and Logistics, Berlin, October 2008

On October 1% and 2™, 2008 the ASIM conference
dedicated to the production and logistics applications
of discrete-event smulation (ASIm-SPL) took place in
Berlin (Germany). The conference, now in Berlin for the
fifth time, was organized by Dr. Markus Rabe from
Fraunhofer IPK and attracted around 200 researchers
and practitioners mainly from Germany and Austria,
but also from Switzerland, The Netherlands, Belgium,
Ireland, Finland, Spain, Serbia, Ukraine, and USA.

In the first plenary speech,
Johann Bayer (BMW AG)
gave insight into BMW's
new sales and production
system. He highlighted the
current  challenges, like
growing customer demand
' towards more individuality
and service, the broadening

of the product portfolio,
shorter model cycles, new
Johann Bayer forms of sdes like agents
BMW AG Miinchen  and e-commerce, and many
others. On the vision that
any customer should receive an individually ordered
car at a binding date, Johann Bayer discussed the
implications of this strategy on production and its va-
lidation within the production through simulation
techniques.

In the evening of the first day, the participants en-
joyed a great speech from Prof. Manfred Spitzer
(Ulm), illustrating how our experience does modify
our brain, physically. The implications for learning in
kindergarten, school, university and business have
been discussed, and the relationship studied between
fear and learning as well as joy and learning. With
fascinating examples, Manfred Spitzer demonstrated
how our brain can process complex information and
derive the essentid (and survival-relevant) consegquences.

The second plenary was a guest speech from the
ASIM working group on technical systems simulation,
presented by Prof. Walter Commerell (Ulm). Tech-
niques for modelling and simulation of technical
systems have gained steadily increasing importance
in the recent years, targeting to develop innovative
and optimised products under a high pressure of cost
and time constraints. This is especially true for the
design of mechatronic systems. In this field, simula-

6‘1? +++ Reports from EUROSIM Societies +++

Exhibition in Fraunhofer IPK's Shop Floor Area

tion is established as an important part of the devel-
opment process. The speech has illustrated the appli-
cation potentials of simulation at the example of a
mechatronic system from a passenger car. Solutions
have been presented that enable domain-over-
spanning simulation. Furthermore, possible methods
to achieve a non-interrupted, simulation-supported
design process were presented. Current challenges in
simulation of technical systems were shown and
trends and perspectives derived for future develop-
ments.

The main part of the conference was formed by about
60 paper presentations in four parallel streams. The
streams covered the major topics like:

o Digital factory

New methods and techniques
Emulation

Optimisation

Distributed simulation

Also, several streams were focussed on specific ap-
plication areas:

e Automotive industry

e Manufacturing and workshop applications
e L ogistics applications

e Supply chain applications

e Personnel ssimulation

e Shipbuilding and operation of vessels

e Construction industry

An exhibition with nine exhibitors accompanied the
conference, which raised high interest and intense
discussions.

As always with this conference, an evening event
provided not only room for discussions and good
food and drinks, but also entertainment; this time
with a-capella music presented by the Berlin group
"Mannerwirtschaft" aswell as by magicians.



7o % 3
% %

+++ Reports from EUROSIM Societies +++ % 1 29

Pre-conference day, tutorial presentation: Dr. Markus Rabe

For the first time, a "pre-conference day" (September
30) was organized, offering advanced tutorials. In the
first tutoria, Prof. Oliver Rose from the Technical
University Dresden presented hints and examples for
statistics in simulation studies. After a coffee break,
Dr. Markus Rabe introduced methods and techniques
for verification and validation. Both tutorials have
been fully booked, demonstrating the high interest in
this type of conference enrichment. This pre-
conference day closed with a get-together reception.

The conference book is till available through book
stores or from Fraunhofer IPK at the price of € 78,00.
Members of ASIM may order at a specia price of
€ 68,00 which is only available upon direct order at
Fraunhofer IPK (tagungeasim.fraunhofer.de). At
the conference website www.asim.fraunhofer.de,
additional information can be found about past ASIM
conferences and related publications.

The next ASIM conference on Smulation in Produc-
tion and Logistics (SPL) is planned for autumn 2010,
with the conference venue to be decided in spring
2009. For 2012, the Winter Smulation Conference is
planned for Berlin (Germany), leading to a shift of
the the 15" ASIM SPL conference to 2013.

* e
fop %

CONFERENCE REPORT

4™ ASIM Wismar Wor kshop, May 2008

The ASIm working group Smulation of Technical
Systems (STS) and Mothods in Modelling and Simu-
lation held the 4™ ASiM Workshop Modellierung, Re-
gelung und Simulation in Automotive und Prozessau-
tomation in Wismar on May 29-30, 2008. About 140
engineers and scientists from industry, research labs
and university met for a common meeting at Hoch-
schule Wismar.

Two plenary papers introduced into the main topics:

o Use the Smulation at the example of the hybrid-
motor-development by W. Nietschke, IAV GmbH
Gifhorn

e Possibilities and constraints of the use of Mode-
lica at the example of thermal systems by Dr. W.
Tegethoff, TLK-Thermo GmbH Braunschweig

Furthermore two tutorials were held about the topics:
e Modelling approach to the system simulation

e An introduction in Modelica/Dymola for begin-
ners

About 40 presentations introduced to intense discus-
sions of the following subjects:

¢ Language standards, eg.VHDL-AMS and Moddica
e Modeling and simulation in Automotive Systems

Parts of the exhibition area
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Tools and applications

Special applications and thermal systems
Mechatronic systems

Medical technology

Statistical analysis

Model based devel opment of functions

Six exhibitors showed their software and their services.

The evening of the first day was spent with a tradi-
tional meal in the restaurant “Brauhaus’. The meeting
was closed with two excursions —Historic city guided
tour to the hanseatic league and brick-gothic and a
drive with the Poeler Kogge Wissemara.

The participants had much time for discussion and the
chance to make new contacts and also to meet old
friends. The meeting was organised by the Research
Group Computational Engineering & Automation of
Hochschule Wismar, the AV GmbH Gifhorn and by
ASIM.

In 2009, the working group will organise the annual
workshop at University of Dresden (organiser Prof.
Oliver Rose), together with Fraunhofer IIS/EAS
Dresden (organiser Dr. Joachim Haase).

ASIM 2009

Look on the historical city

Work on the historical Poeler Kogge Wissemara

20. Symposium Simulationstechnik Call for ASIM 2009 Conference

Umwelt Klima Energie 20th Symposium Simulation Technique
Logistik Technik September 23 - 25, 2009, Cottbus, Germany
23.-25. September 2009 www.asim-gi.org, www.tu-cottbus.de/asim2009

BTU Cottbus

Schwerpunkte

«Simulation in Produktion und Logistik
+Simulation in Automative

«Simulation mechatrontscher Systeme
«Simullation im Yerkehrs- und Transportwesen
«Simulation im Bauwesen und Architektur
+Simulation von Energiesystemen

«Simulation von Umweltsystemen

«Simulation in Land-, Forst- und Wasserwirtschaft
«Kiimasimulation

«Simulation technischer end nichitechnischer Systeme

Vortrige - Poster - Workshops
Tutorien — User groups — Exkursionen

wow e -t e psim 009
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SLOSIM - Slovenian Society for Simulation and Modelling

SLoSIM, the Slovenian Society for Simulation and
Modelling, was established in 1994 and became the
full member of EUROSIM in 1996. Currently, it has 76
members from Slovenian universities, institutes, and
industry. It promotes modelling and simulation ap-
proach to problem solving in industrial as well as in
academic environments by establishing communica-
tion and cooperation among the corresponding teams.
Organisational details and contact addresses can be
found in the SLOSIM short information (see before).

— msc.fe.uni-1j.si/slosim
#=7 slosim@fe.uni-1j.si

Activities

As planned, the excursion to the Ljubljana interna-
tional airport was organized for the SLoSIM members
on March, 28th. Twenty participants had the opportu-
nity to visit the flight simulator for three different
types of aircrafts and presentation of virtual air-space
of Slovenia and Europe. See the virtual airspace of
Slovenia and Europe and attend the lecture organized
by The International Virtual Aviation Organization,
Slovenian division. (http://www.ivao.si/en/index.php).

SimS — Scandinavian

SIMS is the Scandinavian Simulation Society with
members from the four Nordic countries Denmark,
Finland, Norway and Sweden. The SIMS history goes
back to 1959. SIMS practical matters are taken care of
by the SIiMS board consisting of two representatives
from each Nordic country. Iceland will be represented
by one board member. Organizational details and
contact addresses see short information before.

— WWw.scansims.org
#=7 esko. juuso@oulu.fi

SIMS Structure. SIMS is organised as federation of
regional societies. There are FINSIM (Finnish Simula-
tion Forum), DKSIM (Dansk Simuleringsforening)
and NFA (Norsk Forening for Automatisering).

Past Events
In spring 2009 some workshops and special conferen-
ces took place (reports in the next SNE issue):

e NPCW '09 - 15th Nordic Process Control Work-
shop, Jan. 29-30, 2009. Porsgrunn, Norway

Past Events

In the last period SLOSIM actively participated in the
organization of the 6" Vienna Int. Conference on
Mathematical Modelling — MATHMoD 09. R. Karba
as the IPC member, some colleagues as the reviewers
and G. Musi¢ as the organizer of the tutorial: DES and
Petri Nets in MATLAB. A. Beli¢ had a plenary lec-
ture: Modelling in Biology, Neurology and Pharmacy.
In sum, SLOSIM members participated with 13 contri-
butions. As the society organized the special sessions
on all MATHMOD events in the last one M. Atanasi-
jevié—Kunc and G. Musi¢ were organizers of the fol-
lowing two track sessions:

e Modelling, Simulation and System Dynamics
through E-Learning (11 papers),

o Discrete and Hybrid Simulation Methodology,
techniques and Applications (11 papers).

Coming Events

Annual ERK (Electrotechnical and Computer Science
Conference) will be organised at the end of Septem-
ber 2009 in Portoroz, Slovenia. SLOSIM will partici-
pate with several sessions.

Simulation Society

e OpenModelica Annual Workshop, February 2,
2009, Linkdping, Sweden

e ModProd 2009 - 3" Annual Workshop on Model-
based Product Development, February 3-4, 2009,
Linkdping, Sweden;

e Automation XVIII Seminar, March 17-18, 2009,
Helsinki, Finland

Coming Events

The 50th Scandinavian Conference on Simulation and
Modelling, will be organized by DKSIM in Copenha-
gen, Denmark, October 6-8, 2008. The purpose of the
SIMS conference is to cover broad aspects of model-
ing and simulation and scientific computation. It will
be of interest for model builders, simulator personnel,
scientists, engineers, vendors, etc.

S1mMS 2009
50th Conference on Simulation and Modelling

October 6-8, 2009, Copenhagen, Denmark
www.scansims.org
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The scientific program will consist of technical ses-
sions (submitted and invited papers), and is open for
poster sessions and vendor demonstrations. The focus
area is modelling and simulation in energy systems.

Proceedings of the accepted papers will be distributed
at the conference.

IFAC is the International Federation of Automatic
Control, a multinational federation of organizations
representing the engineering and scientific societies
concerned with automatic control.

CEA is the Spanish Society on Automation and Con-
trol and it is the national member of IFAC in Spain.
Since 1968 CEA-IFAC looks after the development
of the Automation in Spain, in its different issues:
automatic control, robotics, simulation, etc. In order
to improve the efficiency and to deep into the differ-
ent fields of Automation, the association is divided

into thematic groups, concretely eight groups at present.

One of them is named Modelling and Simulation,
constituting then the CEA-SMSG (CEA-IFAC Span-
ish Modelling and Simulation Group), which looks
after the development of modelling and simulation in
Spain. This group works basically about all the issues
concerning the use of modelling and simulation tech-
niques as essential engineering tools for decision-
making.

The coordinator of the group is Dra. Maria Jesus de la
Fuente, from the University of Valladolid. The repre-
sentative of the group in EUROSIM is Dr. Emilio
Jiménez Macias, from the University of La Rioja:
emilio.jimenez@unirioja.es

#7 simulacion@cea-ifac.es

Activities

The main usual activities of the group can be summa-
rized as an annual meeting about modelling and simu-
lation, inside CEA meeting on automation, special-
ized courses, a distribution list, a periodic electronic
report, technical books, a journal (translated as Latin

6* +++ Reports from EUROSIM Societies +++

Presented papers will be considered for publication in
the EUROSIM scientific journal ‘Simulation and
Modelling — Practice and Theory’ (SIMPRA) pub-
lished by Elsevier Science. Especially Ph.D. students
are encouraged to contribute with papers according to
the conference themes.

CEA-SMSG - Spanish Modeling and Simulation Group

American journal of Automation and Industrial Com-
putting), a trade agreement with Pearson Inc. for a
collection of books, an award for the scientific con-
tribution in automation and a specific award for mod-
elling and simulation, sponsorship of events, etc.

Past Events

As most interesting recent activities could be selected
the 29th annual meeting, inside the National Auto-
matic Workshop (XXIX Jornadas de Automatica) by
the CEA-IFAC. September 2008, Tarragona (Spain),
which includes the annual meeting of the CEA-
SMSG (CEA-IFAC Spanish Modeling and Simula-
tion Group).

Coming Events

30™ annual meeting is scheduled inside the National
Automatic Workshop (XXX Jornadas de Automatica)
by the CEA-IFAC, in Valladolid, September 2009,
which includes the annual meeting of the CEA-
SMSG.

The 6" International Mediterranean Modelling Multi-
conference, I13M 2009 (EMMS 2009, MAS 2009,
HMS 2009) takes place in Puerto de la Cruz (Tene-
rife, Islas Canarias) September 23-25, 2009. It in-
cludes:

e The 21st European Modelling & Simulation
Symposium - EMSS 2009
13m2009. isaatc.ull.es/emss2009

e The International Workshop on Modeling & Ap-
plied Simulation- MAS 2009
http://13m2009.isaatc.ull.es/mas2009
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RomMSIM — Romanian Society for Modelling and Simulation

RoMSIM has been founded in 1990 as a non-profit
society, devoted to both theoretical and applied as-
pects of modelling and simulation of systems. Rom-
SiM currently has about 100 members from both
Romania and Republic of Moldavia.

The main objectives of RoMSIm are: development of
new methods and instruments of modelling and simu-
lation of systems, development of new application of
modelling and simulation of both natural systems and
those created by man, development of education and
training in the field of modelling and simulation of
systems.

In April 1999 RomSIm has been accepted as an ob-
server member of EUROSIM.

— http://www._ici.ro/romsim/
#=7 sflorin@ici.ro

Activities

RoMSIM is involved in organization of two periodic
scientific seminaries: A seminary on Systems model-
ing and Simulation and a seminary on Mathematical
modeling Simulation; the seminaries are attended
each time by 15 to 20 specialists. During the seminar-
ies participants present and discuss both theoretical
and applied contributions in the field of systems
modeling and simulation.

An important objective of RoMSIM is organization of
national scientific events in the field of modelling and
simulation and participation at international confer-
ences.

Past Events

In 2008 RomSIM was involved in the organization of
two international conferences:

¢ International Conference of Differential Geome-
try and Dynamical Systems (DGDS-2008)

e 5™ International Colloquium of Mathematics in
Engineering and Numerical Physics (MENP-5)
August 29 — Sept. 02, 2008 at Callatis High
School, Mangalia, near the Black Sea, Romania

Marius Radulescu was a member of the Scientific and
Organizing Committee of the above conferences.
Conference Program Committee includes members
from France, Greece, India, Italy, Japan, Macedonia-
FYROM, Portugal, Russia, Turkey, Spain, Yugosla-
via, U.K. and USA.

Members of RomSimM gave talks to several interna-
tional conferences in 2008 with subjects in the do-
main of mathematical modelling and simulation -
Tenth International Conference on Computer Model-
ing and Simulation (UKSIM 2008) Cambridge UK
(one paper), - 9th WSEAS International Conference
on Mathematics and Computers in Business and Eco-
nomics (MCBE’2008), Bucharest, (three papers), -
12th WSEAS International Conference on Com-
puters, Heraklion, Greece, 2008 (three papers), -
Operations Research, OR2008 conference in Augs-
burg, Germany, - and MIA 2008 conference in Trogir,
Croatia

Coming Events

DGDS-2009

International Conference of Differential Geometry
and Dynamical Systems

October 8-11, 2009, Bucharest, Romania
www..mathem. pub. ro/dept/dgds-09/conf.htm

Publications

We emphasize also the activity of RoMSIM members
in the field of publishing articles in international
and/or Romanian journals. In 2008, 6 papers were
published in WSEAS Proceedings (ISI indexed), one
paper in Proc. Romanian Academy (ISI indexed) and
one paper in the Journal Studies in Informatics and
Control. At the same time some members of ROMSIM
(as dr. Florin Hartescu, dr. Constantza Zoie
Radulescu, et al) have published research articles in
Romanian Journal for Informatics and Automatics.

Several editorial events must be emphasized. One is
the publication of the book entitled Modeling of High
Complexity Systems with Applications (including a
CD with 12 MathCAD applications) by WIT Press,
Southampton, Boston, authored by Dr. Florin Stan-
ciulescu.

Another is the publication by the Romanian Academy
Publishing House of the book Mathematical Models
for Optimal Asset Allocation; Authors are Marius
Radulescu, Sorin Radulescu and Constantza Zoie
Radulescu. One book with a subject connected to ruin
theory (which has some simulation models), author
Gheorghita Zbaganu was published in a collection of
the Publishing House Geometry Balkan Press.
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CROSSIM — Croatian Society for Simulation Model-
ling was founded in 1992 as a non-profit society with
the goal to promote knowledge and use of simulation
methods and techniques and development of educa-
tion and training in the field of simulation modelling.
CROSSIM is a full member of EUROSIM since 1997.

— www.eurosim.info
#-7 vdusak@foi.hr

Publications. CROSSIM co-operates with the Uni-
emweremmans | Versity Computing Centre, Zagreb, in
7]~ 1 publishing of the Journal of Comput-
_| I ing and Information Technology
(CIT). All information concerning CIT

is available at cit.srce.hr.

Past Events. 30" International Conference Informa-
tion Technology Interfaces ITI 2008 took place in
Cavtat near Dubrovnik, 23-26 June 2008. It included
four sessions on Modeling, Simulation and Optimiza-

tion chaired by Felix Breitenecker, Zelimir Kurtanjek
and Robert Manger.

CROSSIM — Croatian Simulation Society

In addition an invited anniversary lecture was given
by Professor Felix Breitenecker entitled Love Emo-
tions between Laura and Petrarca — an Approach by
System Dynamics and co-authored by Florian Judex,
Nikolas Popper, Andreas and Anna =
Mathe. B
e
Coming Events. 31% International Con- pLAE
ference Information Technology Inter-
faces ITI 2009 will be held in Cavtat near Dubrovnik
on 22-25 June 2009. Modeling, Simulation and Op-
timization is among topics of interest and a special

session is devoted to Medical Informatics.

IT12009

31% International Conference
Information Technology Interfaces

June 25 - 27, 2009
Cavtat near Dubrovnik, Croatia
iti.srce.hr

PSCS - Polish Society for Computer Simulation

PSCS, the Polish Society for Computer Simulation,
was founded in 1993 in Warsaw. PSCS is a scientific,
non-profit association of members from universities,
research institutes and industry in Poland with com-
mon interests in variety of methods of computer
simulations and its applications. At present PSCS
counts 257 members.

— www.ptsk.man bialystok.pl

#=7 PSCS/ Leon Bobrowski, c/o IBIB PAN,
ul. Trojdena 4 (p. 416), 02-109, Warszawa, Poland

Activities. The main activities of the Polish Society
for Computer Simulation are annual conferences
known as PSCS Workshops on Simulation in Re-
search and Development. The PSCS Workshops were
organized in: Mielno (1994), Warszawa(1995), Wigry
(1996), Jelenia Gora (1997, 1998), Bialystok &
Bialowieza (1999), Zakopane — Koscielisko (2000),
Gdansk-Sobieszewo (2001), Osieki k/ Koszalina
(2002), Zakopane (2003), Biatystok & Augustow
(2004), Sarbinowo Morskie k/Koszalina (2005),
Krynica Zdroj (2006) and Zakopane (2008).

Past Events. On February 20, 2009 the general
assembly of PSCS members was held in Warsaw.
This meeting, besides representing an interesting
forum to discuss and promote the activity of the soci-
ety, was the occasion to elect the Board for the period
2009-2011.

Coming Events. Assoc. Prof. Walenty Oniszczuk
will organize the 16" PSCS Workshop on Simulation
in Research and Development on September 23-26,
2009 in Bialystok, Poland; ptsk2009@wi -pb.edu.pl

16™ PSCS WORKSHOP
Simulation in Research and Development
September 23 — 26, 2009, Bialystok, Poland
ww. ptsk.man.bialystok.pl

Publications. Proceedings of the 15" PSCS Work-
shop on Simulation in Research and Development, T.
Nowicki and J. Koszela (Eds.), Warszawa, 2008, (in
Polish). The price is 30,- PLN.
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CONFERENCE SERIES — MATHMOD, EOOLT, MODELICA, MOSIM

MATHMOD VIENNA CONFERENCE SERIES

At MATHMoOD Vienna — Vienna International Confer-
ence on Mathematical Modelling scientists and engi-
neers using or developing models or interested in the
development or application of various modelling
tools are offered an opportunity to present ideas,
methods and results and discuss their experiences or
problems with experts of various areas of specialisa-
tion. The scope of the MATHMoD Conference Series
covers theoretic and applied aspects of various types
of mathematical modelling. Comparison of modelling
approaches, model simplification, modelling uncer-
tainties, port-based modelling and the impact of items
such as these on problem solution, numerical tech-
niques, validation, automation of modelling and soft-
ware support for modelling, co-simulation, etc are
discussed.

MATHMoD 2009. The confer- 'gMATHMOD
ence series MATHMoD Vienna - > VIENNA 09
was started in February 1994 with the 1st MATHMoD
Vienna — MATHMoD 1994, followed conferences in
February 1997, 2000, 2003, and 2006. Recently
MATHMOoD 2009 took place: 451 participants from 44
countries followed 11 invited lectures, 291 session
contributions, and 82 short papers / posters. A de-
tailed report will be given in SNE 19/3-4, including
the MATHMoD & Arts project. MATHMoOD 2012 is
scheduled for February 2012. www.mathmod.at

MOSIM - FRANCOSIM

Although FRANCOSIM, the French-speaking simu-
lation society is undergoing a re-organization, the
conference series MOSIM is still continued. MOSIM
— International Conference in Modelling and Simula-
tion — started in 1997 with 1* MOSIM in Rouen, fol-
lowed by conferences in Annecy (1999), Troyes
(2001), Toulouse (2003), Nantes (2004), Rabat
(2006), and 7" MOSIM in Paris (2008). Each MO-
SIM conferences emphasizes on a general topic, e.g.
MOSIM 2008 with Communication, Cooperation,
and Coordination, or MOSIM 2006 on Modelization,
Optimization and Simulation of the Systems: Chal-
lenges and Opportunities.

MoSIM’10
8" Conference on Modelling and Simulation
Hammamet, Tunisia, May 10-12, 2010
www.enim. fr/mosim10

MOSIM’10. The 8" MOSIM

conference ywll b.e. held . in ITI DSI m
Hammamet in Tunisia, which —

is a perfect place for a fruitful | !.|_ |
international scientific event.

This 2010 MOSIM edition is organized by LGIPM
(Industrial Engineering and Production Laboratory of
Metz, France) in collaboration with CEREP (Manu-
facturing Research Center, Tunisia). Conference
theme is Evaluation and Optimization of Innovative
Production Systems of Goods and Services. Proposi-
tion of special sessions and tracks is also encouraged
— more information at website: www.enim.fr/mosiml10.

MODELICA CONFERENCE SERIES

Modelica is a freely available, object-oriented lan-
guage for convenient and efficient modelling and
simulation of complex, multi-domain physical sys-
tems, described by ordinary differential and algebraic

equations. The freely available Modelica Standard
Library provides a growing number of basic models
covering all the fields of engineering. The develop-
ment and promotion of Modelica and of the Modelica
Standard Library is organized by the non-profit Mod-
elica Association, bringing together tool developers,
library developers and scien- ,77)
tists from industry and acade- M o pE'Li CA
mia since 1997.

The Modelica Conference series is intended to bring
together people using Modelica for modelling, simu-
lation, and control applications, Modelica language

designers, Modelica tool vendors and Modelica li-
brary developers.

MODELICA’2009
7" International Modelica Conference
Como, Italy, September 20 — 22, 2009
ww.modelica.org/events/modelica2009

Modelica 2009. Modelica Conferences are organized
with a rhythm of 18 month. 1% Modelica Conference
took place March 2002, Oberpfaffenhofen,, Germany,
followed by Modelica conferences in Linkdping,
(Nov. 2003), Hamburg (March 2005), Vienna, (Sep-
tember 2006), and Bielefeld, Germany (March 2008).
The Modelica Association and Politecnico di Milano
organize the 7" International Modelica Conference,
Modelica’2009, at Como, Italy, September 2009.
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The conference will cover all the relevant Modelica
topics: language design, numerical and symbolic
methods, reusable model libraries, software tools,
scientific and industrial applications. Tutorials will be
held on Sunday afternoon, while regular sessions,
poster sessions, tool presentations, and user's group
meetings will be held on Monday and Tuesday. More
info at www.modelica.org/events/modelica2009.

Equation-Based

Object-Oriented EO OLT

Languages and Tools

Computer aided modeling and simulation of complex
systems, using components from multiple application
domains, such as electrical, mechanical, hydraulic,
control, etc., have in recent years witnessed a signifi-
cant growth of interest. In the last decade, novel
equation-based modeling languages, (e.g. Modelica,
gPROMS, Verilog-AMS, VHDL-AMS, and SysML)
supporting acausal modeling using differential alge-
braic equations (DAEs) have appeared. In the last
couple of years the name equation-based object-

oriented (EOQ) language has been introduced to de-
note modeling languages within this category.

6* +++ Conference Series - Simulation Centers +++

The EOOLT Workshop Series addresses the current
state of the art of EOO modeling languages as well as
open issues that currently still limit the expression
power, correctness, and usefulness of such languages
through a set of full-length presentations and forum
discussions.

EOOLT 2009
3" Workshop Equation-Based Object-Oriented
Languages and Tools — within MODELICA 2009
Como, Italy, September 23, 2009
www.eoolt.org/2009

EOOLT 2009. EOOLT Workshops are organized
within conferences of similar, but more global sub-
jects. After EOOLT 2007 (Berlin, July 2007) within
ECOOP 2007 — European Conference on Object-
Oriented Programming, and EOOLT 2008 within
ECOOP 2008 (Paphos, Cyprus, July 2008), EOOLT
2009 will be organized within the MODELICA Con-
ference 2009, Como, Italy, September 2009. More in-
formation see website: www.eoolt.org.

MISS and M&SNet - Initatives of SCS

MISS - the McLeod Institute of

Simulation Sciences is an initia- r ﬂ
tive of the Society for Modeling M ISS
and Simulation International — I I
SCS. The Institute is named af-

ter Mr. John McLeod, the founder of SCS. MISS con-
sists of co-operating MISS Centers active in profes-
sionalism, research, education, and knowledge dis-
semination in the modeling and simulation domain.

The MISS aims to provide an organizational structure
that will serve to integrate and enrich, within its Cen-
ters, the activities of modeling and simulation exper-
tise throughout the world. More information from
Andras Javor, MISS Director, javor@eik.bme.hu, and
at web www.scs.org. Reports on MISS Centers and
M&SNet Nodes will start in SNE 19/3-4.

M&SNet — McLeod Model-
I I ing and Simulation Network
I M& SNet I is a consortium of co-ope-

rating independent organiza-
tions active in modeling and simulation. It was estab-
lished in 2003 by the Society for Modeling and Simu-
lation International.

The M&SNet aims to provide an organizational struc-
ture that will serve to integrate and enrich, within its
organizations, modeling and simulation activities
throughout the world. The M&SNet provides a
framework within which organizations interested in
M&S can interact, share expertise, and work on prob-
lems of common interest. Info: Tuncer Oren,
M&SNet Executive Director, oren@site.uotawa
.ca, www.scs.org/msnet.

Both groups will meet officially on occasion of
ISMc'09 on July 15, in order to discuss further activi-
ties. Working meetings are planned for 13M’2009.

ISMc’09
2009 International Simulation Multiconference
July 13 — 16, 2009, Istanbul, Turkey
w www. scs.org/confernc/summersim/summersim09

13M2009
6" Mediterranean Modelling Multiconference
Sept. 23-25, 2009; Tenerife - Canary Islands, Spain
13m2009. isaatc.ull.es/emss2009



Maple &

The Essential Tool for Mathematics and Maodeling

Ob Sie schnelle Lésungen far mathematische
Probleme bendtigen oder anspruchsvolle tech-
nische Dokumente und Applikationen erstellen
mochten: Maple 12 bietet die Tools, um lhre
mathematischen Fragestellungen zu formulie-
ren, zu losen und lhre Ergebnisse zu dokumen-
tieren.

Die umfangreiche Auswahl an Zusatzprodukten
zu Maple bietet |hnen zudem die Méglichkeit,
die Reichweite lhrer Arbeit wesentlich aus-
zubauen. Dazu gehért unter anderem die
Maple Toolbox fir MATLAB®, die Global
Optimization Toolbox oder auch Maple T A., ein
Tool fuir Web-basiertes Lernen und Prifen.
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High Perfomance Multi-Domain Modeling & Simulation
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MapleSim ist eine fachlUbergreifende Multido-
manen-Hochleistungssoftware fir Modellie-
rung und Simulation, die bei der Marktein-
fihrung neuer Produkte durchgreifende Erfolge
erzielt. Die weltweit am hochsten entwickelte
Software kombiniert symbalische mit nume-
rischen Rechenmethoden und ermoglicht
dadurch eine grundlegende Erneuerung im
Simulations- und Modellierungsprozess.
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scientificCOMPUTERS

Scientific Computers GmbH * FriedlandstraBe 18 * 52064 Aachen / Germany * Telefon (0241) 40008-0 * www.scientific.de * maple@scientific.de



V) DAS IST MODEL-BASED DESIGN.

4The MathWorks

Accelerating the pace of engineering and science

Nachdem der Endabstieg der beiden
Mars Rover unter Tausenden von
atmosphdrischen Bedingungen simuliert
wurde, entwickelte und testete das
Ingenieur-Team ein ausfallsicheres
Bremsraketen-System, um eine
zuverlassige Landung zu garantieren.
Das Resultat — zwei erfolgreiche
autonome Landungen, die exakt gemaB
der Simulation erfolgten.

Mehr hierzu erfahren Sie unter:

www. mathworks.de/mbd
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