
t

41

N
SN

E 19/1, A
pril 2009

Implementation of a Distributed Consensus Algorithm with OMNeT++

Introduction

1 OMNeT++

19

+++ Implementation of a Distr ibuted Consensus Algor ithm with OMNeT++ +++

+++ Implementation of a Distr ibuted Consensus Algor ithm with OMNeT++ +++
SN

E
19

/1
, A

pr
il

20
09

s N

42

2 Distributed consensus with crash failures
In this pa per we foc us on the standa rd synchronous
model, whe re processors act in a round-based m an-
ner. Each round consists of sending and receiving one
or more messages and one ze ro time computing step
on ea ch processor. C omputation steps occ ur at the
beginning of each round.
The algorithm we implemented is taken from [1] and
listed in Algorithm 1. Ea ch processor has a—
probably distinct—value x . It is the intention of t his
algorithm to provide e very processor with the sam e
value a fter its com pletion. This indicates that nodes
have to share t heir data and need common criteria to
decide it. The algorithm ope rates suc h that in every
round each processor sends a value it has not sent yet
to all other processors. Eac h proce ssor st ores t he
received values in its set V . We allow one processor
per round to fail with crash failure. In particular, we
allow a failing node to send an arbitra ry num ber of
correct messages in the spe cific round it fa ils. After
the crash a processor is not allowed to send any more
messages. For this algorithm to work, the network has
to be fully connected. It can be show n that the algo-
rithm needs a t least 1f + nodes , w here f is the
amount of crash failures tolerated.

3 Implementation
Knowledge of the C++ program ming langua ge can
usually be presumed. So the m ain challenge in im -
plementing a distributed algorithm in soft ware usu-
ally turns out to be t he com prehension t hat Algo-
rithm 1 descri bes the be havior of one instance of a
node whereas the syste m under study constitute s
many nodes processing concurrently.

As shown in Figure 1 the GUI of the si mulator cre-
ated by OMNeT++ is quite intuitive. It can be seen
that our model is made up of four nodes, thus tolerat-
ing three crash failures. Besides simulating the behav-
ior of a fault-free net in the first place, we also de-
ployed crashing nodes. In order to save compile time,
we exploited a certain feature of OMNeT++: parame-
terization of t he m odeled s ystem. By providing the

number of nodes to c rash a s a param eter, arbitra ry
experiments can be conducted easily.
The implementation of the behavior of this algorithm
requires about 150 lines of code.

4 Conclusion
In this paper, we presented the successful implemen-
tation of a simple but nevertheless important building
block of distributed c omputing: a conse nsus algo-
rithm. In more detail, we have shown that the chosen
simulator, OM NeT++, is (i) capable of sim ulating
such an a lgorithm and (ii) particularly use ful for the
purpose of demonstration a nd also educa tion. OM -
NeT++ has already prove n to be ve ry use ful for t he
distributed computing community.
In a furthe r step, we will extend the fa ult m odel to
arbitrary (byz antine) fa ults and also exa mine data
fusion algorithms. The result s are inte nded to estab-
lish the basis for a ha rdware implementation of suc h
an algorit hm serving as a fault tolera nce layer in
distributed systems.

References
[47] H. Atti ya, J. W elch. Distributed Computing: Funda-

mentals, Simulations and Advanced Topics. Wiley Se-
ries on Parallel and Distributed Computing. Wiley and
Sons, 2004.

[48] OMNeT++ Community Site. http://www.omnetpp.org

Corresponding author: Andreas Dielacher,
Department of Computer Engineering
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
dielacher@ecs.tuwien.ac.at

Received: October 12, 2008
Revised: January 20, 2009
Accepted: February 5, 2009

Figure 1. GUI of OMNeT++

Initially { }V x= .
for round ,1 1k k f≤ ≤ + do
 send : iv V p∈ has not already sent v to all proc.
 rece ive jS from jp , 0 1,j n j i≤ ≤ − ≠

1

0
: n

jj
V V S−

=
= ∪

if 1k f= + then min()y V=

Algorithm 1. Simple consensus, code for one processor ip

