+++ Implementation of a Distributed Consensus Algorithm with OMNeT++ +++

SHORT NOTES

I mplementation of a Distributed Consensus Algorithm with OM NeT ++

Andreas Dielacher, Thomas Handl, Christian Widtmann, Vienna University of Technology, Austria

{dielacher, handl, widtmann}@ecs.tuwien.ac.at

SNE Simulation Notes Europe SNE 19(1), 2009, 41-42, doi: 10.11128/sne.19.sn.09927

This paper examines the implementation of a simple distributed consensus algorithm with OMNET++. It
will be shown that using this simulator (i) comes at nearly no cost and (7)) massively improves comprehen-

sion of the system under study.

I ntroduction

One of the major concerns of distributed computing is
the ability of a group of nodes or processors to agree
on a common value. This agreement is also called
(distributed) consensus. Furthermore, in a realistic
system model it is necessary to allow nodes to fail.
The nature of failure depends on the fault model
chosen. In the benign case, a node fails to send its
messages in a consistent way (e.g. crash failures),
whereas in the malicious case one has to deal with
byzantine behavior. In the following we will focus on
consensus with crash failures. This paper is structured
as follows. Section 1 deals with the chosen simulator.
We then describe the problem in Section 2 and our
implementation in Section 3. The paper concludes in
Section 4 with our results.

1 OMNeT++

OMNeT++ [2] is a modular open-source simulation
environment with GUI support. It provides communi-
cation primitives allowing to easily model communi-

cation networks and alike although it has already
been used in other areas like hardware architectures
and business processes. This tool is used for scientific
research as well as for industrial engineering. Exam-
ples for open source simulation models are network
protocols like IP, IPv6 or MPLS.

From a technical point of view, OMNeT++ is a dis-
crete and event driven simulator generator. The be-
havior of the system to be simulated is modeled using
the well known C++ programming language. The
structure of this system is described in a proprietary
language called NED. OMNeT++ then compiles this
code into a stand-alone simulator with GUI.
OMNeT++ offers many features such as user-defined
message definition, message statistics, message track-
ing, visualization of network traffic and many more.
Nevertheless, there are some inconveniences to han-
dle. For example it is not possible to implement time-
outs directly. This deficiency has to be overcome by
using “self messages”, a usual approach in distributed
computing models.

L

6002 114dv ‘T/6T 3INS

SNE 19/1, April 2009

Ll

+++ Implementation of a Distributed Consensus Algorithm with OMNeT++ +++

Initially V' = {x}.
for round £,1<k < f+1 do
send ve V: p, has not already sent v to all proc.
rece ive S; from p,, 0< j<n—1, j#i
v=rulJs,
if k=f+1then y=min(})

Algorithm 1. Simple consensus, code for one processor p,

2 Digributed consensuswith crash failures

In this pa per we focus on the standa rd synchronous
model, where processors act ina round-based m an-
ner. Each round consists of sending and receiving one
or more messages and one ze ro time computing step
on ea ch processor. C omputation steps occ ur at the
beginning of each round.

The algorithm we implemented is taken from [1] and
listedin ~ Algorithm 1. Ea ch processor has a—
probably distinct—value x. It is the intention of t his
algorithm to provide e very processor with the same
value a fter its com pletion. This indicates that nodes
have to share their data and need common criteria to
decide it. The algorithm operates such that in every
round each processor sends a value it has not sent yet
to all other processors. Eac h proce ssor st ores t he
received values in its set . We allow one processor
per round to fail with crash failure. In particular, we
allow a failing node to send an arbitra ry number of
correct messages in the specific round it fa ils. After
the crash a processor is not allowed to send any more
messages. For this algorithm to work, the network has
to be fully connected. It can be show n that the algo-
rithm needs a tleast f +1 nodes,w here f isthe
amount of crash failures tolerated.

3 Implementation

Knowledge of the C++ program ming langua ge can
usually be presumed. So the main challenge in im -
plementing a distributed algorithm in soft ware usu-
ally turns outto bet he com prehension t hat Algo-
rithm 1 descri bes the be havior of one instance of a
node whereas the syste m under study constitute s
many nodes processing concurrently.

As shown in Figure 1 the GUI of the si mulator cre-
ated by OMNeT++ is quite intuitive. It can be seen

that our model is made up of four nodes, thus tolerat-
ing three crash failures. Besides simulating the behav-
ior of a fault-free net in the first place, we also de-
ployed crashing nodes. In order to save compile time,
we exploited a certain feature of OMNeT++: parame-
terization of t he m odeled s ystem. By providing the

J(Cunsensusncunsensus (id=1) (ptrlxdGhbc0d) |

L

CONsensus

7] (chessage) 1 a1 T=200.018, in dt

dest=consensus.cons_node[3] {id:

cons_hodefz]

Figure 1. GUI of OMNeT++

number of nodes to ¢ rash as a param eter, arbitrary
experiments can be conducted easily.

The implementation of the behavior of this algorithm
requires about 150 lines of code.

4 Conclusion

In this paper, we presented the successful implemen-
tation of a simple but nevertheless important building
block of distributed ¢ omputing: a conse nsus algo-
rithm. In more detail, we have shown that the chosen
simulator, OM NeT++, is (i) capable of sim ulating
such an algorithm and (i) particularly use ful for the
purpose of demonstration a nd also educa tion. OM -
NeT++ has already prove n to be very use ful for t he
distributed computing community.

In a furthe r step, we will extend the fa ult model to
arbitrary (byz antine) fa ults and also exa mine data
fusion algorithms. The results are inte nded to estab-
lish the basis for a ha rdware implementation of suc h
an algorit hm serving asa fault tolera nce layer in
distributed systems.

References

[47] H. Attiya, J. Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics. Wiley Se-
ries on Parallel and Distributed Computing. Wiley and
Sons, 2004.

[48] OMNeT++ Community Site. http://www.omnetpp.org

Corresponding author : Andreas Dielacher,
Department of Computer Engineering
Vienna University of Technology
Wiedner Hauptstrae 8-10, 1040 Vienna, Austria
dielacher@ecs.tuwien.ac.at

Received: October 12,2008

Revised: January 20, 2009
Accepted: February 5, 2009

